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AHaTHTHIeCKHO CeMU-RY ANbHbLIE PYHKIIMK

1. Introduction. Let A denote the set of all analytic

functions in D := {zz Izl(ﬂ} and A, the subset of all
functions f €A with f£(0) = 1 . Using the Hadamard product
£« g for £, g €A we define the duasl set V* of soze
'R Ao as

v* s {ferz(fi'g)(z)fO for all 2zéD and gev} 2

We call a subset W C 4, dual if it is the dual set of some
(other) subset of A, . let now V € A, . The swallest dual set
which contains V is called the dual hull of V and cernotea by
du (V) '. This concept was introduced in [4] and by means ol the
"duality principle" it could be shown that wany known results

on certain classes of functions in D have an icwediate interpre-
tation in terms of dual qéta. As well, a nunmber of new results

were obtained using duality theory. Dual sets have many propervies
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siuilar to convex sets but in soue respects they seem to be

becter adjusted to characteristics of analytic functions. On the
other hand, en intrinsec definition of dual sets is still missing,
let alone a theory of the Krein-kilman type. The present paper

is one step towards a better understanding of dual sets. Ve are
dealing with the study of "small" duals sets, namely those which

are of the form

(1.1) (f(xz) x| \<1}

where f€ Ay o It is known that the sets (1.1) are dual for some
f and not dual for others. A general rule is not yet known,
however, some partial results are available which seem to indice-
te a close connection of this problem with entire functions and
exceptional values. e call f € A, semi-dual if (1.1) is a dual
set, We first list some known results.

Let T e a subset of N, 1= Nu {0} with 0 ¢T ana
/e - x
(1.2) AT.-.{IG&D: £(z) kzé:'.l' ez , & 0 for kGT}.
In particular,
(1.3) egla) 1= 2= £ €4y .
A KeT b

Theorem A (cf. rB])_ f € Ap 1is semi-dual iff e is
semi~dual. Therefore, the question of the semi-duality of ¢

depvends only on the gap-structure of the power-series expansion

of £ at 2z = 0 . We note that ep is trivially semi-dual for
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Theorem B (cf. [3]). Assume tnat T # {0 , 1} but

=

1/k oo , Then e i8 not semi-dual.
KeT < == T

Theorem C (cf. [3]). Let n €N and

(1.4) T, 1= {kn t k €N } 5

Then en is semi-dual.

In [}] V. Kasten and St..Ruscheweyh amentioned some working
hypotheses and tenative conjectures, all of them based on the
following general assumption: if T € T° and ep 4is semi-dual,
then enq’ is semi-dual. Although this sounds plausible it turns
out to be wrong. Our results below show that, fc: instance,
T=T, and P’ = ?211 {1} provide a cg:nt:fexample. Also, with
the same T  , we easily see that {aml A Ap , where

rT.=TLc}T'AT is not compact in any disc lzlgp ,O(P <1 .

which disproves another of the conjectures in [3]. The main 1déa,
howover, namely the existence of a relation between seui-duality
of ep and the existence of entire functions f € ;& with

£ 40 in C seems to remain intact, but in a slightly modified

form. We formulate this as a problem:

Problem. Let T # {0 5 1} ."Is it true that ej 1is seui-
-dual if and only if for every k, € T there exist T  with

ko € To C T such that AT contains an eantire function non-va-
o

nishing in C ?
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The following three theorems support the statement abovei

Tneorcw 1., Let S , T be such that 8g y op &are semi-dual.

1f either 1 € SAT or {a,b} € SnT , where the greatest common

divisor of a and b is 1 , then eps _is semi-dual for

.

I"=5uvl.

lheorem 2. let T be a (finite or infinite) union of sets

1, ac cefined in (1.4). Then ep 1is semi-dual,

Theorem 3. Let T # {0 s 1] « 1 ep is semi-dual, then

1 contains infinitely many even numbers. T ealso contains either

no or infinitely many odd numbers.

Vle observe that the functions en of Theorem 2 are so far
the only known semi-dual functions. Theorem 3 shows that there
are wany non-semi-~-dual functions which do not satisfy the condi-
tion of Theorem B, We belive that Théorem 3 cen be extended to

the statement given in the following conjecture:

Congecture 1. o I en is semi-dual, then for b € T and
d€N the set T nfb+ ki 3 k €N} is infinite,

Note that Theorem 3 is the case d = 2 of the above conjectu-
re, which would be a consequence of the following more general

conjecture on non-vanishing functions in D .

b]
Conjecture 2, Let F := {f €A 3 2 $0 in D‘ . Let
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m, né€N and Cq sevey Cp € C . Then taere exists a constant
M(c1 veeey Cp i n) such that for every polynomiel P of degree
S: n with representation

P(2) = EE; ckfk(z) » I €F (k=1,¢0.,0)
the ‘inequality

lP(z)l \<M(c1 yeeey Cpd n) (z € D)

holds.

