ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL, XL, 4

SECTIO A

1986

Department of Mathematics Dawson College, Montreal

R. FOURNIER

A Growth Theorem for a Class of Convex Functions

Twierdzenie o wzroście dla funkcji wypukłych

Теорема о возрастании для выпуклых функций

INTRODUCTION

Let A denote the class of analytic functions f in the unit disc E = {z | |z| < 1} with f(0) = f'(0)-1 = 0. Also let S, S*, and C designate the subsets of A containing respectively the univalent, starlike univalent, and convex univalent functions. We also define, for each $t > \frac{1}{2}$,

> $(S^{*})_{t} = \{ f \in S^{*} \mid |\frac{zf^{*}(z)}{f(z)} - t| < t , z \in E \}$ (C)_t = { f \in C | | $\frac{zf^{*}(z)}{f^{*}(z)} + 1 - t | < t , z \in E \}$

The classes $(S^*)_t$ and $(C)_t$ were studied by R. and V. Singh ([6]) and by Ruscheweyh and Singh ([5]).

In this paper we mainly deal with the following problem: "Let H be any of the subsets mentionned above and f ε H . Also let

$$u, v \in E$$
, $0 < |v| < |u| < 1$ and $arg(f(v)) = arg(f(u))$. (1)

Wath is a good upper bound for the quotient $\frac{|f(u)|}{|f(v)|}$?". In the case where H = S , S* or C the region

$$\left\{\frac{f(u)}{f(v)} \mid f \in H\right\}$$

is well known (see for example [2] and [4]) for each $u, v \in E$ and it follows easily that, under conditions (1),

$$\frac{|f(u)|}{|f(v)|} \le \frac{|u|/(1-|u|)^2}{|v|/(1-|v|)^2} \quad \text{if } f \in S^4$$

and

$$\frac{|f(u)|}{|f(v)|} \le \frac{|u|/(1-|u|)}{|v|/(1-|v|)} \text{ if } f \in C .$$

Hovever it seems very difficult to obtain the variability region (2) in the case where $H = (S^*)_t$ or $H = (C)_t$. Nevertheless we can prove

<u>THEOREM 1</u>: Let $t > \frac{1}{2}$, $w_t = \frac{1}{t} - 1$ and $f \in (C)_t$. Then, under the conditions (1),

$$\frac{|f(u)|}{|f(v)|} \le \frac{(1+w_t|u|)^{1/w_t} - 1}{(1+w_t|v|)^{1/w_t} - 1}.$$

<u>THEOREM 2</u>: Let $t > \frac{1}{2}$, $w_t = \frac{1}{t} - 1$ and $f \in (S^*)_t$. Then, under the conditions (1),

$$\frac{|f(u)|}{|f(v)|} \le \frac{|u|(1+w_t|u|)^{1/w_t} - 1}{|v|(1+w_t|v|)^{1/w_t} - 1}$$

In our conclusion we indicate how Theorem 1 can be used to obtain some results on the growth of $\frac{zf^*(z)}{f(z)}$ when f ϵ (C)_t.

REMARK ON THEOREMS 1 AND 2

Our proof of the Theorems depends on a "real variable" method known as the Theorem of Kuhn and Tucker (see [3], pages 232-234). We give here a brief account of this method adapted to our needs. Let P(x,y), Q(x,y), $R_1(x,y)$ and $R_2(x,y)$ be continuously differentiable real functions on some open set $0 \in \mathbb{R}^2$ and let (x^*,y^*) be a relative maximum point for the problem

"Maximise P(x,y) subject to the constraints Q(x,y) = 0 and $R(x,y) = (R_1(x,y), R_2(x,y)) \le 0^n$.

We say that the point (x^*, y^*) is a regular point of the constraints Q(x, y) = 0and $R(x, y) \le 0$ if $R_1(x^*, y^*) \ne 0$ and if the vectors $(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y})$ and $(\frac{\partial R_2}{\partial x}, \frac{\partial R_2}{\partial y})$ evaluated at (x^*, y^*) are linearly independent in \mathbb{R}^2 . It is then possible to prove the following

<u>THEOREM</u> (Kuhn-Tucker conditions): Let P,Q,R_1,R_2 as above and (x^*,y^*) be a relative maximum point for the problem (3). Then there exist two real numbers λ and μ such that, at the point (x^*,y^*) ,

$$- \left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}\right) + \lambda \left(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}\right) + \mu \left(\frac{\partial R_2}{\partial x}, \frac{\partial R_2}{\partial y}\right) = (0,0)$$
$$- \mu R_2(x^*, y^*) = 0 ,$$

if (x^*,y^*) is a regular point of the given constraints.

