ANNALES

UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN-POLONIA

VOL, XL, 4
 SECTIO A
 Departmeat of Mathematics

Dawson College, Montreal

R. FOURNIER

A Growth Theorem for a Class of Convex Functions

Twiendzenie o warosoie dla funkeji wypukłych

Теорема о возрастания для вьпуклых фунхиии

INTRODUCTION

Let A denote the class of analytic functions f in the unit disc $E=\{z| | z \mid<1\}$ with $f(0)=f^{\prime}(0)-1=0$. Also let S.S*, and C designate the subsets of A containing respectively the univalent, starlike univalent, and convex univalent functions. We also define, for each $t>\frac{1}{2}$.

$$
\begin{aligned}
& \left(S^{*}\right)_{t}=\left\{\left.f \in S^{*}| | \frac{z f^{\prime}(z)}{f(z)}-t \right\rvert\,<t, z \in E\right\} \\
& (C)_{t}=\left\{\left.f \in C| | \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-t \right\rvert\,<t, z \in E\right\} .
\end{aligned}
$$

The classes $\left(S^{*}\right)_{t}$ and $(C)_{t}$ were studied by R. and V. Singh $([6])$ and by Ruscheweyh and Singh ([5]).

In this paper we mainly deal with the following problem: "Let H be any of the subsets mentionned above and $f \in H$. Also let

$$
\begin{equation*}
u, v \in E, 0<|v|<|u|<1 \text { and } \arg (f(v))=\arg (f(u)) \text {. } \tag{1}
\end{equation*}
$$

Wath is a good upper bound for the quotient $\frac{|f(u)|}{|f(v)|} ?^{n}$. In the case where $H=S$. S or C the region

$$
\left\{\left.\frac{f(u)}{f(v)} \right\rvert\, f \in H\right\}
$$

is well known (see for example [2] and [4]) for each $u, v \in E$ and it follows easily that, under conditions (1),

$$
\frac{|f(u)|}{|f(v)|} \leq \frac{|u| /(1-|u|)^{2}}{|v| /(f-|v|)^{2}} \text { if } f \in S^{*}
$$

and

$$
\frac{|f(u)|}{|f(v)|} \leq \frac{|u| /(1-|u|)}{|v| /(1-|v|)} \text { if } f \in C .
$$

Hovever it seems very difficult to obtain the variability region (2) in the case where $H=\left(S^{*}\right)_{t}$ or $H=(C)_{t}$. Nevertheless we can prove

THEOREM 1: Let $t>\frac{1}{2}, w_{t}=\frac{1}{t}-1$ and $f \in(C)_{t}$. Then, under the conditions (1),

$$
\frac{|f(u)|}{|f(v)|} \leq \frac{\left(1+w_{t}|u|\right)^{1 / w_{t}}-1}{\left(1+w_{t}|v|\right)^{1 / w_{t}}-1}
$$

THEOREM 2: Let $t>\frac{1}{2}, w_{t}=\frac{1}{t}-1$ and $f \in\left(S^{*}\right)_{t}$. Then, under the conditions (1)

$$
\frac{|f(u)|}{|f(v)|} \leq \frac{|u|\left(1+w_{t}|u|\right)^{1 / w_{t}-1}}{|v|\left(1+w_{t}|v|\right)^{1 / w_{z}-1}} .
$$

In our conclusion we indicate how Theorem 1 can be used to obtain some results on the growth of $\frac{z f^{\prime}(z)}{f(z)}$ when $f \in(C)_{t}$.

PEMARK ON THEOREMS 1 AND 2

Our proof of the Theorems depends on a "real variable" method known as the Theorem of Kuhn and Tucker (see [3], pages 232-234). We give here a brief account of this method adapted to our needs. Let $P(x, y), Q(x: y), R_{1}(x, y)$ and $R_{2}(x, y)$ be continuously differentiable real functions on some open set $0 \subset \mathbb{R}^{2}$ and let (x^{*}, y^{*}) be a relative maximum point for the problem
"Maximise $P(x, y)$ subject to the constraints $Q(x, y)=0$ and $\left.R(x, y)=R_{1}(x, y), R_{2}(x, y)\right) \leq 0^{n}$.