In this paper we prove Conjecture 2 for m = 2 , This is

the content of

Theorem 4. Let a , b €C and n € N , Llhen there exists

a constant M(a,b;n) such that lP(zﬂ S:m(a,b;n) for every
polynomial P of degree $:n which has a representation
P(2) = af(z) + bglz) , 2z €D and £, g €F.

liore closely related to Conjecture 1 is a recent result

of Hayman:
oo
Theorem D, (cf. [2]). Let £(z) = 2_ akzk be non-constant
k=0

and entire and assume there exist b € N, d € N suca that

ay # 0 and 8ekd =900 k € N, Then f assumes every complex

number as a value in C .
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Theorem D together with an affirmative solution of the

Protlem would also establish Conjecture 1,

2.Proofs. Theorem 1 and 2 are applications of Theorem C and
soue elementary number theory. e recall from [3] that eqn is
semi~dual if and only if

2.3 +*
VT = VTr 4= (VI;)
where Vp = {eT(xz) v x| 5:1} . Note that
ook, )
VT = {f Ao H GT* b g F d

ok
Proof of Theorem 1. Let T° = SuT and g € Vp-

*®*
Por h 6 V> we have h* e, €F and thus h * e, € Vs .
Vs s €Vp

S
Therefore

(h*es)*gah*(est's)eF

and we conclude

xR
g*es GVS .
" *2
Similarly, g ep € VT y and since eg , ep are semi-dual we

have

(6% eg)(z) = eg(x2) , (g * ep)(2) = eplyz)

where x , ¥y €D . For the coefficients of z° ’ zh in the power

series expansion of g we thus obtain



On Semi-dual Analytic Functions 199

and, from the assumption on the greatest common divisor of a
eand b , it follows x = y , Hence (g % eT)(z) 2 e.l\(xz) and
by a standard application of the "duality principle” [u] we
finally deduce g(z) = eT(xz) which completes tne proof.

Proof of Theorem 2. Let T = [:‘1] s O = n°<n1<n2< cue
and T(J) = T,.» J€N . For géVy we obtain as in the proof

of Theorem 1
(g » °T(3))“) = °T(J)(IJZ) » Xy <D .

Also, by the same reasoning as above, g has an expansion of

the form

M

.S(Z) neT &
and thus
knj.
akn;"‘:j g Jie B, k €N ,
J

In particular,

(2.1) B.n'rn! = x:‘rne :r“a 5 r,s €N

and hence

say.

lxrl = lxal ==t
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If t=0 we have g&= 1 and hence g ¢ ?T » the desired
conclusion. Let t $# O . By a suitable rotation Je v ¥q = 1,

we have

n
8(y1z) =1+ t "'zm| + hipher terms.

Je now proceed by induction, applying further rotations again
and again. Assume we have found a rotation g lysl =1,
such that g(yyz) has the form

n, n_n k

n
(2.2) 1+t %2 "4 ¢oo 4+ t 82 %4 higer terms .

In fact, we may assume that (2.2) is g since pure rotations

(i.e., with modulus 1) do not interfere with our goal. Hence

(2.3) x

n
t
-

J=1eeay8 ’

and we set

2%Xiv n
o »0 'a®™ . elyly.

ns-l-"l

If (by yeesy BY) [b1 Kofe, ?n] denote the greatest

common divisor and the least common multiple of bj » 350 peseskk §
we get from (2.1)

e2n1Q[n;j i} ns+1] /ns+1 5 1

] J=1_'.o'.s -

(2.4)

~ tns+1
s+1

It q = O we have a, and no rotation is
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required to arrive at the next induction step. If q f (6]

we see from (2.4) that

(2.5) [nj ’ n8+1] ‘f /ns+1 €N , J=1430ee, 8 &

We write ({/ns+1 = p/q with p , Q€ N and (p, q) = 1.
Thus

q l [nd ’ ns,.,-‘] ’ J =21 5000y 8

and this implies

ql [(n,‘ g o g ns) q na+1]
and

(n1 gesey na) ns*,‘
((nv' ge0ey ns) '] ns+1)

.mq = [(n1 pesey D) ns+1] =
for a certain m € N ., This shows that q has a representetion

({ = mp((n1 pecey nB) ’ nsf“) / (1\1 poeey ns) .

There exist numbers k , 1 € Z such that

((n1 poeeey nB) ] ns+1) = k(n1 goeeny ns) + lnﬂ+1

and hence

mpl n
q = mpk + Lig »

(0g yeeny n,)
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We choose
-2 impl /( suswgl D0
y=o 4 ' T8
so that
n
91, 321,04, 8
n -2X1
y 8+1 e ¥ -
Tnus
=B
8(yz) = 2 tVYz + higher terms .
3=0 :

Induction and a standard convergence argument shows now the

oxistence of an y with l;[ = 1 such that

g(yz) = eqplta)

which i8 our assertion.

In order to prove Theorem 3 we firat establish a somewhat

stronger result, namely Theorem 4.

