ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN POLONIA

VOL. XLIII, 1

SECTIO A

1989

Automic others the following ;

Zaklad Zastosowań Matematyki

Instytut Teorii Rozwoju Społeczno Ekonomicznego UMCS

F. BOGOWSKI, CZ. BURNIAK

On the Relationship between the Majorization of Functions and the Majorization of Derivatives in Certain Classes of Holomorphic Functions

O zależności między majoryzacją funkcji a majoryzacją pochodnych w pewnych klasach funkcji holomorficznych

Abstract. In this paper we investigate the relationship between the majorization of functions and the majorization of derivatives in the class H of functions in the unit disc K, satisfying the condition

$$\operatorname{Re}\left\{(1-z^2)\frac{F(z)}{z}\right\} > 0$$

as well as in the class H^* of close-to-star functions.

The results obtained are sharp.

1.Introduction. Let C denote the complex plane, $K_R = \{z \in \mathbb{C} : |z| < R\}$, $K_1 = K$ and f, F be two holomorphic functions in the disc K_R such that f(0) = F(0). We say that f is majorized by F in the disc K_R and write $f \ll F$ in K_R if $|f(z)| \leq |F(z)|$ for every $z \in K_R$. It means that there exists in K_R a holomorphic function Φ such that $|\Phi(z)| \leq 1$ for $z \in K_R$ and

(1)
$$f(z) = \Phi(z) \cdot F(z)$$

for every $z \in K_R$.

Denote by \mathcal{H} , \mathcal{F} two fixed and compact classes of holomorphic functions in the disc K. Suppose that $f \in \mathcal{H}$, $F \in \mathcal{F}$ and $f \ll F$ in K. Let $r_0 \in (0; 1)$ denote the greatest number for which the following implication

$$f \ll F$$
 in $K \Longrightarrow f' \ll F'$ in K_{r_0}

holds for every pair of functions $f \in \mathcal{H}, F \in \mathcal{F}$. The number $r_0 = r_0(\mathcal{H}, \mathcal{F})$ is called the radius of majorization of derivatives for the class \mathcal{F} . The determination of r_0 in various subclasses of univalent functions in the disc K was investigated by many authors. Among others Z. Lewandowski [4] proved that $r_0(\mathcal{H}, S) = 2 - \sqrt{3}$, where S denote the class of functions F holomorphic and univalent in the disc K such that F(0) = 0, F'(0) = 1. This problem can be generalized in the following way. We will determine the smallest possible number $T(r) = T(r, \mathcal{H}, \mathcal{F})$ such that for every pair of functions f, F ($f \in \mathcal{H}, F \in \mathcal{F}$) the implication

$$f \ll F$$
 in $K \Longrightarrow |f'(z)| \le T(r) \cdot |F'(z)|$

for |z| = r < 1 holds.

it polyhilas , 7, -r

T(r) can be defined as follows

(2)
$$T(r) = \sup_{\substack{f \in \mathcal{H} \\ F \in \mathcal{F} \\ f \ll F}} \left(\max_{\substack{|z|=r}} \left| \frac{f'(z)}{F'(z)} \right| \right).$$

Let us note that the radius of majorization of derivatives

$$r_0 = \sup_{r \in (0;1)} \{T(r) \leq 1\}$$

It follows from the definition of the radius of majorization of derivatives and T(r) that it must be $|z| < r_{\mathcal{F}}$, where $r_{\mathcal{F}}$ is the radius of local univalence in the class \mathcal{F} i.e.

$$\mathcal{F} = \sup\{|z| < r \in (0;1) : F'(z) \neq 0 \text{ for all } F \in \mathcal{F}\}.$$

Among others the following result was obtained (J. Janowski, J. Stankiewicz [3])

$$T(r,\mathcal{H},S) = \begin{cases} 1 & \text{for } r \in (0; 2-\sqrt{3}) \\ \frac{4r^2 + (1-r)^4}{4r(1-r)^2} & \text{for } r \in (2-\sqrt{3}; 1) \end{cases}$$

2. The majorization of derivatives in class H. Denote by H the class of functions F, holomorphic in the disc K, satisfying the condition

(3)
$$\operatorname{Re}\left\{(1-z^2)\frac{F(z)}{z}\right\} > 0 \quad , \quad z \in K$$

and such that F(0) = 0, F'(0) = 1.

If the coefficients of the function F satisfying condition (3) are real, then the function is typically real. The function F holomorphic in K and such that F(0) = 0, F'(0) = 1, is said to be typically real if it takes the real values on the segment (-1;1) of the real axis and satisfies the condition $\operatorname{Im} z \cdot \operatorname{Im} F(z) > 0$ for $z \in K \setminus (-1;1)$. The class of typically real functions will be denoted by TR.

