ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOI. XI.III, 1
SECTIO A
Zaklad Zastosowań Matematyki

Instytut Teorii Rozwoju Spoleczno Ekonomicanego UMCS
F. BOGOWSKI , CZ. BURNIAK

On the Relationship between the Majorization of Functions and the Majorization of Derivatives in Certain Classes of Holomorphic Functions

O zależności między majoryzacją funkcji a majoryzacją pochodnych w pewnych klasach funkcji holomorficznych

Abstract

In this paper we investigate the relationship between the majorization of functions and the majorization of derivatives in the class H of functions in the unit disc K, satisfying the condition $$
\operatorname{Re}\left\{\left(1-z^{2}\right) \frac{F(z)}{z}\right\}>0
$$ as well as in the class H^{*} of close-to-star functions. The results obtained are sharp. 1.Introduction. Let \mathbf{C} denote the complex plane, $K_{R}=\{z \in \mathbf{C}:|z|<R\}$, $K_{1}=K$ and f, F be two holomorphic functions in the disc K_{R} such that $f(0)=F(0)$. We say that f is majorized by F in the disc K_{R} and write $f \ll F$ in K_{R} if $|f(z)| \leq|F(z)|$ for every $z \in K_{R}$. It means that there exists in K_{R} a holomorphic function Φ such that $|\Phi(z)| \leq 1$ for $z \in K_{R}$ and

$$
\begin{equation*}
f(z)=\Phi(z) \cdot F(z) \tag{1}
\end{equation*}
$$

for every $z \in K_{R}$.
Denote by \mathcal{H}, \mathcal{F} two fixed and compact classes of holomorphic functions in the disc K. Suppose that $f \in \mathcal{H}, F \in \mathcal{F}$ and $f \ll F$ in K. Let $r_{0} \in(0 ; 1)$ denote the greatest number for which the following implication

$$
f \ll F \text { in } K \Longrightarrow f^{\prime} \ll F^{\prime} \text { in } K_{r_{0}}
$$

holds for every pair of functions $f \in \mathcal{H}, F \in \mathcal{F}$. The number $r_{0}=r_{0}(\mathcal{H}, \mathcal{F})$ is called the radius of majorization of derivatives for the class \mathcal{F}. The determination of r_{0} in various subclasses of univalent functions in the disc K was investigated by many
authors. Among others Z. Lewandowski [4] proved that $r_{0}(\mathcal{H}, S)=2-\sqrt{3}$, where S denote the class of functions F holomorphic and univalent in the disc K such that $F(0)=0, F^{\prime}(0)=1$. This problem can be generalized in the following way. We will determine the smallest possible number $T(r)=T(r, \mathcal{H}, \mathcal{F})$ such that for every pair of functions $f, F \quad(f \in \mathcal{H}, F \in \mathcal{F})$ the implication

$$
f \ll F \text { in } K \Longrightarrow\left|f^{\prime}(z)\right| \leq T(r) \cdot\left|F^{\prime}(z)\right|
$$

for $|z|=r<1$ holds.
$T(r)$ can be defined as follows

$$
\begin{equation*}
T(r)=\sup _{\substack{f \in \mathcal{H} \\ F \in \mathcal{F} \\ f \ll \mathcal{F}}}\left(\max _{|z|=r}\left|\frac{f^{\prime}(z)}{F^{\prime}(z)}\right|\right) \tag{2}
\end{equation*}
$$

Let us note that the radius of majorization of derivatives

$$
r_{0}=\sup _{r \in(0 ; 1)}\{T(r) \leq 1\}
$$

It follows from the definition of the radius of majorization of derivatives and $T(r)$ that it must be $|z|<r_{\mathcal{F}}$, where $r_{\mathcal{F}}$ is the radius of local univalence in the class \mathcal{F} i.e.

$$
r_{\mathcal{F}}=\sup _{r}\left\{|z|<r \in(0 ; 1): F^{\prime}(z) \neq 0 \text { for all } F \in \mathcal{F}\right\}
$$

Among others the following result was obtained (J. Janowski, J. Stankiewicz [3])

$$
T(r, \mathcal{H}, S)= \begin{cases}1 & \text { for } r \in\langle 0 ; 2-\sqrt{3}\rangle \\ \frac{4 r^{2}+(1-r)^{4}}{4 r(1-r)^{2}} & \text { for } r \in(2-\sqrt{3} ; 1)\end{cases}
$$

