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INTRODUCTION

Let A denote the class of analytic functions f 1in the unit disc
E={z] 1zl <1) with f(0) = f'(0)-1=0. Also let S,S*,and C designate
the subsets of A containing respectively the univalent, starlike univalent, and

convex univalent functions. We also define, for each t > %v.

(5')t={f¢5'llz—¥i£—?)-n<t.lcﬁ}
©, =tfec| ERB 1 tict,zcB).
y 2if < O Fpti) :

The classes (S"lt and ((:)t were studied by R. and V. Singh ({6 1) and by

Ruscheweyh and Singh ([5]).
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In this paper we mainly deal with the following problem: “Let H be

any of the subsets mentionned above and f ¢ H . Also let

uveE o OciIvl<lul <1 and arg(f(v)) = arg(f(u)) . (1)

Wath is a good upper bound for the quotient %{{%*% 7". In the case where H =S ,

S* or C the region

Y1 fem

is well known (see for example [2] and [4]) for each u,v ¢ E and it follows easily

that, under conditions (1),
2
:f(: L < Jul/(1-]u )z 1f fes*
ivi/(1-1v1)

and

If(u)l _ Jul/(1-lul
TFHTSW M 4 fec.

Hovever it seems very difficult to obtain the variability region (2) in

the case where H = (S')t or H= (C)t . Nevertheless we can prove

1

THEOREM 1: Let t > % W =3-1 and fe(C), . Then, under the con-

ditions (1),
1/w
flu)l (l*utlu|) t
K71 ™
(l*wtlvl)

-1

t

THEOREM 2: Let t> % ., w, =y -1 and fc (S*), . Then, under the con-

ditions (1),
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-1

l/\vt
f(u)] . Iul(]mt]ul) )

1f{v)!

llut -1
lvl(‘lmtlvl)

In our conclusion we indicate how Theorem 1 can be used to obtain some

results on the growth of zf'iz when f ¢ (C)t "

REMARK ON THEOREMS 1 AND 2

Our proof of the Theorems depends on a “real variable" method known as the
Theorem of Kuhn and Tucker (see [3], ﬁages 232-234). We give here a brief account
of this method adapted to our needs. Let P(x.,y) , Q(x.y) , Rl(x,y) and Rz(x,y)
be continuously differentiable real functions on some open set 0 ch and let
(x*,y*) be a relative maximum point for the problem
"Maximise P(x,y) subject to the constraints Q(x,y) = 0 and
R(x,y) = R (xay)sRo(x,y)) < 0" . (3)

We say that the point (x*,y*) 1is a regular point of the constraints Q(x,y) = O
fl

and R(x,y) < 0 if Ry(x*,y*) # 0 and {f the vectors (%? ] -g%) and (—;—z . ;;2

evaluated at (x*,y*) are linearly independant in Rz . It is then possible to

prove the following

THEOREM (Kuhn-Tucker conditions): Let P.Q.Rl.Rz as above and (x*,y*)

be a relative maximum point for the problem (3). Then there exist two real num-

bers A and u such that, at the point (x*,y*) ,

2. ug%.?-'iiwtﬁ 2 = 0,0)

- uRy(x%,y*) =

If (x*,y*) is a regular pointdf the given constraints.
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PROOF OF TMEORLMS ) AND 2

W'e first prove Theorem 1. We need the following lemma, essentially due

to Ruscheweyh and Singh ({5)):

LEGR 1z Let t> 3, w =3-1 and fc (C), . Then

Aotz Tt -y

W,z -

RE{&;!::]} o t ]/"t-l ’
Izl(hwtlzl)

zZek

: 1/w
and the cquality is possible only if f(z) 1s a rotation of f (z) = (hwtz) t-1 )

PROOF OF LEMMA 1

26 (2) 2f1(2)
It was proved in ([5]) that OB fs subordinate to 1,"‘” if
t

f.(2)
f e (C), . It is also known that §7fT?T = 1+(1-wy)g, (2) where

1- ‘I/wt
1-(hwtz)
gt(z) = =1 4———(-7_‘—,@2——— is a convex univalent (non normalized)function.

Since gt(E} fs convex and symmetrical with respect to the real axis we obtain

f,(2)
min Re(%) = Iz'minr (iff(ﬂ)
|2]=r<l - (4)

1+(1-w, Imin(g, (r) g, (-r))

and a simple calculation shows that

’ 1-1/w,
1-(1+w,r) b

ge(-r) > gy(r) = -1+ N T (5)
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The combination of (4) and (5) completes the proof of Lemma 1.

In order to prove Theorem 1 we define, for each o ¢ (0,1) and

e [0,28) ,

F re'® € [0<rsp and arg(f(reia)) = arg(f(ce'®))) .

