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1. Introduction. Let A denote the set of all analytic
functions in D : = {z: |z|j and AQ the subset of ail

functions f feA with f(0) = 1 . Using the Hadamard product

f * g for f , g 6 A we define the dual set V* of soae

V C A as o

V* s= jf«A0 « if ♦ g)U) f 0 for all z«D and gevj

We call a subset W C AQ dual if it is the dual set of sone 

(other) subset of AQ . Let now V C AQ . The smallest dual set 

which contains V is called the dual hull of V and denoted by 

du (.V) . This concept was introduced in [4] and by means of the 

"duality principle" it could be shown that many known results 

on certain classes of functions in D have an immediate interpre 

tation in terms of dual sets. As well, a number of new results 

were obtained using duality theory. Dual sets have many propertie
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similar to convex sets but in sone respects they seem to be 

beeter adjusted to characteristics of analytic functions. On the 

other hand, an intrinsec definition of dual sets is still missing, 

let alone a theory of the Krein-Milman type. The present paper 

is one step towards a better understanding of dual sets. We are 

dealing with the study of "small" duals sets, namely those which 

are of the form

11.1)
ff(xz) : fxj ¿1 ] •

where f6 kQ . It is known that the sets (1.1) are dual for some 

f and not dual for others. A general rule is not yet known, 

however, some partial results are available which seem to indica­

te a close connection of this problem with entire functions and 

exceptional values. We call £ £ AQ semi-dual if (1.1). is a dual 

set. We first list some known results.
Let T oe a subset of NQ j= N u {o| with Oil and

(1.2) f(z)
k< T

akz
, a^ | 0 for k < T jAgi := [

In particular,

(1.5) eT(z) :=
ktT

6 Aj

®T i3Theorem A (cf, fjj). f e is semi-dual iff 

semi-dual. Therefore, the question of the semi-duality of f

depends only on the gap-structure of the power-series expansion

of f at z = 0 . We note that e^ is trivially semi-dual for

1 = fo , 1 J .



On Semi-dual Analytic Functions 195

z

k€ T

U.4)

Theorem B (.cf. Assume that If , 1 j but

1/k <^oe> . Then eT ia not semi-dual.

Theorem 0 tcf. f?])» Let n « N and 

TQ «= [kn : k « Nq j .

Then e^, ia semi-dual.

In [5 J V. Kasten and St. Huscheweyh mentioned some working 

hypotheses and tenative conjectures, all of them based on the 

following general assumption: if Id' and e^ is semi-dual, 

then e,p' is semi-dual. Although this sounds plausible it turns 

out to be wrong. Our results below show that, for instance,

T = T2 and T' = TgU J provide a counterexample. Also, with

the same T' , we easily see that n A,p , where

Ay' = , Aj is not compact in any disc fzj p , 0 ,

which disproves another of the conjectures in [3 J. The main idea, 

however, namely the existence of a relation between semi-duality 

of e^ and the existence of entire functions f i A^ with 

f f 0 in C seems to remain intact, but in a slightly modified 

form. We formulate this as a problem:

Problem. Let T f |*0 , 1 j . Is it true that e^ is semi-

-dual if and only if for every kQ € T there exist Tq with

kQ € Tq C T such that A,p contains an entire function 
0

nishing in C ?

non-va-
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The following three theorems support the statement abovei

Theorem 1. Let S , T be such that eg , eæ are semi-dual. 

If either 1 t Snî or {a,bj C SnI , where the greatest common 

divisor of a and b is 1 , then eæ* is semi-dual for 

I* = S v I .

Theorem 2. Let T be a (.finite or infinite) union of sets 

T as defined in (1,4). Then eæ is, semi-dual.

Theorem 3, Let T f £o , 1J . If eæ is semi-dual, then 

T contains infinitely many even numbers. T also contains either 

no or infinitely many odd numbers.

Me observe that the functions eæ of Theorem 2 arę so far 

the only known semi-dual functions. Theorem 3 shows that there 

are many non-semi-dual functions which do not satisfy the condi­

tion of Theorem B. Me belive that Théorem 3 can be extended to 

the statement given in the following conjecture:

Conjecture 1, If eæ is semi-dual, then for b < T and 
d « N the set T a {b + kd : k c kJ is infinite.

Note that Theorem 3 ia the case d = 2 of the above conjectu­

re, which would be a consequence of the following more general 

conjecture on non-vanishing functions in L .

Conjecture 2. Let P := if 6 AQ : f | 0 in D| . Let
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m , n € N and cm £C . Then there exists a constant

M(,c^ ,..., cm ; n) such that for every polynomial P of degree

n with representation

P(.Z) = 27 clrfk(.z) » flr £ F (.*='1......... Q)
k=1

the inequality

Jp(z)| ^MQcn cm ; n) (.z < D)

holds.