2. The majorization of derivatives in class H. Denote by H the class of functions F, holomorphic in the disc K, satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1-z^{2}\right) \frac{F(z)}{z}\right\}>0 \quad, \quad z \in K \tag{3}
\end{equation*}
$$

and such that $F(0)=0, F^{\prime}(0)=1$.
If the coefficients of the function F satisfying condition (3) are real, then the function is typically real. The function F holomorphic in K and such that $F(0)=0$, $F^{\prime}(0)=1$, is said to be typically real if it takes the real values on the segment $(-1 ; 1)$ of the real axis and satisfies the condition $\operatorname{Im} z \cdot \operatorname{Im} F(z)>0$ for $z \in K \backslash(-1 ; 1)$. The class of typically real functions will be denoted by $T R$.

The class H contains then the class $T R$ of typically real functions.
The condition (3) can be written in the equivalent form

$$
\begin{equation*}
F(z)=\frac{z}{1-z^{2}} \cdot p(z) \quad, \quad z \in K \tag{4}
\end{equation*}
$$

where $p \in \mathcal{P}, \mathcal{P}$ being the class of functions p holomorphic in K and such that $\operatorname{Re} p(z)>0$ for $z \in K$ and $p(0)=1$.

Theorem 1 [1]. The radius of local univalence in the class H is equal

$$
r_{H}=\frac{1+\sqrt{5}}{2}-\sqrt{\frac{1+\sqrt{5}}{2}} \approx 0,346
$$

Remark . The radius of local univalence r_{H} is simultaneously the radius of univalence (i.e. in disc $K_{r_{H}}$ every function $F \in H$ is univalent) as well as the radius of starlikeness in the class H (i.e. in disc $K_{r H}$ every function $F \in H$ satisfies the condition $\left.\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0\right)$.

Theorem 2. If $F \in H$ then for $z \in K_{r_{H}}$

$$
\begin{equation*}
\left|\frac{F(z)}{F^{\prime}(z)}\right| \leq \frac{r\left(1-r^{4}\right)}{\left(1-r^{2}\right)-2 r\left(1+r^{2}\right)}, \quad r=|z| . \tag{5}
\end{equation*}
$$

The estimation is sharp and the equality holds for the function F of the form

$$
\begin{equation*}
F(z)=\frac{z}{1-z^{2}} \cdot \frac{1+i z}{1-i z} \tag{6}
\end{equation*}
$$

at the point $z=i r$.
Proof. It follows from the condition (4) that

$$
\frac{z F^{\prime}(z)}{F(z)}-\frac{1+z^{2}}{1-z^{2}}=\frac{z p^{\prime}(z)}{p(z)}
$$

where $p \in \mathcal{P}$. Making use of the well-known sharp estimation

$$
\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{2|z|}{1-|z|^{2}} \quad \text { for } \quad p \in \mathcal{P}
$$

we obtain

$$
\begin{equation*}
\left|\frac{z F^{\prime}(z)}{F(z)}-\frac{1+z^{2}}{1-z^{2}}\right| \leq \frac{2|z|}{1-|z|^{2}} \tag{7}
\end{equation*}
$$

From (7) the inequality (5) follows.
A simple calculation shows that the function of the form (6) for $z=$ ir gives the equality in (5).

Theorem 3. Let $f \in \mathcal{H}, F \in H$. If $f \mathbb{K}$ in the disc K and

$$
|z|=r<r_{H}=\frac{1+\sqrt{5}}{2}-\sqrt{\frac{1+\sqrt{5}}{2}}
$$

then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq T(r) \cdot\left|F^{\prime}(z)\right| \tag{8}
\end{equation*}
$$

where

$$
T(r)= \begin{cases}1 & \text { for } r \in\left\langle 0, r_{0}\right\rangle \tag{9}\\ \frac{\left[\left(1-r^{2}\right)^{2}-2 r\left(1+r^{2}\right)\right]^{2}+4 r^{2}\left(1+r^{2}\right)^{2}}{4 r\left(1+r^{2}\right)\left[\left(1-r^{2}\right)^{2}-2 r\left(1+r^{2}\right)\right]} & \text { for } r \in\left(r_{0}, r_{H}\right)\end{cases}
$$