(3)

PROOF OF THEOREMS 1 AND 2

We first prove Theorem 1. We need the following lemma, essentially due to Ruscheweyh and Singh ([5]):

LEMMA 1: Let
$$t > \frac{1}{2}$$
, $w_t = \frac{1}{t} - 1$ and $f \in (C)_t$. Then
 $\operatorname{Re}\left(\frac{f(z)}{zf'(z)}\right) \approx \frac{(1+w_t|z|)^{1/w_t} - 1}{|z|(1+w_t|z|)^{1/w_t} - 1}$, $z \in E$

and the equality is possible only if f(z) is a rotation of $f_{\xi}(z) = (1+w_{\xi}z)^{r/t}-1$. PROOF OF LEMMA 1

It was proved in ([5]) that $\frac{zf'(z)}{f(z)}$ is subordinate to $\frac{zf'_{t}(z)}{f_{t}(z)}$ if $f \in (C)_{t}$. It is also known that $\frac{f_{t}(z)}{zf'_{t}(z)} = 1 + (1 - w_{t})g_{t}(z)$ where $\frac{1 - 1/w_{t}}{(1 - w_{t})^{2}}$ is a convex univalent (non normalized)function. Since $g_{t}(z)$ is convex and symmetrical with respect to the real axis we obtain

$$\min_{\substack{z \mid = r < l}} \operatorname{Re}\left(\frac{f(z)}{zf^{1}(z)}\right) = \min_{\substack{|z| = r}} \left(\frac{f_{t}(z)}{zf_{t}(z)}\right)$$

$$f_{\epsilon}(C)_{t}$$
(4)

 $1+(1-w_{t})\min(g_{t}(r),g_{t}(-r))$

and a simple calculation shows that

$$g_{t}(-r) > g_{t}(r) = -1 + \frac{1 - (1 + w_{t}r)}{(1 - w_{t})r}$$
 (5)

The combination of (4) and (5) completes the proof of Lemma 1.

In order to prove Theorem 1 we define, for each $\rho \in (0,1)$ and $\phi \in [0,2\pi) \ ,$

$$E_{\alpha,\rho} = \{re^{i\theta} \in E \mid 0 < r \le \rho \text{ and } arg(f(re^{i\theta})) = arg(f(\rho e^{i\phi}))\}$$

Prest & Letter

Since the function f is convex univalent, it follows that $E_{\rho,\phi}$ is a Jordan arc intercepting, at a unique point, each circle with center at the origin and radius $\leq \rho$. The statement of Theorem 1 is equivalent to

$$re^{1\theta} \in E_{\rho,\phi} \implies ((1+w_tr)^{1/w_t} - 1)/|f(re^{1\theta})| \le ((1+w_t\rho)^{1/w_t} - 1)/|f(\rhoe^{1\phi})| \quad (6)$$

and in order to prove (6) it is clearly enough to show that if the maximum of the function

$$P(r,\theta) = \ln \left(\frac{\left(1 + w_{\xi} r\right)^{1/w_{\xi}} - 1}{r} \right) - \operatorname{Re} \ln \left(\frac{f(re^{i\theta})}{re^{i\theta}} \right)$$

under the constraints

$$Q(r,\theta) = Im(ln(\frac{f(re^{i\theta})}{f(re^{i\phi})})) = 0$$

and

$$R(r,\theta) = (-r,r-\rho) \leq 0$$

is attained at (r^*, θ^*) , then $r^* = \rho$ and $\theta^* = \phi$.

1000

We are going to show that this is indeed the case when f(z) is not a rotation of $f_+(z)$. We remark first that $r^* \neq 0$; otherwise

$$re^{10} \in E_{\rho,\phi} \implies ((1+w_tr)^{1/w_t} - 1)/|f(re^{10})| \le 1$$

$$(1+w_tr)^{1/w_t} - 1 \le |f(re^{1\theta})|$$

which is possible only if f is a rotation of $f_{\pm}(z)$ (see [6]). Moreover the vectors $(\frac{\partial Q}{\partial r}, \frac{\partial Q}{\partial \theta})$ and $(\frac{\partial R_2}{\partial r}, \frac{\partial R_2}{\partial \theta})$ are linearly independent in \mathbb{R}^2 because $\frac{\partial R_2}{\partial \theta} = 0$, $\frac{\partial R_2}{\partial r} = 1$ and

$$\frac{\partial Q}{\partial \theta} = \operatorname{Re}\left(r^{\pm}e^{i\theta^{\pm}}\frac{f^{\dagger}(r^{\pm}e^{i\theta^{\pm}})}{f(r^{\pm}e^{i\theta^{\pm}})}\right) > 0 ,$$

since $f \in (C)_t \in S^*$. It follows that the point (r^*, θ^*) is a regular point of the given constraints. In view of the Kuhn-Tucker conditions, there exist real numbers λ and μ such that, if

$$\xi = r^{*}e^{i\theta^{*}} \frac{f'(r^{*}e^{i\theta^{*}})}{f(r^{*}e^{i\theta^{*}})} + \frac{1}{w_{t}} - 1$$

then

$$\frac{r^{\pm}(1+w_{\xi}r^{\pm})}{(1+w_{\xi}r^{\pm})^{1/w_{\xi}}} - \operatorname{Re}(\xi) + \lambda \operatorname{Im}(\xi) + \mu r^{\pm} = 0, \qquad (7)$$

$$(1+w_{\xi}r^{\pm})^{1/w_{\xi}} - 1$$

$$Im(\xi) + \lambda Re(\xi) = 0 , \qquad (8)$$

$$\mu(\mathbf{r}^{*}-\boldsymbol{\rho}) = 0. \tag{9}$$

If $\mu = 0$ we obtain from (7) and (8) that $\operatorname{Re}(\frac{1}{\xi}) = \frac{(1+w_t r^*)^{1/w_t} - 1}{r^*(1+w_t r^*)^{1/w_t} - 1}$. This is impossible in view of lower 1.

