ANNALS

UNIVERSITATIS MARIE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XL, 20
SECTIO A 1986

Universidad Tócnica
Federico Santa Maria
(Valparaiso)
H. PINTO, St. RUSCHEWEYH, L. SALINAS

On Semi-dual Analytic Functions

O funlejach analitycznych semi-dualnych

Аналптичесхие семи-дуальные функсии

1. Introduction. Let a denote the set of all analytic functions in $D:=\{z,|z|<1\}$ and A_{0} tin subset of all functions $f \in \mathbb{A}$ with $f(0)=1$. Using the Hadanard product $f * g$ for $f, g \in A$ we define the dual set V * of sore $\nabla \subset \mathrm{A}_{0}$ as
$V *:=\left\{f \in \mathbb{A}_{0}:(f * g)(2) \neq 0\right.$ for all $z \in D$ and $\left.E \in V\right\}$.

We call a subset $W C \mathbb{A}_{0}$ dual if it is the dual set of some (other) subset of A_{0}. Let not $V C A_{0}$. The smallest dual set which contains ∇ is called the dual hull of V and aerated by du (V). This concept was introduced in [4] and by means of the "duality principle" it could be shown that many known results on certain classes of functions in D have an immediate interpretaction in terms of dual sets. As well, a number of nerf results were obtained using duality theory. Dual sets Lave many properties
similar to convex sets but in sone respects they seem to be veter adjusted to characteristics of analytic functions. On the otier hand, on intrinsec definition of dual sets is still missing, let alone a theory of the Kreinmilman type. The present paper is one step towards a better understanding of dual sets. We are dealing with the study of "small" duals sets, namely those which are of the form

$$
\begin{equation*}
\left\{f\left(x_{2}\right):|x| \leqslant 1\right\} \tag{1.1}
\end{equation*}
$$

where $f \in A_{0}$. It is known that the sets (1.1) are dual for some 1 and not dual for others. A general rule is not jet known, however, some partial results are available which seem to indicante a close connection of this problem with entire functions and exceptional values. We call $f \in A_{0}$ semi-dual if (1.1). is a dual set. We first list some known results.

Let T De a subset of $N_{0}:=N \cup\{0\}$ with $O \in T$ and
(1.2) $\quad A_{T}:=\left\{f \in A_{0}: f(z)=\sum_{k \in T} a_{k} z^{k}, a_{k} \neq 0\right.$ for $\left.k \in T\right\}$.

In particular,
(1.3)

Theorem $A\left(c f_{0}[3]\right.$). $P \in A_{T}$ is semi-dual if \oplus_{T} is semi-dual. Therefore, the question of the somi-duality of f depends only on the gap-structure of the power-series expansion of 1 at $z=0$. We note that θ_{T} is trivially semi-dual for $T=\{0,1\} \quad$.

Theorem C (c1.[3]). Let $n \in N$ and
(1.4)

$$
T_{n}:=\left\{k n: k \in N_{0}\right\}
$$

Then e_{T} is semi-dual.

In [3]V. Kasten and St. Ruscheweyh mentioned some working hypotheses and tenative conjectures, all of them based on the following general assumption: if $T C T^{\circ}$ and e_{T} is semi-dual, then θ_{T} ' is semi-dual. Although this sounds plausible it turns out to be wrong. Our results below show that, fec = instance, $T=T_{2}$ and $T^{0}=T_{2} \cup\{1\}$ provide a counterexample. Also, with the same T°, we easily see that $\left\{\theta_{T}\right\}^{*} \cap \tilde{A}_{T}$, where $\tilde{A}_{T^{\prime}}=\bigcup_{T \subset T^{\prime}} A_{T}$ is not compact in any disc $|z| \leqslant \rho, 0<p<1$, Which disproves another of the conjectures in [3]. The main idea, however, namely the existence of a relation between seui-duality of θ_{T} and the existence of entire functions $f \in \tilde{A}_{T}$ with $1 \neq 0$ in C seems to remain intact, but in a slightly modified form. We formulate this as a problem:

Problem. Let $T \neq\{0,1\}$. Is it true that e_{T} is sewn--dual if and only if for every $k_{0} \in T$ there exist T_{0} with $K_{0} \in T_{0} C T$ such that $A_{T_{0}}$ contains an entire function non-vanishing in C?

