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W. DROZDA

Distortion Problem for Bounded Convex Functions
Normalized by Montel‘s Conditions

Problem zniedcsztalcenia dla funkcji wypdd’ych ogramcmnydx
unormowanych przez warunki Monte

[Ipo6aexa MCXAMENMA MAA BAIYRJALE OrPEHNTEHHBIX YHKUMHA
ROPMMPOBAHHLIX DO MowuTemo

_’];Let- C(M,zo) denote the class of functions £(z) regular
and univalent in the unit disk K = {z : |z[<1} normalized
by conditions £(0) = 0 , f(zo) =z, , where z {0 isa
fixed point of the disk K .(we can assume that z0>0)
napping the disk K onto a convex domain £(K) = G(f)  contai-
ned in EM) = fw : [w| (u} » MD1 . The boundary of G(f)
ie a simple closed and convex Jordan curve f(f) having
one~sided tangents everywhere., In addition the set of points
with different one-sided tangents is at most enumerable.

In this paper is considered the problem of determining esti=-
mations of If(z)l . (1-(2[2)|£'(z)[ . [a.ll = ’f'(O), for
functions of the class C(M,zo) . The form of the domain onto

Which the extremal function B8P8 the digk K 1is defined
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by using variational methods and the general form of such
functions is given. The idea of the proof is based on a method
siven by J. Krzy2 in [1] , Where the solution is given for the
analogous problem in the class C(i) of bounded convex functions

with £(0) =0, [£70)]=1.

2, Let me K(M) , q* z, be fixed and let U denote the
class of closed convex domains containing the points O , 2,
and m included in the disk E(M) and such that g(o,zo,G) =
= -1log z, » where g(o,zo,G) is the classical Green’s function
of tne domain G with the pole O . We may confine our conside-
ration to the classical Green’s function. since the bouncary

of the domain G 18 a Jordan curve, It 18 known that for G€U
there exists a function f ¢ G(M,zo) such that r(reig) =m
i <
and f(K) = G then GéU . This implies that if % eG and m

and £(K) = G and conversely if f & C(l,z_) , f(reig)
is fixed tnen = = f(reig) =< hafy 1€ C(M,zo) and we have:
(2.1) g0,m,G) = -log r .

It is noticeable that the function fo satisfying gt‘zg [r(roeig )l =
= |m| where 0{r {1 fixed, 040 {23, £ CW,z))

ettains the value in such a point 2zé¢K that the modulus |[z]|

is the least possible., It is easy to see that the problem of

Zinding fo is equivalent to that of finding the domain Ger

for which:

(2.2) sup g(0,4,G) = g(O,qGo) G €%U:
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Similarly, the problem of determining the function f, eG(u,zo) s
attaining a fixed value m , M,(S(u,zo) ¢ S(Ll,zo) denotes
the Xoebe constant for the class C(n,zo) ) at 2z with the
smallest possible modulus is swquivalent to that of finding the
domain G‘l 5 G1€ U , which satisfies the following condition:

(2.3) inf g(0,7,G) = (0,7 ,64) Geu |,

The assumption hl("(m,zo) is essential, since when
Iml> S(M,zo) then the infimum (2.3) is equal to zero.
The extremal domains Go and G’l will be obtained by using
Hadamards formula [2] for the variations of Green’s function.
Suppose that the function 2z = h(w) maps conformally the
domain G U , with the boundary P consisting of a finite
number of analytic arcs onto the unit disk K 8o that h(0) = 0 .

