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On the Relationship between the Majorization of Functions and
the Majorization of Derivatives in Certain Classes
of Holomorphic Functions

O zaleznosci migdzy majoryzacjg funkcji a majoryzacjg pochodnych
w pewnych klasach funkcji holomorficznych

Abstract. In this paper we investigate the relationship between the majorization of functions
and the majorization of derivatives in the class H of functions in the unit disc K, satisfying the

condition
{(1 )F(z)} >0,

as well as in the class H* of close-to-star functions.
The results obtained are sharp.

1l.Introduction. Let C denote the complex plane, Kr = {z € C : |z| < R},
K, = K and f , F be two holomorphic functions in the disc Kr such that
f(0) = F(0). We say that f is majorized by F in the disc Kg and write f « F'
in Kgp if |f(z)] < |F(2)| for every z € Kgr. It means that there exists in Kg a
holomorphic function ® such that |®(z)] <1 for z € Kr and

(1) f(z) = ¥(2) - F(2)

for every z € Kp.
Denote by H, F two fixed and compact classes of holomorphic functions in the
disc K. Suppose that f € M, F € F and f « F in K. Let ry € (0;1) denote the

greatest number for which the following implication
f<F in K= f'<F in K,

holds for every pair of functions f € H, F € F. The number ry = ro(H, F) is called
the radius of majorization of derivatives for the class F. The determination of ro
in various subclasses of univalent functions in the disc K was investigated by many



2 F. Bogowski , Cg. Burniak

authors. Among others Z. Lewandowski [4] proved that ro(%, S) = 2 — v/3, where
S denote the class of functions F holomorphic and univalent in the disc K such that
F(0) = 0, F'(0) = 1. This problem can be generalized in the following way. We will
determine the smallest possible number T(r) = T(r, H, F) such that for every pair of
functions f, F (f € H, F € F) the implication

f<F in K=|f'(z)| ST(r) |F'(2)|

for |z} = r < 1 holds.
T(r) can be defined as follows

> f'(2)

(2) I(r) = ?‘é})’{ (m:xr F'(z) ) -
FeF
f<F

Let us note that the radius of majorization of derivatives

ro = sup {T(r)<1}.
re(0;1)

It follows from the definition of the radius of majorization of derivatives and T(r)
that it must be |z| < rx, where rz is the radius of local univalence in the class F i.e.

rr=sup{|z] <r € (0;1): F'(z) # 0 for all F € F} .

Among others the following result was obtained (J- Janowski , J. Stankiewicz
(3]) .
(1 for r € (0;2 — V3)

T(r,H,S) = i 4r? 4 (1-r)t

_— 2-v31).

e for r € (2 — V3;1)
2. The majorization of derivatives in class H. Denote by H the class of
functions F, holomorphic in the disc K, satisfying the condition

(3) Re{(1-zz)f—i"—)} >0 , z€K

and such that F(0) =0, F'(0) = 1.

If the coefficients of the function F satisfying condition (3) are real, then the
function is typically real. The function F' holomorphic in K and such that F(0) = 0,
F'(0) = 1, is said to be typically real if it takes the real values on the segment (—1;1)
of the real axis and satisfies the condition Im z-Im F(z) > 0 for z € K\ (—1;1). The
class of typically real functions will be denoted by TR.

The class H contains then the class TR of typically real functions.

The condition (3) can be written in the equivalent form

I
1-22

(4) F(z) = ‘pz) , z€K,
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where p € P, P being the class of functions p holomorphic in K and such that
Re p(z) > 0 for z € K and p(0) = 1.

Theorem 1 [1). The radius of local univalence in the class H is equal

i 5 1 5
TH = +2\/_ - +2\/— ~ (0,346 .