She following three theorems support the statement above

Theorem 1. Let S, T be such that ${ }^{\circ} S$, ${ }^{\top} T$ are semi-dual. li either $1 \in S \cap T$ or $\{a, b\} C S \cap T$, where the greatest common divisor of a and b is 1 , then ${ }^{6} T^{\prime}$ is semi-dual for $\Vdash^{\circ}=S \cup T$.
theorem 2. Let T be a (finite or infinite) union of sets T_{n} as defined in (1.4). Then 0_{T} is semi-dual.

Theorem 3. Let $T \neq\{0,1\}$. If ${ }^{9}$ is semi-dual, then I contains infinitely many oven numbers. T also contains either no or infinitely many odd numbers.

We observe that the functions \boldsymbol{e}_{T} of Theorem 2 are so far the only known seri-dual functions. Theorem 3 shows that there are many non-semi-dual functions which do not satisfy the conditron of Theorem B. wive belive that Theorem 3 can be extended to the statement given in the following conjectures

Conjecture 1. If θ_{T} is semi-dual, then for $b \subset T$ and $d \in N$ the set $T \cap\{b+k d: k \in N\}$ is infinite.

Note that 'theorem 3 is the case $d=2$ of the above conjecture, which would be a consequence of the following more general conjecture on non-vanishing functions in D.

Conjecture 2. Let $F:=\left\{\rho \in A_{0}: P \neq 0\right.$ in $\left.D\right\}$. Let
m, $n \in N$ and $c_{1}, \ldots, c_{m} \in C$. Then tare exists a constant $\mathbb{N}\left(C_{1}, \ldots, C_{m} ; n\right)$ such that for every polynomial P of degree $\leqslant n$ with representation

$$
P(2)=\sum_{k=1}^{m} c_{k} \mathcal{P}_{k}(2) \quad, \quad f_{k} \in P \quad(k=1, \ldots, \infty)
$$

the inequality

$$
|P(z)| \leqslant M\left(c_{1}, \ldots, c_{m} ; n\right) \quad(z \in D)
$$

holds.

In this paper we prove Conjecture 2 for $\mathbb{m}=2$. This is the content of

Theorem 4. Let $a, b \in C$ and $n \in N$. When there exists a constant $M(a, b ; a)$ such that $|P(z)| \leqslant k(a, b ; n)$ for every polynomial P of degree $\leqslant n$ which has a representation $P(z)=a f(z)+b g(z), z \in D$ and $f, G \in R$.

More closely related to Conjecture 1 is a recent result of Cayman:

Theorem D. (cf. [2]). Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be non-constant
and entire and assume there exist $b \in N_{0}, d \in \mathbb{N}$ such that $a_{b} \neq 0$ and $a_{b+k d}=0, k \in N$. Then \mathcal{P} assumes every complex number as a value in C.

Theorem D together with an affirmative solution of the problem would also establish Conjecture 1.
2. Proofs. Theorem 1 and 2 are applications of Theorem C and some elementary number theory. He recall from [3] that $\theta_{\text {IT }}$ is semi-dual if and only if

$$
V_{T}=V_{T}^{\frac{\lambda}{\pi *}}:=\left(V_{T}^{*}\right)^{\frac{t}{*}}
$$

where $V_{T}=\left\{e_{T}(x 2):|x| \leqslant 1\right\}$. Note that.

$$
V_{T}^{*}=\left\{1 \in A_{0}: \theta_{T} * 1 \in P\right\}
$$

Proof of Theorem 1. Let $T^{0}=S \cup T$ and $G \in V_{T^{*}}^{*}$
$h \in V_{S}^{*}$ we have $h * \theta_{S} \in F$ and thus $h * \theta_{S} \in \nabla_{T^{*}}^{*}$. Therefore

$$
\left(h * \theta_{S}\right) * g=h *\left(\theta_{S} * g\right) \in F
$$

and we conclude

$$
g * \theta_{S} \in \nabla_{S}^{* *}
$$

Similarly, $G * \theta_{T} \in V_{T}^{* *}$, and since θ_{S}, e_{T} are semi-dual we have

$$
\left(E * e_{S}\right)(z)=\theta_{S}(x z),\left(B * \theta_{T}\right)(z)=\theta_{T}(y z)
$$