We say that the point $\left(x^{*}, y^{*}\right)$ is a regular point of the constraints $Q(x, y)=0$ and $R(x, y) \leq 0$ if $R_{1}\left(x^{*}, y^{*}\right) \neq 0$ and if the vectors $\left(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}\right)$ and $\left(\frac{\partial R_{2}}{\partial x}, \frac{\partial R_{2}}{\partial y}\right)$ evaluated at $\left(x^{*}, y^{*}\right)$ are inearly independant in R^{2}. It is then possible to prove the following

THEOREM (Kuhn-Tucker conditions): Let $P, Q_{0} R_{1}, R_{2}$ as above and (x^{*}, y^{*})
be a relative maximum point for the problem (3). Then there exist two real num-
bers λ and μ such that, at the point $\left(x^{*}, y^{*}\right)$.

$$
\begin{aligned}
& -\left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}\right)+\lambda\left(\frac{\partial 0}{\partial x}, \frac{\partial \Omega}{\partial y}\right)+\mu\left(\frac{\partial R_{2}}{\partial x}, \frac{\partial R_{2}}{\partial y}\right)=(0,0) \\
& -\mu R_{2}\left(x^{*}, y^{*}\right)=0 .
\end{aligned}
$$

If $\left(x^{*}, y^{*}\right)$ is a regular point of the given constraints.
lie first prove Theorem 1. We need the following lemma, essentially due to Ruscheveyh and Singh ([5]):

$$
\begin{aligned}
& \text { LEIMA 1: Let } t>\frac{1}{2}, w_{t}=\frac{1}{t}-1 \text { and } f \in(C)_{t} \text {. Then } \\
& \operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\right)=\frac{\left(1+w_{t}|z|\right)^{1 / w_{t}}-1}{|z|\left(1+w_{t}|z|\right)^{1 / w_{t}-1}}, z \in E
\end{aligned}
$$

and the equality is possible only if $f(z)$ is a rotation of $f_{t}(z)=\left(1+w_{t} 2\right)^{1 / w_{t}}-1$.

PROOF OF LEMMA 1

It was proved in $([5])$ that $\frac{z f^{\prime}(z)}{f(z)}$ is subordinate to $\frac{z f_{t}^{\prime}(z)}{f_{t}(z)}$ if
$f_{e}(C)_{t}$. It is also known that $\frac{f_{t}(z)}{z f_{t}^{l}(z)}=1+\left(l-w_{t}\right) g_{t}(z)$ where
$g_{t}(z)=-1+\frac{1-\left(1+w_{t} z\right)^{1-1 / w_{t}}}{\left(1-w_{t}\right)}$ is a convex univalent (non normalized) function.
Since $g_{t}(E)$ is convex and symmetrical with respect to the real axis we obtain

$$
\begin{align*}
& \min _{|z|=r<1} \operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\right)=\min _{|z|=r}\left(\frac{f_{t}(z)}{z f_{t}^{\prime}(z)}\right) \tag{4}\\
& f_{\in}(C)_{t}
\end{align*}
$$

$$
=1+\left(1-w_{t}\right) \min \left(g_{t}(r), g_{t}(-r)\right)
$$

and a simple calculation shows that

$$
\begin{equation*}
g_{t}(-r)>g_{t}(r)=-1+\frac{1-\left(1+w_{t} r\right)^{1-1 / w_{t}}}{\left(1-w_{t}\right) r} \tag{5}
\end{equation*}
$$

The combination of (4) and (5) completes the proof of Lemma 1.

In order to prove Theorem 1 we define, for each $p \in(0,1)$ and $\varphi \in[0,2 \pi)$,

$$
E_{\rho, \varphi}=\left\{r e^{i \theta} \in E \mid 0<r \leqslant p \text { and } \arg \left(f\left(r e^{i \theta}\right)\right)=\arg \left(f\left(\rho e^{i \varphi}\right)\right)\right\}
$$

Since the function f is convex univalent, it follows that $E_{\rho, \phi}$ is a Jordan arc intercepting, at unique point, each circle with center at the origin and radius $\leq \rho$. The statement of Theorem 1 is equivalent to

$$
\begin{equation*}
r e^{i \theta} \in E_{\rho, \phi} \Rightarrow\left(\left(1+w_{t} r\right)^{1 / w_{t}}-1\right) / \mid f\left(r e^{i \theta}\right) i \leq\left(\left(1+w_{t} \rho\right)^{1 / w_{t}}-1\right) / / f\left(\rho e^{i \varphi}\right) i \tag{6}
\end{equation*}
$$

and in order to prove (6) it is clearly enough to show that if the maximum of the function

$$
P(r, \theta)=\ln \left(\frac{\left(\left(1+w_{t} r\right)^{1 / w_{t}}-1\right.}{r}\right)-\operatorname{Re} \ln \left(\frac{f\left(r e^{i \theta}\right)}{r e^{i \theta}}\right)
$$

under the constraints

$$
Q(r, \theta)=\operatorname{Im}\left(\ln \left(\frac{f\left(r e^{i \theta}\right)}{f\left(\rho e^{i \phi}\right)}\right)\right)=0
$$

and

$$
R(r, \theta)=(-r, r-p) \leq 0
$$

is attained at $\left(r^{*}, \theta^{*}\right)$, then $r^{*}=\rho$ and $\theta^{*}=\varphi$.