Remark . The radius of local univalence rj; is simultaneously the radius of
univalence (i.e. in disc Ky, every function F € H is univalent) as well as the radius
of starlikeness in the class H (i.e. in disc K, every function F € H satisfies the

zF'(z)
= >0).
F(z)

condition Re

Theorem 2. If F € H then for 2z € K,,,

F(z)|< r(1-rt)
Fi(z)| = (1=r2)=2r(1 4 r2)°

(8)

r = [E]%

The estimation is sharp and the equality holds for the function F of the form

z 1+1z
1-22 1—1z

(6) F(z) =

at the point z = ir.
Proof. It follows from the condition (4) that

2F'(z) 142  2p/(2)
F(z) 1-22 p(2)

where p € P. Making use of the well-known sharp estimation

|zp’(=)| 2|z|
17 p(z) b= T=[z]

for peP

we obtain

1zF'(z) 1+ 22 & 2|z|
F(z) 1-22171-|z]?

From (7) the inequality (5) follows.
A simple calculation shows that the function of the form (6) for z = ir gives the
equality in (5).

M

Theorem 3. Let fe H, Fe€ H. If f € F in the disc K and

1+\/5_\/1+\/g

|zl =r<rg= 5 3
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then

(8) If'(z)l < T(r)- |F'(2)] ,
where

i1 for r € (0,19)
(9) T(r)= ¢ [(1 = r?)? —2r(1 + r2))? + 4r2(1 + r2)?
l, 4r(1 +r2)[(1 — r2)2 — 2r(1 + r?)]

for r € (ro,rH) .

The number ro = 14 V2 — /24 2V/2 ~ 0,217 is the unique positive root of the

equation

(1 =r%)? —2r(1 +r?)

(10) 2r(1 4 r?)

=1

in the intervel (0,ry).
The result is sharp.

For r € (0,r) and for every pair of functions f, F such that f(z) = F(z), F € H,
we have T(r) = 1.
For r; € (ro,ry) the equality in (8) holds at the point 2 = ir, for the pair of
functions f, F such that
f(z) = @(2) F(z) ,

where F' is given by (6) and

z—1r,

(11) Q(Z) u 14 t'rlz
1+ M(ry)

+ M(ry)
z—ir;

l+i7‘12

—r2)2 _2r r?
(12) ey = 23‘(1-fr£1)+ :

Proof. If f « F in the disc K, then there exists a function @, |®(z)| < 1 for
z € K such that
f(z) =®(2) - F(z) forze K .

Hence
£ s F(2)
(13) —F"’—(;)' = &'(2) F(z) +d(z) .
It is known (cf. see [2] p.319) that
(14) ey g LB o ek

1- |22



On the Relationship between the Majorization of Functions... )

Taking account of the inequalities (5) and (14) in (13) we obtain

—19(2)P? 1

(15) TRl R e

563

where M(r) is given by the formula (12).
Let z be fixed, |z| = r, then the right-hand side of inequality (15) is a function
of the variable u = |®(z)|, u € (0,1),

—u? 1

(16) W(u)=m+u+m.

It should be noted that M(r) is a decreasing function in the interval (0,1). If
r € (0,ro), where ry is the root of the equation (10), then M(r) > 1. Then ¥ is
increasing in the interval (0,1) and at the point u = 1 it attains the greatest value
¥(1)=1. If r € (ro,rH), then

0=M(ry)<M(r)<1
and at the point ug = M(r) the function ¥ attains the greatest value equal

oy (L= —2r(1 4 r?)? 4 a1 4 2
o it 4r(1 + r2)[(1 — r2)2 — 2r(1 4 r?)]

It is easily seen that for |z| = r € (0,r) and for every pair of functions f,F, F € H
such that f(z) = F(z)
f'(z)

F(z)

=1.

An elementary calculation shows that for r; € (ro,ry) and for the pair of functions
f, F, where F is given by formula (6),

f(z) = ®(2)- F(2)
and & defined by (11) for z = ir; we have

f'(2)
F'(2)

' = P(uo) ,

where W(ug) is defined by (17).

3. The majorization of derivatives in the class of close-to-star
functions. Let

s* {Ge'H Re g(())>0forzek G(0) = 0, G’(O)—l}

It is the well-known class of starlike functions.
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The function F holomorphic in dise K and such that F(0) = 0, F'(0) = 1, is said
to he close to star if there exists a function G € S* such that

F(z)

Q :
(18) Re GGz)

>0 forze K.