Where $x, j \in \bar{D}$. For the coefficients of $z^{\text {a }}, z^{b}$ in the power series expansion of G we thus obtain

$$
x^{a}=y^{a}, \quad x^{b}=y^{b}
$$

and, from the assumption on the greatest common divisor of a and b, it follows $x=y$. Hence $\left(g \not E e_{T}\right)(z)=e_{T}(x z)$ and by a standard application of the "duality principle" [4] we finally deduce $g(z)=\theta_{T}(x 2)$ which completes tine proof.

Proof of Theorem 2. Let $T=\left\{n_{j}\right\}, 0=n_{0}<n_{1}<n_{2}<\ldots$, and $T(j)=T_{n_{j}}, j \in N$. For $g \in V_{T}$ we obtain as in the proof of Theorem 1

$$
\left(B * \theta_{T(j)}\right)(z)=\theta_{T(j)}\left(x_{j} z\right) \quad, \quad x_{j} \in \bar{D} .
$$

Also, by the same reasoning as above, G has an expansion of the form

$$
g(z)=\sum_{n T T} a_{n} z^{n}
$$

and thus

$$
a_{k \in n_{j}}=x_{j}^{k n_{j}}, j \in \mathbb{N}, k \in N \text {. }
$$

In particular,

$$
\begin{equation*}
a_{n_{r} n_{s}}=x_{r}^{n_{r} n_{s}}=x_{s}^{n_{r} n_{s}}, \quad r, s \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

and hence

$$
\left|x_{r}\right|=\left|x_{a}\right|=t, \quad \text { say. }
$$

If $t=0$ we have $g \equiv 1$ and hence $g \in V_{\text {t }}$, the desired conclusion. Let $t \neq 0$. By a suitable rotation $\mathrm{J}_{1}, \mathrm{y}_{1}=1$, :se have

$$
g\left(y_{1} z\right)=1+t^{n_{1}}{ }_{2}^{n_{1}}+\text { hither terms. }
$$

ie now proceed by induction, applying further rotations again and again. Assume we have found a rotation $y_{8},\left|y_{8}\right|=1$, such that $\mathrm{g}\left(\mathrm{y}_{\mathrm{g}} \mathrm{z}\right)$ has the form

$$
\begin{equation*}
1+t^{n_{1}} n_{1}^{n_{1}}+\ldots+t^{n_{s_{2}} n_{s}}+\text { niger terms }_{(b)} . \tag{2.2}
\end{equation*}
$$

In fact, we may assume that (2.2) is B since pure rotations (ie., with modulus 1) do not interfere with our goal. Hence
(2.3) $x_{j}=t, j=1, \ldots, s$,
and we set

$$
a_{n_{s+1}}=e^{2 \pi i \varphi} t^{n_{s+1}}, \quad 0 \leqslant \varphi \leqslant 1 .
$$

If $\left(b_{1}, \ldots, b_{n}\right),\left[b_{1}, \ldots, b_{n}\right]$ denote the greatest common divisor and the least common multiple of $b_{j}, j=1, \ldots, n$, we get from (2.1)
(2.4) $\cdot e^{2 \pi_{1} \varphi\left[n_{j}, n_{s+1}\right] / n_{8+1}}=1, \quad j=1$

If $\varphi=0$ we have $a_{n_{s+1}}=t^{n^{n}} 8+1$ and no rotation is
required to arrive at the next induction step. If $\& \notin 0$, we see from (2.4) that
(2.5) $\left[n_{j}, n_{s+1}\right] \varphi / n_{s+1} \in N \quad j=1, \ldots, s$.