The number $r_{0}=1+\sqrt{2}-\sqrt{2+2 \sqrt{2}} \approx 0,217$ is the unique positive root of the equation

$$
\begin{equation*}
\frac{\left(1-r^{2}\right)^{2}-2 r\left(1+r^{2}\right)}{2 r\left(1+r^{2}\right)}=1 \tag{10}
\end{equation*}
$$

in the interval $\left(0, r_{H}\right)$.
The result is sharp.
For $r \in\left\langle 0, r_{0}\right\rangle$ and for every pair of functions f, F such that $f(z) \equiv F(z), F \in H$, we have $T(r)=1$.

For $r_{1} \in\left(r_{0}, r_{H}\right)$ the equality in (8) holds at the point $z=i r_{1}$ for the pair of functions f, F such that

$$
f(z)=\Phi(z) \cdot F(z),
$$

where F is given by (6) and

$$
\begin{equation*}
\Phi(z)=\frac{\frac{z-i r_{1}}{1+i r_{1} z}+M\left(r_{1}\right)}{1+M\left(r_{1}\right) \frac{z-i r_{1}}{1+i r_{1} z}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
M(r)=\frac{\left(1-r^{2}\right)^{2}-2 r\left(1+r^{2}\right)}{2 r\left(1+r^{2}\right)} \tag{12}
\end{equation*}
$$

Proof. If $f \ll F$ in the disc K, then there exists a function $\Phi,|\Phi(z)| \leq 1$ for $z \in K$ such that

$$
f(z)=\Phi(z) \cdot F(z) \quad \text { for } z \in K
$$

Hence

$$
\begin{equation*}
\frac{f^{\prime}(z)}{F^{\prime}(z)}=\Phi^{\prime}(z) \cdot \frac{F(z)}{F^{\prime}(z)}+\Phi(z) \tag{13}
\end{equation*}
$$

It is known (cf. see [2] p.319) that

$$
\begin{equation*}
\left|\Phi^{\prime}(z)\right| \leq \frac{1-|\Phi(z)|^{2}}{1-|z|^{2}} \quad \text { for } z \in K \tag{14}
\end{equation*}
$$

Taking account of the inequalities (5) and (14) in (13) we obtain

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{F^{\prime}(z)}\right| \leq \frac{-|\Phi(z)|^{2}}{2 M(r)}+|\Phi(z)|+\frac{1}{2 M(r)} \tag{15}
\end{equation*}
$$

where $M(r)$ is given by the formula (12).
Let z be fixed, $|z|=r$, then the right-hand side of inequality (15) is a function of the variable $u=|\Phi(z)|, u \in\langle 0,1\rangle$,

$$
\begin{equation*}
\Psi(u)=\frac{-u^{2}}{2 M(r)}+u+\frac{1}{2 M(r)} . \tag{16}
\end{equation*}
$$

It should be noted that $M(r)$ is a decreasing function in the interval $(0,1)$. If $r \in\left\langle 0, r_{0}\right\rangle$, where r_{0} is the root of the equation (10), then $M(r) \geq 1$. Then Ψ is increasing in the interval $\langle 0,1\rangle$ and at the point $u=1$ it attains the greatest value $\Psi(1)=1$. If $r \in\left(r_{0}, r_{H}\right)$, then

$$
0=M\left(r_{H}\right)<M(r)<1
$$

and at the point $u_{0}=M(r)$ the function Ψ attains the greatest value equal

$$
\begin{equation*}
\Psi\left(u_{0}\right)=\frac{\left(1-r^{2}\right)^{2}-2 r\left(1+r^{2}\right)^{2}+4 r^{2}\left(1+r^{2}\right)^{2}}{4 r\left(1+r^{2}\right)\left[\left(1-r^{2}\right)^{2}-2 r\left(1+r^{2}\right)\right]} \tag{17}
\end{equation*}
$$