The class H contains then the class TR of typically real functions.

The condition (3) can be written in the equivalent form

(4) $F(z) = \frac{z}{1-z^2} \cdot p(z) \quad , \quad z \in K \; ,$

where $p \in \mathcal{P}$, \mathcal{P} being the class of functions p holomorphic in K and such that $\operatorname{Re} p(z) > 0$ for $z \in K$ and p(0) = 1.

Theorem 1 [1]. The radius of local univalence in the class H is equal

$$r_H = \frac{1+\sqrt{5}}{2} - \sqrt{\frac{1+\sqrt{5}}{2}} \approx 0,346$$

Remark. The radius of local univalence r_H is simultaneously the radius of univalence (i.e. in disc K_{r_H} every function $F \in H$ is univalent) as well as the radius of starlikeness in the class H (i.e. in disc K_{r_H} every function $F \in H$ satisfies the condition Re $\frac{zF'(z)}{F(z)} > 0$).

Theorem 2. If $F \in H$ then for $z \in K_{r_H}$

(5)
$$\left| \frac{F(z)}{F'(z)} \right| \le \frac{r(1-r^4)}{(1-r^2)-2r(1+r^2)}, \quad r=|z|.$$

The estimation is sharp and the equality holds for the function F of the form

(6)
$$F(z) = \frac{z}{1-z^2} \cdot \frac{1+iz}{1-iz}$$

at the point z = ir.

Lat r have the second

Proof. It follows from the condition (4) that

$$\frac{zF'(z)}{F(z)} - \frac{1+z^2}{1-z^2} = \frac{zp'(z)}{p(z)}$$

where $p \in \mathcal{P}$. Making use of the well-known sharp estimation

$$\left|rac{zp'(z)}{p(z)}
ight|\leq rac{2|z|}{1-|z|^2} \quad ext{for} \quad p\in \mathcal{P}$$

we obtain

(7)
$$\left|\frac{zF'(z)}{F(z)} - \frac{1+z^2}{1-z^2}\right| \le \frac{2|z|}{1-|z|^2}$$

From (7) the inequality (5) follows.

A simple calculation shows that the function of the form (6) for z = ir gives the equality in (5).

Theorem 3. Let $f \in \mathcal{H}, F \in H$. If $f \ll F$ in the disc K and

$$|z| = r < r_H = \frac{1 + \sqrt{5}}{2} - \sqrt{\frac{1 + \sqrt{5}}{2}}$$

then

$$|f'(z)| \le T(r) \cdot |F'(z)|$$

where

(9)
$$T(r) = \begin{cases} 1 & \text{for } r \in \langle 0, r_0 \rangle \\ \frac{[(1-r^2)^2 - 2r(1+r^2)]^2 + 4r^2(1+r^2)^2}{4r(1+r^2)[(1-r^2)^2 - 2r(1+r^2)]} & \text{for } r \in (r_0, r_H) \end{cases}$$

The number $r_0 = 1 + \sqrt{2} - \sqrt{2 + 2\sqrt{2}} \approx 0,217$ is the unique positive root of the equation

(10)
$$\frac{(1-r^2)^2 - 2r(1+r^2)}{2r(1+r^2)} =$$

in the interval $(0, r_H)$.

The result is sharp.

For $r \in (0, r_0)$ and for every pair of functions f, F such that $f(z) \equiv F(z), F \in H$, we have T(r) = 1.

For $r_1 \in (r_0, r_H)$ the equality in (8) holds at the point $z = ir_1$ for the pair of functions f, F such that

$$f(z) = \Phi(z) \cdot F(z) ,$$

where F is given by (6) and

(11)
$$\Phi(z) = \frac{\frac{z - ir_1}{1 + ir_1 z} + M(r_1)}{1 + M(r_1)\frac{z - ir_1}{1 + ir_1 z}},$$

(12)
$$M(r) = \frac{(1-r^2)^2 - 2r(1+r^2)}{2r(1+r^2)}$$

Proof. If $f \ll F$ in the disc K, then there exists a function Φ , $|\Phi(z)| \leq 1$ for $z \in K$ such that

 $f(z) = \Phi(z) \cdot F(z)$ for $z \in K$.