We write $\varphi / n_{s+1}=p / q$ with $p, q \in N$ and $(p, q)=1$.
Thus

$$
q \mid\left[n_{j}, n_{s+1}\right] \quad, \quad j=1, \ldots, s
$$

and this implies

$$
q \mid\left[\left(n_{1}, \ldots, n_{8}\right), n_{8+1}\right]
$$

and

$$
m q=\left[\left(n_{1}, \ldots, n_{8}\right), n_{8+1}\right]=\frac{\left(n_{1}, \ldots, n_{8}\right) n_{8+1}}{\left(\left(n_{1}, \ldots, n_{8}\right), n_{s+1}\right)}
$$

for a certain $m \in N$. This shows that φ has a representation

$$
\varphi=m p\left(\left(n_{1}, \ldots, n_{8}\right), n_{9+1}\right) /\left(n_{1}, \ldots, n_{8}\right)
$$

There exist numbers $k, \mathcal{L} 2$ such that

$$
\left(\left(n_{1}, \ldots, n_{8}\right), n_{8+1}\right)=k\left(n_{1}, \ldots, n_{8}\right)+2 n_{8+1}
$$

and hence

$$
\varphi=m p k+\frac{m p l n_{8+1}}{\left(n_{1}, \ldots, n_{8}\right)}
$$

We choose

$$
y=e^{-2 \pi i m p l} /\left(n_{1}, \ldots, n_{8}\right)
$$

so that

$$
\begin{aligned}
& y^{n_{j}}=1, j=1, \ldots, s \\
& y^{n_{s+1}}=e^{-2 \pi i \varphi}
\end{aligned}
$$

Thus

$$
g(y z)=\sum_{j=0}^{8+1} t^{n_{j}} z_{j}^{n_{j}}+\text { higher terms }
$$

Induction and a standard convergence argument shows now the existence of an \tilde{y} with $|\tilde{y}|=1$ such that

$$
B(\tilde{y} z)=\theta_{I}(t z)
$$

Which is our assertion.

In order to prove Theorem 3 we first establish a somewhat stronger result, namely Theorem 4.

Proof of Theorem 4. The bounds $M(0, a ; n)=M(a, 0 ; n)=$ $=|a| \cdot 2^{n}$ are well-known. Thus assume $a, b \neq 0$. Then for the function $h(z)=P(z) / f(z)$ we have:
(2.5)

$$
\left\{\begin{array}{l}
h \text { is analytic in } D, \\
h \text { has at most } n \text { zers in } D, \\
h \neq a, \quad z \in D, \\
h(0)=a+b,
\end{array}\right.
$$

The set of all functions satisfying (2.5) is normal (cf. [1], p. 70, Th. 2), in fact, locally uniformly bounded since $h(0) 18$ fixed:

$$
|b(z)| \leqslant M_{1}(a, b ; n), \quad|z| \leqslant 1 / 2
$$

or, in the same disk

$$
|f(z)| \geqslant M_{2}(a, b ; n) \cdot|P(z)|, \quad u_{2}=1 / m_{1}
$$

Let

$$
\rho_{k}:=\frac{n+1+k}{4 n+4}, \quad k=0,1, \ldots, n
$$

so that $P_{\mathbf{k}} \in[1 / 4 ; 1 / 2]$. Then for $|z| \leqslant 1 / 4$ we Lave by the minimum principle for $|f(z)|$

$$
|f(z)| \geqslant M_{2} \cdot \max _{k} \min _{|z|=\rho_{k}}|P(z)|
$$

Assume fIrst that
(2.6)

$$
m i=\max _{k} \min _{|z|=p}|P(z)| \geqslant 1
$$

Then I belongs to the locally uniformly bounded family of analytic functions in $|z|<1 / 4$ with $f(0)=1, f(z) \neq 0$, and $\mathcal{I}(z) \neq M / 2$, say. Thus there exists a constant M_{3} such that

$$
|f(2)| \leqslant M_{3} \quad, \quad|z| \leqslant 1 / 8
$$

and similar consideration gives a constant M_{4} such that

$$
|g(z)| \leqslant M_{4} \quad, \quad|z| \leqslant 1 / 8
$$

Hence

$$
|P(z)| \leqslant|a| \cdot M_{3}+|b| \cdot M_{4} \quad, \quad|z| \leqslant 1 / 8
$$

and we find a constant M_{5} such that
(2.7) $\quad|P(z)| \leqslant M_{5} \quad$ for $z \in D$

However, if $m \leqslant 1$ (see (2.6)) we have
(2.8) $\quad|P(z)| \leqslant 6^{n}(n+1)^{n+1} \quad, \quad z \in D \quad$.