is impossible in view of Lemma 1, because f is not a rotation of f_t , Therefore $\mu \neq 0$ and, by (9), $r^* = \rho$. Since $E_{\rho,\phi}$ intersects the circle $|z| = \rho$ only at the point $\rho e^{i\phi}$, it must also follow that $\theta^* = \phi$. This completes the proof of Theorem 1 in the case where the function f is not a rotation of f_t , and the general result follows by continuity. The bound given for the quotient $\frac{|f(u)|}{|f(v)|}$ is sharp, as seen by choosing $f(z) = f_t(z)$ and 0 < v < u < 1.

The proof of Theorem 2 will be omited; it follows essentially the pattern given above except that Lemma 1 is replaced by an appropriate result on the growth of $\frac{zf'(z)}{f(z)}$ where $f \in (S^*)_t$.

CONCLUSION

We want to point out two possible applications of Theorem 1 to the classes (C)₊ and (S*)₊. Note first that for $\rho \in (0,1)$ and $f \in (C)_{\pm}$,

$$\frac{1}{p} = \frac{f(z)}{pf(z)} = \frac{f(z)}{f(f^{-1}(pf(z)))}$$

and by Theorem 1,

$$\frac{1}{\rho} \leq \frac{(1+w_{t}|z|)^{1/w_{t}} - 1}{(1+w_{t}|f^{-1}(\rho f(z))|)^{1/w_{t}} - 1}$$

This last inequality is equivalent to

$$f \in (C)_{t} \Rightarrow |f^{-1}(\rho f(z))| \leq \frac{(1+\rho E(1+w_{t}|z|)^{1/w_{t}} - 1)^{w_{t}} - 1}{w_{t}}, z \in E.$$
 (10)

The statement (10) is crucial in the proof (omitted here) of the sharp inequalities:

$$\frac{zf'(z)}{f(z)} - 1 \bigg| \leq \frac{1 - (1 + w_{t}|z|)}{(1 + w_{t}|z|)^{1/w_{t}} + |z|(1 + w_{t}|z|)}, z \in E.$$
(11)

$$\frac{\text{COROLLARY 1.2:}}{|(1+w_{t})|} \frac{\text{Let}}{f(z)} - 1| \le \frac{1 - (1 - |z|)(1+w_{t}|z|)}{(1+w_{t}|z|)} \frac{1/w_{t} - 1}{w_{t}}, z \in E.$$
(12)

berind the Rose or Nutl To 11.

Remark finally that (11) implies that $(C)_t \in (S^*)_1$ if and only if $\frac{1}{2} < t \le \frac{1}{1+x}$ where x is the unique root in the interval $(-\frac{1}{2}, 0)$ of the equation $(1+2x)(1+x)^{1/x-1} = 2$. Note also that (12) is a refinement of the well known inclusion $(C)_t \in (S^*)_t$, in the case where $\frac{1}{2} < t \le 1$. A special case of (11) and (12), when t = 1, was presented in ([1]).

REFERENCES

- [1] R. Fournier, Some distortion theorems for a class of convex functions, Rocky Mountain Journ. of Math., 15 (1985), 123-131.
- [2] J. Krzyż, On the regio of variability of the ratio $f(z_1)/f(z_2)$ within the class U of univalent functions, Ann. Univ. M. Curie-SkJodowska. XVII, 1963, 55-64.
- [3] D. Luenberger, Introduction to linear and non-linear programming, Addison-Wesley, London, 1973.
- [4] M.O. Reade, E.J. Zlotkiewicz, On the equation f(z) = pf(a) in certain classes of analytic functions, Mathematica Cluj., 13 (36), 2, 1971, 281-286.

- [5] St. Ruscheweyh, V. Singh, Covolution theorems for a class of bounded convex functions, Rocky Mountain Journ. of Math., 16 (1), 1986, 137-146.
- [6] R. Singh, V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math., 5 (1974), 733-754.

STRESZCZENIE

Otrzymano dla pewnych podklas S_t^{\pm} (C_t) klasy S^{\pm} (względnie klasy C) unormowanych funkcji gwiaździstych (wypukłych) oszacowanie stosunku $\frac{f(u)}{f(v)}$, gdzie $0 \le |v| \le |u| \le 1$ oraz arg $f(v) = \arg f(u)$.

PESIME

Полученные оценкы величины $\begin{pmatrix} f(u) \\ f(v) \end{pmatrix}$, где 0< |v| < (u. | < 1, arg f(v)=arg f(u), для f $\in S_t^R$, C_t (S_t, C_t некоторые классы нормированных эвездообразных или выпуклых функций).