Hence

(13)
$$\frac{f'(z)}{F'(z)} = \Phi'(z) \cdot \frac{F(z)}{F'(z)} + \Phi(z)$$

It is known (cf. see [2] p.319) that

(14)
$$|\Phi'(z)| \leq \frac{1 - |\Phi(z)|^2}{1 - |z|^2} \text{ for } z \in K$$

Taking account of the inequalities (5) and (14) in (13) we obtain

(15)
$$\left|\frac{f'(z)}{F'(z)}\right| \le \frac{-|\Phi(z)|^2}{2M(r)} + |\Phi(z)| + \frac{1}{2M(r)},$$

where M(r) is given by the formula (12).

Let z be fixed, |z| = r, then the right-hand side of inequality (15) is a function of the variable $u = |\Phi(z)|, u \in (0, 1)$,

(16)
$$\Psi(u) = \frac{-u^2}{2M(r)} + u + \frac{1}{2M(r)}$$

It should be noted that M(r) is a decreasing function in the interval (0,1). If $r \in \langle 0, r_0 \rangle$, where r_0 is the root of the equation (10), then $M(r) \ge 1$. Then Ψ is increasing in the interval $\langle 0, 1 \rangle$ and at the point u = 1 it attains the greatest value $\Psi(1) = 1$. If $r \in (r_0, r_H)$, then

 $0 = M(r_H) < M(r) < 1$

and at the point $u_0 = M(r)$ the function Ψ attains the greatest value equal

(17)
$$\Psi(u_0) = \frac{(1-r^2)^2 - 2r(1+r^2)^2 + 4r^2(1+r^2)^2}{4r(1+r^2)[(1-r^2)^2 - 2r(1+r^2)]}$$

It is easily seen that for $|z| = r \in (0, r_0)$ and for every pair of functions $f, F, F \in H$ such that $f(z) \equiv F(z)$

$$\left|\frac{f'(z)}{F'(z)}\right| = 1 \; .$$

An elementary calculation shows that for $r_1 \in (r_0, r_H)$ and for the pair of functions f, F, where F is given by formula (6),

$$f(z) = \Phi(z) \cdot F(z)$$

and Φ defined by (11) for $z = ir_1$ we have

$$\left|\frac{f'(z)}{F'(z)}\right| = \Psi(u_0) ,$$

where $\Psi(u_0)$ is defined by (17).

3. The majorization of derivatives in the class of close-to-star functions. Let

$$S^{\bullet} = \left\{ G \in \mathcal{H} \colon \operatorname{Re} \, rac{zG'(z)}{G(z)} > 0 ext{ for } z \in K, \ G(0) = 0, \ G'(0) = 1
ight\}.$$

It is the well-known class of starlike functions.

The function F holomorphic in disc K and such that F(0) = 0, F'(0) = 1, is said to be close to star if there exists a function $G \in S^*$ such that

The class of close-to-star functions is denoted by H^{\bullet} .

It is easy to observe that if $G(z) = \frac{z}{1-z^2}$, $G \in S^*$, then the condition (18) takes the form

$$\operatorname{Re}\left\{(1-z^2)\frac{F(z)}{z}\right\} > 0$$

It means that $H \subset H^*$

Theorem 4. The radius of starlikeness in the class H[•]

$$r^* = \sup_r \Big\{ |z| < r \in \langle 0,1 \rangle : \operatorname{Re} \frac{zF'(z)}{F(z)} > 0 \text{ for each function } F \in H^* \Big\} = 2 - \sqrt{3} \ .$$

Proof. From the condition (18) it follows that

$$\frac{F(z)}{G(z)} = p(z) \quad , \quad p \in \mathcal{P}$$

Hence

$$\frac{zF'(z)}{F(z)} = \frac{zG'(z)}{G(z)} + \frac{zp'(z)}{p(z)}$$

Using the well-known and sharp estimations

$$e \frac{zG'(z)}{G(z)} \ge \frac{1-r}{1+r}$$
, $r = |z|$, $G \in S^*$

it is stuffy seen that for it a

and

$$\operatorname{Re} rac{zp'(z)}{p(z)} \geq rac{-2r}{1-r^2}$$
 , $r=|z|$, $p\in\mathcal{P}$

we get

(19)
$$\operatorname{Re} \frac{zF'(z)}{F(z)} \ge \frac{(1-r)^2 - 2r}{1-r^2} .$$

This estimation is sharp. The equality holds for the function F

(20)
$$F(z) = \frac{z}{(1+z)^2} \cdot \frac{1-z}{1+z}$$

at the point z = r.

which the same set R

In order that the function F is starlike it must be

$$\frac{(1-r)^2 - 2r}{1 - r^2} \ge 0 \; .$$

Hence, it follows that $r^* = 2 - \sqrt{3} \approx 0,268$.