Since the function f 1s convex univalent, it follows that E° 4 is a Jordan
arc intercepting, at a unique point, each circle with center at the origin and

radius < p . The statement of Theorem 1 is equivalent to

1/ Vw .
re'® ¢ E o = ((11wr) 't-I)/If(reie)i s ((ewy0)  -1)/16(pe’) | (6)

and in order to prove (6) it is clearly enough to show that if the maximum of

the function

™23
(ewr) -1 f(re'®)
P(r,8) = b\\ B ) - Re !.l'l(-r:{e—")

under the constraints

10
Q(r.8) lm(Ln(ﬁEr'-;-)) <0

f(ce

and
R(r,8) = (-r,r-p) <0

is attained at (r*,6*) , then r* =p and 6* = ¢ .
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We are going to show that this is indeed the case when f(z) 1{s not a

rotation of ft(z) . MWe remark first that r* # 0 ; otherwise

1/w
re'® e, o o () t-1)/0f(re'®)] <1

1/w
o (owgr) -1 e(re'®)

which 1s possible only if f 1s a rotation of ft(z) (see [6]). Moreover the vec-

3 3R
tors (3—°~ iQ) and (—;.ﬁz) are linearly ‘independant in R? because

ar * 36
aR aR
25 s
38 ° [y T 1 and
{o*
3 { fo* f'(r*e
5% = Re \r'e —ftm—e—‘i- >0 ’

since f ¢ (C)t c S* . It follows that the point (r+,6*) 1{s a regular point of
the given constraints. In view of the Kuhn-Tucker conditions, there exist real

numbers A and u sSuch that, if

. poel0® Li(rel%)

; 1’(r'eia )
l/wt-l
re(1+w,r*)
then = 7 - Re(E)+ X Im(E) + ur* = 0 , (7)
(Iﬁvtr') t .
IM(E) + A RQ(E) =0 » (8)

u(r*-p) = 0. (9)
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/v,
(10wtr’) -1

If u =0 we obtain from (7) and (8) that Re(%) 2 This

Wy -
r’(lowtr')

{s impossible in view of Lemma 1, because f 1s not a rotation of f There-

¢
fore u# 0 and, by (9), r* =p . Since Ep.o intersects the circle Izl =p
only at the point pe1¢ , 1t must also follow that 6* = ¢ . This completes the
proof of Theorem 1 in the case where the function f 1{s not a rotation of ft 3
and the general result follows by continuity. The bound given for the quotient

1flu)l x
oT is sharp, as seen by choosing f(2z) = ft(z) and 0 <v <u <1 .

The proof of Theorem 2 will be omited; it follows essentialy the pattern
given above except that Lemma 1 is replaced by an appropriate result on the growth

of 5;%%%1 where f ¢ (S")t 5

CONCLUSION

We want to point out two possible applications of Theorem 1 to the clas-

ses (c_)t and (S')t . Note first that for p ¢ (0,1) and f ¢ (C)t ,

1 , fiz; R f(z
e oTZl T g(¢ (pf(2)))

and by Theorem 1,

'I/wt
(1+Nt|l| ) -1

1
D5 T/w -
* e e Nt

This last inequality is equivalent to

1/, w,
- (1ol (Vrwlzl) -1) ' 1
f e (C)t = |f (pf(l))l < Ut . Zhe'E . ( 0)
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The statement (10) is crucial in the proof (omitted here) of the sharp inequali-

ties:

COROLLARY 1.1: Let tz21,w =3-1 and fe (C), . Then

/ut-1

T Clogt20) 121 oy 1210
f -(T+w | 2| +12) (14w, 2]
"z_;'(%)"‘lls = 1/"t wizd b, (l])
t
(lyutlzl) -1

COROLLARY 1.2: Let < ts1.w = $-1 and f e (C), . Then

[owy) 28 -y

Remark finally that (11) implies that (C)t c (S')] if and only if

: ]/Nt-]
l-(l-lzl)(lowtlzl)
s

/wt P 0 (]2)

1
(lmtlzl) -1

% <ts T%? where x is the unique root in the interval (- % » 0) of the

g 2 . Note also that (12) is a refinement of the

equation (1+2x)(1+x)
well known inclusion (C)t < (S’)t , in the case where % <t s1. Aspecial

case of (11) and (12) , when t =1 , was presented in ([1]) .
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STRESZCZENIE

s (c,) klasy S™ (wzglednie klasy C)
unormowanych funkcji gwiaZdzistych (wypuktych) oszacowanie stosunku

Otrzymano dla pewnych podklas S

:: ., gdzie 0< {v]<jui C1 oraz arg ((v) = arg f(u).
PECIME
fiu)
lToayveHAHEe ONERXHM BOJARYUHM Fivyl» rae 0< |vi< fuj< 1,
arg (v, =arg £(u, nxafe S:, cttst.’ Ct ReKOTOpHE XJaccu

HOPMMDODAHHHX 3BE3NOOOPABHNX MAM BMOYKANX Dyuxumi ).