We are going to show that this is indeed the case when $f(z)$ is not a rotation of $f_{t}(z)$. Me remark first that $r * 0$; otherwise

$$
\begin{aligned}
r e^{1 \theta}<E_{\rho, \varphi} & \Rightarrow\left(\left(1+w_{t} r\right)^{1 / w_{t}}-1\right) /\left|f\left(r e^{1 \theta}\right)\right| \leq 1 \\
& \Rightarrow\left(1+w_{t} r\right)^{1 / w_{t}}-1 \leq\left|f\left(r e^{1 \theta}\right)\right|
\end{aligned}
$$

which is possible only if f is a rotation of $f_{t}(2)$ (see [6]). Moreover the ventors $\left(\frac{\partial Q}{\partial r}, \frac{\partial Q}{\partial \theta}\right)$ and $\left(\frac{\partial R_{2}}{\partial r}, \frac{\partial R_{2}}{\partial \theta}\right)$ are linearly independent in R^{2} because $\frac{\partial R_{2}}{\partial \theta}=0, \frac{\partial R_{2}}{\partial r}=1$ and

$$
\frac{\partial Q}{\partial \theta}=\operatorname{Re}\left(r^{*} e^{1 \theta^{*}} \frac{f^{\prime}\left(r * e^{1 \theta *}\right)}{f\left(r^{*} e^{1 \theta^{*}}\right)}\right)>0
$$

since $f \in(C)_{t} \subset S^{*}$. It follows that the point ($r *, \theta^{*}$) is regular point of the given constraints. In view of the Kuhn-Tucker conditions, there exist real numbers λ and μ such that, if

$$
\xi=r^{*} e^{i \theta^{*}} \frac{f^{\prime}\left(r^{*} e^{i \theta^{*}}\right)}{f\left(r^{*} e^{i \theta^{*}}\right)}
$$

then $\quad \frac{r\left(1+w_{t} r^{1 /)^{1 / w_{t}-1}}\right.}{\left(1+w_{t} r^{\oplus}\right)^{1 / w_{t}}-1}-\operatorname{Re}(\xi)+\lambda I m(\xi)+\mu r^{*}=0$,

$$
\begin{equation*}
\operatorname{Im}(\xi)+\lambda \operatorname{Re}(\xi)=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mu(r *-p)=0 \tag{9}
\end{equation*}
$$

If $\mu=0$ we obtain from (7) and (8) that $\operatorname{Re}\left(\frac{1}{\xi}\right)=\frac{\left(1+w_{t} r^{*}\right)^{1 / w_{t}}-1}{r^{*}\left(1+w_{t} r^{*}\right)^{1 / w_{t}-1}}$. This is impossible in view of Lemma 1 , because f is not a rotation of f_{t}. Therefore $\mu \neq 0$ and, by (9$), r^{*}=\rho$. Since $E_{\rho, 0}$ intersects the circle $|z|=\rho$ only at the point pe ${ }^{i \varphi}$, it must also follow that $\theta^{*}=\varphi$. This completes the proof of Theorem 1 in the case where the function f is not a rotation of f_{t}, and the general result follows by continuity. The bound given for the quotient $\frac{|f(u)|}{|f(v)|}$ is sharp, as seen by choosing $f(z)=f_{t}(z)$ and $0<v<u<1$.

The proof of Theorem 2 will be omited; it follows essentialy the pattern given above except that Lemma 1 is replaced by an appropriate result on the growth of $\frac{z f^{\prime}(z)}{f(z)}$ where $f e\left(S^{*}\right)_{t}$.