It is easily seen that for $|z|=r \in\left\langle 0, r_{0}\right\rangle$ and for every pair of functions $f, F, F \in H$ such that $f(z) \equiv F(z)$

$$
\left|\frac{f^{\prime}(z)}{F^{\prime}(z)}\right|=1
$$

An elementary calculation shows that for $r_{1} \in\left(r_{0}, r_{H}\right)$ and for the pair of functions f, F, where F is given by formula (6),

$$
f(z)=\Phi(z) \cdot F(z)
$$

and Φ defined by (11) for $z=i r_{1}$ we have

$$
\left|\frac{f^{\prime}(z)}{F^{\prime}(z)}\right|=\Psi\left(u_{0}\right)
$$

where $\Psi\left(u_{0}\right)$ is defined by (17).
3. The majorization of derivatives in the class of close-to-star functions. Let

$$
S^{*}=\left\{G \in \mathcal{H}: \operatorname{Re} \frac{z G^{\prime}(z)}{G(z)}>0 \text { for } z \in K, G(0)=0, G^{\prime}(0)=1\right\}
$$

It is the well-known class of starlike functions.

Tlue functiont F holomorphic in dise $I f$ and such that $F(0)=0, F^{\prime}(0)=1$, is said to be chase to star if there exists a function $G \in S^{*}$ such that

$$
\begin{equation*}
\operatorname{Re} \frac{F(z)}{G(z)}>0 \quad \text { for } z \in K \tag{18}
\end{equation*}
$$

The class of close to star functions is denoted by H^{*}.
It is casy to observe that if $G(z)=\frac{z}{1-z^{2}}, G \in S^{*}$, then the condition (18) takes the form

$$
\operatorname{Re}\left\{\left(1-z^{2}\right) \frac{F(z)}{z}\right\}>0 .
$$

It means that $H \subset H^{\bullet}$.
Theorem 4. The radius of starlikeness in the class H^{*}

$$
r^{*}=\sup _{r}\left\{|z|<r \in\langle 0,1): \operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0 \text { for each function } F \in H^{*}\right\}=2-\sqrt{3} .
$$

Proof. From the condition (18) it follows that

$$
\frac{F(z)}{G(z)}=p(z) \quad, \quad p \in \mathcal{P}
$$

Hence

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{z G^{\prime}(z)}{G(z)}+\frac{z p^{\prime}(z)}{p(z)} .
$$

Using the well-known and sharp estimations

$$
\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)} \geq \frac{1-r}{1+r} \quad, \quad r=|z|, \quad G \in S^{\bullet}
$$

and

$$
\operatorname{Re} \frac{z p^{\prime}(z)}{p(z)} \geq \frac{-2 r}{1-r^{2}} \quad, \quad r=|z|, \quad p \in \mathcal{P}
$$

we get

$$
\begin{equation*}
\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)} \geq \frac{(1-r)^{2}-2 r}{1-r^{2}} \tag{19}
\end{equation*}
$$

This estimation is sharp. The equality holds for the function F

$$
\begin{equation*}
F(z)=\frac{z}{(1+z)^{2}} \cdot \frac{1-z}{1+z} \tag{20}
\end{equation*}
$$

at the point $z=r$.
In order that the function F is starlike it must be

$$
\frac{(1-r)^{2}-2 r}{1-r^{2}} \geq 0
$$

Hence, it follows that $r^{\bullet}=2-\sqrt{3} \approx 0,268$.
Lemma. If $F \in H^{*}$, then for $|z|<r^{*}=2-\sqrt{3}$ we have the sharp estimate.

$$
\begin{equation*}
\left|\frac{F(z)}{F^{\prime}(z)}\right| \leq \frac{r\left(1-r^{2}\right)}{(1-r)^{2}-2 r} \quad, \quad r=|z| \tag{21}
\end{equation*}
$$

The equality takes place for the function (20) at the point $z=r$.
The above estimate follows from inequality

$$
\left|\frac{z F^{\prime}(z)}{F(z)}\right| \geq \overline{\operatorname{Re}} \frac{z F^{\prime}(z)}{F(z)}
$$

and from the estimate (19).
Theorem 5. Let $f \in \mathcal{H}, F \in H^{*}$. If $f \ll F$ in the disc K and $|z|=r<r^{*}=2-\sqrt{3}$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq T(r) \cdot\left|F^{\prime}(z)\right| \tag{22}
\end{equation*}
$$

where

$$
T(r)= \begin{cases}1 & \text { for } r \in\left\langle 0, r_{0}\right\rangle \\ \frac{\left[(1-r)^{2}-2 r\right]^{2}+4 r^{2}}{4 r\left[(1-r)^{2}-2 r\right]} & \text { for } r \in\left(r_{0}, 2-\sqrt{3}\right)\end{cases}
$$