Lemma. If $F \in H^*$, then for $|z| < r^* = 2 - \sqrt{3}$ we have the sharp estimate

(21)
$$\left|\frac{F(z)}{F'(z)}\right| \leq \frac{r(1-r^2)}{(1-r)^2-2r}$$
, $r = |z|$.

The equality takes place for the function (20) at the point z = r.

The above estimate follows from inequality

$$\left|\frac{zF'(z)}{F(z)}\right| \ge \operatorname{Re} \frac{zF'(z)}{F(z)}$$

and from the estimate (19).

Theorem 5. Let $f \in \mathcal{H}$, $F \in H^*$. If $f \ll F$ in the disc K and $|z| = r < r^* = 2 - \sqrt{3}$, then

$$|f'(z)| \le T(r) \cdot |F'(z)|$$

where

(22)

$$T(r) = \begin{cases} 1 & \text{for } r \in \langle 0, r_0 \rangle \\ \frac{[(1-r)^2 - 2r]^2 + 4r^2}{4r[(1-r)^2 - 2r]} & \text{for } r \in (r_0, 2 - \sqrt{3}) \end{cases}$$

tions f. P. (z) = 0[z] .

The number $r_0 = 3 - \sqrt{8} \approx 0,172$ is the unique positive root of the equation

(23)
$$\frac{(1-r)^2 - 2r}{2r} = 1$$

in the interval $(0, 2 - \sqrt{3})$. The result is sharp.

For $r \in (0, r_0)$ the equality in (22) is attained for every pair of functions f, F, $F \in H^{\bullet}$ such that $f(z) \equiv F(z)$.

If $r_1 \in (r_0, 2 - \sqrt{3})$ then the equality in (22) is attained at the point $z = r_1$ for the pair of functions f, F and such that $f(z) = \Phi(z) \cdot F(z)$, where

(24)
$$F(z) = \frac{z}{(1+z)^2} \cdot \frac{1-z}{1+z} , \quad z \in K$$

(25)
$$\Phi(z) = \frac{\frac{z - r_1}{1 - r_1 z} + M(r_1)}{1 + M(r_1)\frac{z - r_1}{1 - r_1 z}} , \quad z \in K$$

(26)
$$M(r) = \frac{(1-r)^2 - 2r}{2r} .$$

Proof. From the equality $f(z) = \Phi(z) \cdot F(z)$, $z \in K$, and from the estimations (14), (21) it follows that

(27)
$$\left|\frac{f'(z)}{F'(z)}\right| \leq \frac{-u^2}{2M(r)} + u + \frac{1}{2M(r)} = \Psi(u) ,$$

where $u = |\Phi(z)|$, $u \in (0, 1)$, z is fixed, |z| = r. Proceeding analogously as in the proof of Theorem 3 we obtain

$$\max_{u \in \{0,1\}} \Psi(u) = \begin{cases} 1 & \text{for } r \in \{0, 3 - \sqrt{8}\} \\ \frac{[(1-r)^2 - 2r]^2 + 4r^2}{4r[(1-r)^2 - 2r]} & \text{for } r \in (3 - \sqrt{8}, 2 - \sqrt{3}) \end{cases}$$

Hence our theorem follows.

It is easily seen that for $r \in (0, 3 - \sqrt{8})$ the equality in (22) is attained for each pair of functions f, F such that $f(z) \equiv F(z), F \in H^{\circ}$.

An elementary calculation shows that for $r_1 \in (3 - \sqrt{8}, 2 - \sqrt{3})$ and for the pair of functions $f, F, f(z) = \Phi(z) \cdot F(z)$, where F is given by formula (24), Φ defined by (25) we obtain equality in (22) at the point $z = r_1$.

REFERENCES

- Bogowski, F., Burniak, Cz., On the domain of local univalence and starlikeness in a certain class of holomorphic functions, Demonstr. Math. vol. XX, No 3-4, 1987, 519-536.
- [2] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Izd. Nauka, Moscow 1966, (Russian).
- [3] Janowski, J., Stankiewicz, J., A relative growth of modulus of derivatives for majorized functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 32, 4 (1978), 51-81.
- [4] Lewandowski, Z., Some results concerning univalent majorants, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 38, 3 (1964), 13-18.

STRESZCZENIE

W pracy badana jest zależność między majoryzacją funkcji a majoryzacją pochodnych w klasie H, funkcji spelniających w kole jednostkowym K warunek

$$\operatorname{Re}\left\{(1-z^2)\frac{F(z)}{z}\right\} > 0,$$

oraz w klasie H^{\bullet} funkcji prawie gwiaździstych.

Otrzymane rezultaty są dokładne.

8