CONCLUSION

We want to point out two possible applications of Theorem 1 to the classes $(C)_{t}$ and $\left(S^{*}\right)_{t}$. Note first that for $\rho \in(0,1)$ and $f \in(C)_{t}$,

$$
\frac{1}{\rho}=\frac{f(z)}{\rho f(z)}=\frac{f(z)}{f\left(f^{-1}(\rho f(z))\right)}
$$

and by Theorem 1 ,

$$
\frac{1}{\rho} \leq \frac{\left(1+w_{t}|z|\right)^{1 / w_{t}}-1}{\left(1+w_{t} \mid f^{-1}(\rho f(z)) 1\right)^{1 / w_{t}}-1}
$$

This last inequality is equivalent to

$$
\begin{equation*}
f \in(C)_{t} \Rightarrow\left|f^{-1}(\rho f(z))\right| \leq \frac{\left(1+\rho\left[\left(1+w_{t}|z|\right)^{1 / w_{t}}-1\right]\right)^{w_{t}}-1}{w_{t}}, z \in E \text {. } \tag{10}
\end{equation*}
$$

The statement (10) is crucial in the proof (omitted here) of the sharp inequalities:

$$
\begin{align*}
& \text { COROLLARY 1.1: Let } t \geq 1, w_{t}=\frac{1}{t}-1 \text { and } f \in(C)_{t} \cdot \text { Then } \\
& \left|\frac{2 f^{\prime}(z)}{f(z)}-1\right| \leq \frac{1-\left(1+w_{t}|z|\right)^{1 / w_{t}}+|z|\left(1+w_{t}|z|\right)^{1 / w_{t}-1}}{\left(1+w_{t}|z|\right)^{1 / w_{t}}-1}, z \in E . \tag{וו}
\end{align*}
$$

COROLLARY 1.2: Let $\frac{1}{2}<t \leq 1, w_{t}=\frac{1}{t}-1$ and $f \in(C)_{t}$. Then

$$
\begin{equation*}
\left|\left(1+w_{t}\right) \frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{1-(1-|z|)\left(1+w_{t}|z|\right)^{1 / w_{t}-1}}{\left(1+w_{t}|z|\right)^{1 / w_{t}}-1}, z \in E . \tag{12}
\end{equation*}
$$

Remark finally that (11) implies that $(C)_{t} \in\left(S^{*}\right)_{1}$ if and only if $\frac{1}{2}<t \leq \frac{1}{1+x}$ where x is the unique root in the interval $\left(-\frac{1}{2}, 0\right)$ of the equation $(1+2 x)(1+x)^{1 / x-1}=2$. Note also that (12) is a refinement of the well known inclusion $(C)_{t} \subset\left(S^{*}\right)_{t}$, in the case where $\frac{1}{2}<t \leq 1$. A special case of (11) and (12), when $t=1$, was presented in ([1]).

REFERENCES

[1] R. Fournier, Some distortion theorems for a class of convex functions, Rocky Mountain Journ. of Math., 15 (1985), 123-131.
[2] J. Krzyi, on the regio of variability of the ratio $f\left(z_{1}\right) / f\left(z_{2}\right)$ within the class U of univalent functions, Ann. Univ. M. Curie-SkJodowska. ïvil. 1963, 55-64.
[3] D. Luenberger, Introduction to linear and non-linear programing, AddisonWesley, London, 1973.
[4] M.O. Reade, E.J. Zlotkiewicz, On the equation $f(z)=\rho f(a)$ in certain classes of analytic functions, Mathematica Cluj., 13 (36), 2, 1971, 281-286.
[5] St. Ruscheweyh, V. Singh, Covolution theorems for a class of bounded convex functions, Rocky Mountain Journ. of Math., 16 (1), 1986, 137-146.
[6] R. Singh, V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math., 5 (1974), 733-754.

STRESZCZENIE

Otrzymano dla pownych podksas $S_{t}^{\#}\left(C_{t}\right)$ klasy $S^{\boldsymbol{\#}}$ (wzgleqnie klasy C) unormowanych funkcll gwiazdzistych (wypukiych) oszacowanie stosunku $\frac{t(u)}{f(v)}$. gdzie $0<|v|<|u|<1$ oraz $\arg f(v)-\arg t(u)$.

PESLME

$$
\begin{aligned}
& \text { Полученные оценкм велщчинн }\left|\frac{f(u)}{f(v)}\right| \text {, где } 0<|\nabla|<\{u . \mid<\uparrow \text {, } \\
& \arg f(\nabla)=a r g f(u), \quad \text { дяя } f \in S_{t}^{*}, C_{t}\left(S_{t}^{*}, C_{t}\right. \text { некоторые класся } \\
& \text { нормированннх звеадообраяннх кли вмпуклых ఫункций). }
\end{aligned}
$$