The class of close to- star functions is denoted by H*.
It is easy to observe that if G(z2) = 1——:——2 , G € S°, then the condition (18)
-z

takes the form Fz)
il Y
Re{[l )= })0_
It means that H C H*.

Theorem 4. The radius of starlikeness in the class H*

2F'(2)
F(z)

= sup{lzl <re(0,1):Re > 0 for each function F € H'} =2-V3.

Proof. From the condition (18) it follows that

F
ca=r) . peP.

Hence

2F'(z2) L} 2G'(2) #, zp'(2)
F(z) G(z) p(z)

Using the well-known and sharp estimations

2G'(2) _1-r
. ={z} 4. G €S
Re G(z) “1+4r ° redal €
and (2) 2
zp'(z —2r
] > = P
Re o) 2Tv r=|z|, pe
we get
4 L N2 -2
(19) Re 2F'(2) 5 1-r) b

F(z) — 1-12
This estimation is sharp. The equality holds for the function F

z 1-2

(20) F(z) = TS ST

at the point z = r.

In order that the function F is starlike it must be

-
(=nlpagr 5
1-r2



On the Relationship between the Majorization of Functions...

Hence, it follows that r* = 2 — /3 = 0, 268.

Lemma . If F € H*, then for |z| < r* =2 — /3 we have the sharp estimate

[ F(2) | - r(1 —r?)

[ P SQ-r2-2r °

r =] .
The equality takes place for the function (20) at the point z = r.

The above estimate follows from inequality

12F'(2)) 2F!(z)
17 | 28 7y

and from the estimate (19).

Theorem 5. Let f€ N, F € H*. If f < F in the disc K and
|z| =r < r* =2— /3, then

(22) If'() < T(r) - IF'(2)],

where
=1 for r € (0, 1)
T Ay T Ea 2 _ 2r]? r2
(r) (( 4,.[8 . r);]_ ';‘T for r € (1,2 - V3)

The number ro = 3 — /8 = 0,172 s the unique positive root of the equation

(23) (l—rz):—Zr .

in the interval (0,2 — V/3).
The result ss sharp.

For r € (0,79) the equality in (22) is attained for every pair of fuuctions f, F,
F € H* such that f(z) = F(z).

Ifry € (r9,2 - \/§) then the equality in (22) is attained at the point z = r for
the pair of functions f, F and such that f(z) = &(z) - F(z), where

z 1-2 .
(24) F(z)=(—1m-l—+—z , z€K
27T 4 M)
(25) ¥(z) = T z€ K
1+M(rl)l-—7‘|2
— 2 -
(26) 01, J e ek

or



8 F. Bogowski , Cz. Burniak

Proof. From the equality f(z) = ®(z): F(z) , z € K, and from the estimations
(14), (21) it follows that

f'(z) —u? 1
Fz)l = am T T amn

\

(27)

=¥(u),

where u = |®(z)|, u € (0,1), z is fixed, |z2| = r. Proceeding analogously as in the
proof of Theorem 3 we obtain

el for r € (0,3 — V8)

max Y(u)= ¢ [(1 =r)? = 2r)2 4 452
u€(0;1) I 4'_[(1)_’_);]_ 2r]r forre(3—\/§,2—-\/§).

Hence our theorem follows.

It is easily seen that for r € (0,3 — v/8) the equality in (22) is attained for each
pair of functions f, F such that f(z) = F(z), F € H*.

An elementary calculation shows that for ry € (3 — V8,2 — v/3) and for the pair
of functions f, F, f(z) = ®(z) - F(z), where F is given by formula (24), & defined by
(25) we obtain equality in (22) at the point z = ry.
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STRESZCZENIE

W pracy badana jest zaleznoéé migdzy majoryzacjg funkeji a majoryzacjy pochodnych w klasie
H, funkcji spelniajacych w kole jednostkowym K warunek

Re{(l -z’)F—(:—)} >0,

oraz w klasie H* funkcji prawie gwiazdzistych.
Otrzymane rezultaty sa dokladne.