Then Green’s function is:

1 = h(w)h(<q )
h(w) - bim ) ’

(2.a8) 8,7 ,G) = log

and Hadamards formula can be written in tae following form [1] :

1 Y 1= |n( )| ?
(2.5) £e0,m.6) = 37 ( MO 1| §nca) as

o [n(w )=y )| 2

where :n(s) = &p(s8) 1is the normal displacement, which is to
be taken positive, if the displacement vector coincides with

the outward pointing normal, and negative, if it has the opposite
direction. Furthermore, p(s) 1is a piecewise continuous function

of the arc length s on P 5
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llotice that:

1 1- [n¢z_)| 2
2.6) 8(0,2.,6) = 25 (b'(w) 2 ——0% __ {n(a) ds .
¢ 0 2x I"'l“ l [bCw)-h(z )] ?
Function
Hy (W)
(2.7) H(W) = —2
H, (w)
o}
1= Intm J[2 1-In(z, )2
wuere ii.l (w) = z and H! (w =—-—--—Q——-2
|a(w)=h(eq )] o Jatw)-n(z )|

veries in a certain monotonic manner for fixed n1 and 2z,

and for w moving on 1—1 « 1t gives the followings

-
Leuma 1. If the boundary ] of the domain G is a Jordan

curve and the points A , B, C divide L into three arcs

not reducing to points, then among these arcs tnere exist

two arcs L, and L, such that for any arcs 1, and -1, ,
11C L1 and 12¢ L2 the following inequality holds:

(2.8) max  H(w) 4 min H(w) .
w (11 " wWe 12

The proof is similar to the proof of the lemma 3.1 in [1] .

If tue domain Go satisfiecs (2.,2) i. e, it gives the maximal
value for Green’s function, then there exists a constant A
such vhat for tne admissible variation Go giving the domains

from the considered class the condition:
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(2.9) 80, .6,) + A§60,2,,6,) = 0

zust be fulfilled,
Hence, when the variation of the domain G is adaissible,
Cg(o,zo,a) = 0 and fg(o.~1,s);> O then the domain G

cannot give the maximum of Green’s function.

3., Theorem I. The boundery of the domain G° satisfying condi-

tion (2.2) consista of the one arc of the circuuferuvnce |w| = i

and one straight 1ine segment connecting its endpoints.

Proof., We firat note that the domain G° with respect to its
normalization is not identical with the whole disk K(L&) , K D1,
Let Un denote the class of the closed, convex polysona G

with at most n vertices containing points 0 , z, ard fixed

Mo included in the disk K(M) =and such that g(O.zO,G) =
= =log L Por each polygon we cen find sucia a furction

£ ¢ C(M,zo) that f£(K) = G . Hence U, coatains tue extreual
domain G, Zfor whiochi

(3.1) 8L0sm Gn) = 8sup skolniG) ’ G e Un .

It G° is the extremal domain satisfying (2.£) taen thers exists

subsequence ’Gnk } wnich convaerges to G° in the sencu of

nucleus convergence., The domains Gn and Go we datermine oy

6liminating from the classes Un and U thcese domains wiica
cannot be extremal i. e, by admissible variation the condition
(2.9) is not satisfied. Ve define the boundary variation at tae
same way as in [1] « In eacn individual case oi tne douain

eliminating we take the angles of rotation to satisfy tue
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followinz condition:

1= In¢z )| @
(3.2) I lh'{w)[z ——‘Ql—z p(s) ds =
48 |btw)-ntz )|

. 1-|n(z, )| @
= f 3 (w)lz-—'—"—?_ (-p(8)) ds
i, |n(w)~h(z )]

where 1, and 1, are the arcs of the curve such that:

wax  H(w) <f min  H(w) .
wel, N owel,

The existence of such arcs follows from lemma 1.

The above inequality implies:

(3.3) j (W) |® Hay (0) (= §nte))as S YOG Hp(®) §n(s)as
1. 1
2 d 1

and it means that §g(0,2,,G) = O while t‘?g(o,q,c) >o0.
Tasrefore condition (2.9) is not satisfied, so tine domain G does
not meximize Green’s function. In order to present the eay of the
eliminetion tae domains G € U which do'not satisfy condition

(2.9) we prove:

Lemna 2. If the polygon Gn satisfies the condition (3.1), then

at most one vertex with the ansle less than W lies inside K()

and all the others lie on the circuumference { w: lwl=Uu } .