Proof of Theorem 4, The bounds M(O , a ; n) = M(a , O 3 n)=

= |a|:2® are well-known. Thus assume & , b $ O . Then for the

function h(z) = P(z) /£(z) we have:

h 1is analytic in D ,

h bas at most n zerss in D,
(2.5) nta , 2 €D,

h(0) =a+b .

-
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~The set of all functions satisfying (2.5) is normal (cf.
[1], P. 70, Th. 2), in fact, locally uniformly bounded since
h(0) is fixed:

[nez)l {uqta, v 5 0) ,  lzl {172

or, -in the same disk

leez)] Duyta, by n):[p2) , mp = oam,

Let

n + 1+k

Pk- » k=0,1,...,n 9

4n + 4

so that P, € [1/4 3 1/2] . Then for [z 41/4 we have by the
minimum principle for If(z)[

,f(z)! }, M, - max min !P(z)l .
. ‘ k Izl =pk

Assume first that

(2.6) m 1= max min [P(z)] > 1 .
k Izl =p S v

Thex.{ £ belongs to the locally uniformly bounded family of
snalytic functions in [zl {474 with £(0) = 1, £(2) $ O,
and f£(z) $ 4/2 , say. Thus there exists a constant My such
that

(r(z)|\<n«5 , ls[é-'l/a ;



204 H., Pinto, St Ruscheweyh, L. Sallnas

and similar consideration gives a constant M“_ such that

le] {u, lzt {8 .
Hence
| pe2)] \<|a|-M3 + lol-m, |21 \<1/8
and we find a constant M5 such that
(2.7) [P(z)l ,{ Mg for z €D
However, if m \<1 (see (2.6)) we have
1

(2.8) IP(Z)l <6n (n + 1)n+ . z€D

To see this we let 2z, be the points on lz| = P ¢ Where
|p(2)| attains 1ts minimum, so thet [P(z)| {1 . Let

n
@z) = T (z-2) .8y Lagrange ‘s interpolation formula we
k=0
have
B P(z) " Qlz)
P(z) = o | Ezk . 3 : .
=0 S (z) z-z
Now
‘_ S ‘o 1 n
) - -ﬂ; l23 - =l 2 i

Itk
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ST =0

Itk

which give (2.8). Finally, (2.7) and (2.8) coubine to yield

the assertion of Theorem 4.

a
Sh%) = ;E: |z - zdl 5< (5/2)n v lz] =1

Proof of Theorem 3, Assume first that T has only finitely

*
many even numbers. Then for £ € VT N An we have

£(z) + £(~2) = P(2)

where P 18 a polynomial of a degree which is less or cqual to

the largest even number n in T ., By Theorew 4 , applied to

f and g 1= £(-z) , a=1, b=1 we see Ghat

Ipe2)l Mt ,140) , zeD.

This 1hp11es
(n)
f

‘?’,\(-}uu , 13 n)

(o[ =

n
*
for f € VT and therefore

2 n X
g(z) 1= 1 + — — z 6\7;r
(1, 13 n)

which contradicts the semi-duality of ep o

The proof of the "odd" case runs similary.
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1582,

STRESZCZENIE

Niech A bgdzie rodzing wazystkich funkcjl analitycznych w kole
Jednostkowym D = | niech A_ -51eA 1£(0) = 1]. Jedu v C A,
to zblér dualny V" zblciu V Jjo~s Okreélony jako zbiér tych f € Ao'
2e aplot Hadamarda f » g nie zeruje 8i§@ w D dla dowolne] funk-
cjt g € V, Podzbiér WC Ao nazywamy dualnym, jedll istnlejo
UcC A takd, 26 W = U™ . Funkcjg f € A  nazywam semi-dualna,
josll zbidr SL f(xz) : |x| £1} jest dualny. Niech e_(z) = 1+ P
gdzie TC IN, W pracy badane sq zwiqzki pomiqedzy strukturg kT
zbloru T | semidualnoéclyq funkcji e .



AHBXUTHUGCRYUE CEeNU~NYANbHHE DYHKUUM 207

PE3INE

MycTs A cemelicTBo Beex QyHKUME ARANUTIHYECKUX B CAUHUYHOM

kpyre 0 , A = {féﬂ ¢ £(o) = 13 . Ecau V C A , Torna ayaapHoe

wuoxecTBo V¥ avo mHomecTBO BCex L€ A, Takux, uto cmeprka Mapaua-
pa fe g ue paBHa Hyao B |D axs an6oft dyukuvu peVY . Nosuuoxec-
TBo W C A, HasHBACTCA AyarbHO, eciu nalnercs Uc.AomaKoe, qTO

W=U% dyuxyua f e Ao HA3HRAETCHA ceMuAyaAbHOfl, KOria MHOXeCTBO
{£(xz) ¢ |x|a 1) Avaaswo. Dyers eq(z) = 1+ 2, rze TCHN.
B narHOft paforTe 2aHMMEGMCH OTHOWEHKEM MEXAY CTpPyKTypoft

uroxecTBa T u cemuayavHoctTe# Pynwuumu €.