The number $r_{0}=3-\sqrt{8} \approx 0,172$ is the unique positive ront of the equution

$$
\begin{equation*}
\frac{(1-r)^{2}-2 r}{2 r}=1 \tag{23}
\end{equation*}
$$

in the interval $(0,2-\sqrt{3})$.
The result is sharp.
For $r \in\left\langle 0, r_{0}\right\rangle$ the equality in (22) is attained for every pair of functions f, F. $F \in H^{*}$ such that $f(z) \equiv F(z)$.

If $r_{1} \in\left(r_{0}, 2-\sqrt{3}\right)$ then the equality in (22) is attained at the point $z=r_{1}$ for the pair of functions f, F and such that $f(z)=\Phi(z) \cdot F(z)$, where

$$
\begin{equation*}
F(z)=\frac{z}{(1+z)^{2}} \cdot \frac{1-z}{1+z}, \quad z \in K \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\Phi(z)=\frac{\frac{z-r_{1}}{1-r_{1} z}+M\left(r_{1}\right)}{1+M\left(r_{1}\right) \frac{z-r_{1}}{1-r_{1} z}} \quad, \quad z \in K \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
M(r)=\frac{(1-r)^{2}-2 r}{2 r} \tag{26}
\end{equation*}
$$

Proof. From the equality $f(z)=\Phi(z) \cdot F(z), z \in K$, and from the estimations (14), (21) it follows that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{F^{\prime}(z)}\right| \leq \frac{-u^{2}}{2 M(r)}+u+\frac{1}{2 M(r)}=\Psi(u) \tag{27}
\end{equation*}
$$

where $u=|\Phi(z)|, u \in\langle 0,1\rangle, z$ is fixed, $|z|=r$. Proceeding analogously as in the proof of Theorem 3 we obtain

$$
\max _{u \in(0 ; 1)} \Psi(u)= \begin{cases}1 & \text { for } r \in(0,3-\sqrt{8}) \\ \frac{\left[(1-r)^{2}-2 r\right]^{2}+4 r^{2}}{4 r\left[(1-r)^{2}-2 r\right]} & \text { for } r \in(3-\sqrt{8}, 2-\sqrt{3})\end{cases}
$$

Hence our theorem follows.
It is easily seen that for $r \in(0,3-\sqrt{8})$ the equality in (22) is attained for each pair of functions f, F such that $f(z) \equiv F(z), F \in H^{*}$.

An elementary calculation shows that for $r_{1} \in(3-\sqrt{8}, 2-\sqrt{3})$ and for the pair of functions $f, F, f(z)=\Phi(z) \cdot F(z)$, where F is given by formula (24), Φ defined by (25) we obtain equality in (22) at the point $z=r_{1}$.

REFERENCES

[1] Bogowski, F., Burniak, Cz. On the domain of local univalence and starlikeness in a certain class of holomorphic functions, Demonstr. Math. vol. XX, No 3-4, 1987, 519-536.
[2] Goluzin, G. M. , Geometric Theory of Functions of a Complex Variable, Izd. Nauke, Moscow 1966, (Russian).
[3] Janowski, J., Stankiewicz, J. , A relative growth of modulus of derivatives for majorized functions, Ann. Univ. Marise Curie-Sklodowska, Sect. A, 32, 4 (1978), 51-61.
[4] Lewandowski, Z. Some results concerning univalent majorants, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 38, 3 (1964), 13-18.

STRESZCZENIE

W pracy badana jest zaleinósć między majoryzacja funkcji a majoryzacja pochodnych w klasie H, funkcji spelniajacych w kole jednostkowym K warunek

$$
\operatorname{Re}\left\{\left(1-z^{2}\right) \frac{F(z)}{z}\right\}>0,
$$

oraz w klasie H^{*} funkcji prawie gwiażdzistych.
Otrzymane rezultaty sa dokladne.