<roof. Juppose that, contrary to this, A and B are vertices
of G, witn angles less than N which lie insiue K(i) . ilet

C be an arvitrary vertex of G, different from A wsnd B
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The points A , B, C divide 111 into taree parts and in view
of lemma 1 there exists segments 1, and 1, each oaving A

or B as one of its endpoints such that (2.8) nolds. Je now turn
11 outwards and 12 inwards about their endpoints by moviny a
or B (see [1] P. 12) and the angles of rotations are chosen so
that (3.2) holdé. Such a treatment leads to domains within the
claas Un , &nd does not change Green’s function in the point zg
while it increases in the point m . Ve see that Green’s function
cannot attain a maximum at =~ for such a domain, In otner cases
the way of treatment is similar as in [1] .

We can show likewise by putting p4(s) = -p(s) that G, satis-
fying (2.3) has the same snape as Go i. e, the boundamy of tne
domain G, consists of the one arc of circumfarence [w| =k
and the segment connecting its endpoints.

The function fokz) maps conformally the disk K onto tie
domain of this type such that ro(o) = O has reprcsentation:

ei‘f';“. o—16 H(z) - 16

£ _(z,M)
o’ i 1 + H(z)

- 2
219/1 - olly =), _-?'

\1-.“1’“’*): :

(3.4) H(z)

« +#Z8 . 0Co(F s-udqew Ry

The function of the form (3.4) belongs to tiae class CLM,zO)
if the following condition holds:

(3-5) fO(ZO’M) = Zo

J
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Alas because of calculation difficulties we have not discovered
the final form of the function which has the type ro(z,u) .
giving estimation for |[f| 4in Cui,zo) where |z| 1is fixed.

4. Let f € Cll,z)) , m = £(z) and G = £(K) , then r(m,G) =
= (1= 1212)[£°(2)| . It 1s known that ¥ (9,6) = 10g r(« ,6) ,

where K(q,G) denotes the Robins constant and r(q,G) conformal
inner radius in ) of the dowain G . We can write Hadamard’s

formula for the Robin’s constant in the form:

(4.1) gx(q,c.) = & f 'h'(w),z H..zl(w):n(s) ds .
I

.The function Hfikw) is monotonic as H‘(w) is. Bence, in an analo-~
gical manner as in theorem 1 we obtain estimation for the conformal
inner radius r(e ,G) . Maximum and also minimum (for |.l|<'r(u,z°) )
of the value r(m,G) , G €U are attained for the domain of the

type Go .

Ne can also note that:
r(0,6) = [£°(0)] = Ja ()] ,

where £ € Cld,z)) , £(2) = ay(f)z + ax(2)z? + ... .
dence by the continuity: '

27 £ Iele)] . e cwiz)

and f (2,K) is defined by (3.4) and satisfies (3.5).
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STRESZCZENIE

Niech C(M.:o) bedzie kiasa funkcji f jednolistmych i wypukiych
w kole Jednostkowym K, takich, e f(o) = O, ((:o) -z, © ¢ z, € K,
It (z2)] <M dla =z € K, W pracy otrzrymano za pomocq metody warlacyj
nej podanej przez J. Krxyza dokiadne oszacowanie w klasie C(M, :o)
tunkcjonadéw [t(z)l. (1 = I=[*) [t-(a)l. k(o)L

PESIME

Myecrs C (M, 20) KkXacc BHOYKANX ¥ ONHONMCTRHX B @IMRAMYHOM
xpyre K ¢ynrauft £ | rarax wro £(0) = 0, f(zb) =2, 0 # 2z &Ky

12(2) | <M MR z & K« B 3Tof paforTe noAyueRN BAPUALUMOHHNM METO-
AOM Q8HHM fl.{pzuxou, TouHHe ouenAxu B kancce C(l, zo) nxs dyrkouo-

raxos I£(z) |, (1-12{%) {#'Ce)l, B’(o)l.