In this paper we prove Conjecture 2 for m = 2 . This is 

the content of

Theorem 4. Let a , b €. C and n € N . Then there exists 

a constant M(.a,b;n) such that |p(,z)| ^k(,a,b;n) for every 

polynomial P of degree n which has a representation 

P(z) = af(.z) + bg(.z) , z £ D and f , g £? .

More closely related to Conjecture 1 is a recent result 

of Hayman:

oo
Theorem D. (cf. [2]). Let f(z) = akzk be non-constant

and entire and assume there exist b € HQ , d £ H such that 

ab | 0 and ab+kd = 0 > * « N . Then f assumes every complex

number as a value in C
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Theorem D together with an affirmative solution of the 

Problem would also establish Conjecture 1.

2.Proofs. Theorem 1 and 2 are applications of Theorem 0 and 

some elementary number theory. We recall from that e,£ is 

semi-dual if and only if

vT = v' := ivjr

where Vj = fe^xz) : |x| j . Note that

v*= ff «Ao : eT* f epj •

Proof of Theorem 1. Let T' = S v T
**•

and g € VT*
For h € Vg* we have h * eg * F and thus h * eg C VT* .

Therefore

(.h * eg) ♦ g = h * (,eg * g) t F

and we conclude

S * ®s e vs* * •

Similarly, g ♦ e^ c VgT*, and since eg , e^ are semi-dual we 

have

(g * esXa) = eg(xz) , (.g ♦ e,r)(.z) = e^tyz)

•“— fi b
where x , y « D . For the coefficients of z , z in the power 

series expansion of g we thus obtain
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a a xa = y b b x = y

and, from the assumption on the greatest common divisor of a 

and b , it follows x = y . Hence (.g * eT)(z) = e^Lxz) and 

by a standard application of the "duality principle" [4] we 

finally deduce g(z) = eT(xz) which completes the proof.

Proof of Theorem 2. Let T = i n*j j » 0 = n0<nl ^n2 < ’ ‘ ’ 

and T(j) = T , j € N . For g 6 VT we obtain as in the proof

of Theorem 1
J

is * eT(j))<>z) = eTf t^x-iz) » x^ < D’TUr*;f j

Also, by the same reasoning as above, g has an expansion of 

the form

g(z) > 21 a Zn 

n* T “

and thus

kn4
alcn = d ’ 3 ‘ ’ k £ H

«J

In particular,

(2.1) Vs ‘Vs
S r , s 6 H

and hence

Ixrl ’ lxsl x t » 8a7’
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If t = 0 we have g = 1 and hence g £ , the desired

conclusion. Let t f 0 . By a suitable rotation y^ , y^ = 1 

we have

g(y^z) = 1 + t z + higher terms.

•Ve now proceed by induction, applying further rotations again 

and again. Assume we have found a rotation yg , |ygj = 1 , 

such that g(ygz) has the form

n-i n-, n„ no UJ
(2.2) 1+t z + ... + t sz 8 + higer terms .

In fact, we may assume that (2.2) is g since pure rotations 

(i.e., with modulus 1) do not interfere with our goal. Hence

(2.3) x. = t , j = 1,...,s ,

and we set

2JCitf n

If (b^ ,..., bQ) , £b,| ,..., bnJ denote the greatest

common divisor and the least common multiple of b.. , j=1 

we get from (2.1)

(2.4)
. e25li(f Rj » “s+J /ns+1 . ,

If (| = 0 we have aQ = t "s+1 and no rotation is



On Semi-dual Analytic Functions 201

required to arrive at the next induction step. If l| | 0 ,

we see from (.2.4) that

(2. 5) [nj , ng+1j /na+i £ H • 3 = 1 »•••»

We write (f /ng+^ = P/l with p , q € N and (p , q) = 1 

Thus

3 ' [n3 ’ ns+ 'll ’ 3 = 'l>,»»»s

and this implies

q | [(a, ng) , n8+1]

and

mq = [(m, ng) , ng+1] = (m, ns) n.s+1
((.m, ......... ng) , ng+1)

for a certain m € N .. This shows that has a representation

Y = mp((i4, >•••» ng) , ng+^) / (H-, »•••» ng) .

There exist numbers k , 1 £ Z such that

((m, !•••! ng) , ng+^) = k(n>, ,..., ng) + lng+?,

and hence

■npl ng+1
= mpk +

(14, ng)
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We choose

-2JTimpl /(.n^ nB)

so that

y = e

y = 1 > j = Zl>«ee»S

ns+1 -e"2Xi^ 
y - e .

Thus
8+1
__ n-i ni 

g(yz) = / t J z d + higher terms .
d=0

Induction and a standard convergence argument shows now the 
existence of an y with [y[ = 1 such that

g(yz) = SjAtz)

which is our assertion.

In order to prove Theorem 3 we first establish a somewhat 

stronger result, namely Theorem 4.