To see this we let z_{k} be the points on $|z|=p_{k}$ where $|P(z)|$ attains its minimum, so that $\left|P\left(z_{k}\right)\right| \leqslant 1$. Let $Q(z)=\prod_{k=0}^{n}\left(z-z_{k}\right)$. By Lagrange s interpolation formula we have

$$
P(z)=\sum_{k=0}^{n} \frac{P\left(z_{k}\right)}{Q^{0}\left(z_{k}\right)} \cdot \frac{Q(z)}{z-z_{k}}
$$

Now

$$
\left|Q^{\prime}\left(z_{k}\right)\right|=\prod_{\substack{j=0 \\ j \neq k}}^{n}\left|z_{j}-z_{k}\right| \geqslant\left(\frac{1}{4 n+4}\right)^{n}
$$

$$
\left|\frac{Q(z)}{z-z_{k}}\right|=\sum_{\substack{j=0 \\ j \neq k}}^{n}\left|z-z_{j}\right| \leqslant(3 / 2)^{n}, \quad|z|=1
$$

which give (2.8). Finally, (2.7) and (2.8) combine to yield the assertion of Theorem 4.

Proof of Theorem 3. Assume first that T has only finitely many even numbers. Then for $P \in \nabla_{T}^{*} \cap A_{T}$ we have

$$
f(2)+f(-2)=P(z)
$$

where P is a polynomial of a degree which is less or equal to the largest even number n in T. By Theorem 4 , applied to f and $g:=f(-z), a=1, b=1$ we ate that

$$
|P(z)| \leqslant M(i, 1 ; n) \quad, \quad z \in D
$$

This implies

$$
\left|a_{n}\right|=\left|\frac{f^{(n)}(0)}{n!}\right| \leqslant \frac{1}{2} M(1,1 ; n)
$$

for $I \in V_{T}^{*}$ and therefore

$$
g(z):=1+\frac{2}{\mu(1,1 ; n)} z^{n} \in \nabla_{T}^{*}
$$

which contradicts the semi-duality of ${ }^{\circ} T$. The proof of the "odd" case runs similary.

REFKREKNCBS

[1] Goluzin, G.M., Geometric Theory of Punctions of a Complex Variable, Anerican Mathematical Society, Providence, Rhode Island 02904, 1969.
[2] Hayman, W.K., Value distribution and A.P. Gaps, J. London Math. Soc. (2), 28(1983), 327-338.
[3] Kasten, V., Ruscheweyh, St., On dual sets of analytic func tions, Kath. Nach. 123(1985), 277-283.
[4] Ruscbeweyh, St., Convolutions in Geometric Function Theory, Les Pressea de L'Université de Montréal, iiontréal (Québec) 1982.

STRESZCZENIE

PEBDNE

Пусть А ссиейтво всех функци аналитичсских в сдиничном круге $D, \Lambda_{0}=\{f \in A: f(0)=1\}$. Если $V C A_{0}$, тогда дуальное мнодество V^{*} это мнодество всех $\mathcal{f} \in A_{0}$ таких, что свертка Гадамара $\mathcal{f} 8$ не равна нуло в \mathbb{D} для лобой функции $\mathcal{L} \in Y$. Подмнотество W C Aо назщвастся дуально, если найдется UС Аотакое, ито $W=U^{*}$ - Функция $\mathcal{I} \in A_{0}$ наанвается семидуальной, когда многество $\{f(x z):|x| \& 1\}$ дуально. Густь $e_{\text {rf }}(z)=1+\sum_{l \in \mathbb{Z}}$, где TCN.

В давной работе яанимаемся отношениеи мещду структурой мнодества T и семидульностей функции $\boldsymbol{e}_{\text {т }}$.