Proof of Theorem 4, The bounds M(0 , a ; n) = UCa , 0 ; n) 

= |a|-2n are well-known. Thus assume a , b f 0 . Then for the 

function hQz) = PQz) /f(z) we haves

is analytic in D , 

has at most n zer^s in D , 

fa, z € D ,

h(,0) = a + b .
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The set of all functions satisfying (2.5) is normal (cf.
[l], p. 70, Th. 2), in fact, locally uniformly bounded since 

h(0) is fixed:

[h(z)| ^lin(a , b ; n) , [z[ 1/2

or, in the same disk

|f(z)J , b 5 n)-[p(z)[ , U2 = l/U^

Let

n + 1+k
P v•= y
r K 4n + 4

so that Pk £ |j/4 , 1/2^ . Then for |z[ ^1/4 we have by the

minimum principle for |f(z)|

lf(z)l \ • max min Ip(z)|
' ' IM=Pk

Assume first that

(2.6) m : = max min Ip(z)I \ 1
k lz| =p 1

Then f belongs to the locally uniformly bounded family of 
analytic functions in |z| <^1/4 with f(0) = 1 , f(z) £ 0 , 

and f(z) I M/2 , say. Thus there exists a constant M^ such

[f(z)|4«3 , »

that
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and similar consideration gives a constant Kl4 such that

Igtz)/ M4 , |z| 1/8 .

Hence

|p(z)| |a|-M3 + |b| • M4 , |z | ^1/8

and we find a constant such that

12.7) [P(z)| U5 for z f D

However, if m ^1 (see (2.6)) we have

i I / n n+1
(2.8) I P(z)| < 6 (n + 1) z£D

To see this we let zk be the points on |z| = p where 
P(z){ attains its minimum, so that |P(zk)[ 1 . Let

Q(z) = "J]“ (z - zk) . By Lagrange's interpolation formula 
k=0

have

we

How

_5_ P(z. ) Q(z) 
P(z) = x k

~Q <i'(zk) z - zk

■ = IT bj - t-
¡¡=0 
aft

1 n 
—)

4n +4
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a - z.
= Z h - 4 <3/2)

d=o

which give 12.8). Finally, (2.7) and (2.8) 

the assertion of Theorem 4.

Proof of Theorem 3. Assume first that

, |z| = 1

combine to yield

T has only finitely

many even numbers. Then for f € VT' hip we have

f(z) + f(—z) = P(z)

where P is a polynomial of a degree which is loss or equal to 

the largest even number n in T . By Theorem 4 , applied to 

f and g := f(-z) , a = 1 , b =

|P(z)| ¿14(1 , 1 $ n) ,

This Implies

i wo aoe biiav

z (. D

. 1 ? a)

for f € VT* and therefore 

2
g(z) s= 1 +—■------------ ■—

1W , 1 | n)

which contradicts the semi-duality of e^ .

The proof of the "odd" case runs similary.

a * „** z € Vm
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STRESZCZENIE

Niech A będzie rodziną wszystkich funkcji analitycznych w kole

jednostkowym ii) i niech A »kfłA I f(o) -ił. Jeśli V C. A 
j, 0 i J 0

to zbiór dualny V zbic.^ V j-w* określony jako zbiór tych f 6 Aq,

że splot Hadamarda fug nie zeruje się w O dla dowolnej funk­

cji g H V. Podzbiór WC-A nazywamy dualnym, jeśli Istnieje
U C. Aq toki, że W - U* . Funkcję f « Aq nazywam semi-dualną,
jeśli zbiór i f(xz) : |x| ilT’ jest dualny. Niech e_(z) -1+2 z14,

t ' J * k a T
gdzie T C IN. W pracy badane są związki pomiędzy strukturą 

zbioru T i semidualnością funkcji eT.
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PE3MÍE

nyCTb A CCMefiCTBO BCCX <J>yHKUMÄ aHajIHTHVCCKMX B CÆMHHWHOM 
xpyre JD « Ao = £feA * f(o) = . Ecjih V C Aq , Toraa ayaabHoe

WHOXeCTBO V* 9T0 MHOKeCTBO BCeX fí^TAHM, MTO CBGpTKa raaaua- 

pa f*g ne paBna Hyjuo n ID aaa z»6ofi ÿyHKKHM GfeY . ÍIoaMnoxec- 
TBO W c Aq HasuBacTCB AyajibHo, ecxH HaPaeTCsi UCA0TaKoe, hto 

W = V* . iyHKUHfl f € Aq HoauBaeTCH ceMnayaabHofi, xoraa mhoxbctbo 
{_f(xz) : |x|A. lj waabHo. PycTb eæCz) = 1 + ¡^z , rae TCN.

3 aaHHofi paÖOTe saHHuaeMCx OTHouieHineM Mexay CTpyxTypoti 
MHOxecTBa T h ceMHayJibHocTe# $ynKunn eæ.




