UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA
VOL. XL, 3
sectio a
Katedra Zatosowan Matematylei i Statyatyti Matematycunel Akademia Rolnjczo-Technicza Olaztyn

W. DROZDA

Distortion Problem for Bounded Convex Functions Normalized by Montel's Conditions

Problem zmelasotalcenia dla funleji wypuklych ograniczonych unormowanych przez warumed Montela

Проблема исважения дли витуульг огранкченных функций корморованных по Монтело

1. Let $C\left(M, z_{0}\right)$ denote the class of functions $f(z)$ regular and univalent in the unit disk $K=\{2:|z|<1\}$ normalized by conditions $f(0)=0, f\left(z_{0}\right)=z_{0}$, where $z_{0} \neq 0$ is a fixed point of the disk K (we can assume that $z_{o}>0$) mapping the disk K onta a convex domain $f(K)=G(f)$. contained in $\mathbb{K}(M)=\{w:|w|\langle\mathbb{M}\}, M\rangle 1$. The boundary of $G(\mathcal{L})$ is a aimple closed and convex Jordan curve $\Gamma(1)$ having ono-sided tancents everywhere. In addition the set of points with different one-sided tangents is at most enumerable.

In this paper is considered the problem of determining estimations of $|f(z)|,\left(1-|z|^{2}\right)\left|f^{\circ}(z)\right|,\left|a_{1}\right|=\left|f^{\circ}(0)\right|$ for functions of the class $C\left(M, z_{0}\right)$. The form of the domain onto which the extremal function maps the disk \mathbb{K} is defined
bj using variational methods and the general form of such functions is fiven. The idea of tine proof 18 based on a method oiven by J. Krzyi in $[1]$, where the solution is given for the analogous problem in the class $C(N)$ of bounded convex functions with $f(0)=0,\left|\rho^{\prime}(0)\right|=1$.
2. Let $\eta \in K(M)$, $\eta \neq z_{0}$ be fixed and let U denote the class of closed convex domains containing the points $0, z_{0}$ and η included in the disk $K(M)$ and such that $g(0,2, G)=$ $=-10 G z_{0}$, where $G\left(0, z_{o}, G\right)$ is the classical Green's function of tine domain G with the pole O. We may confine our consideration to the classical Green's function. since the boundary of tine domain G is a Jordan curve. It is known that for $G \in U$ there exists a function $I \in C\left(h_{i}, z_{0}\right)$ such that $f\left(r e^{i} \theta\right)=\eta$ and $f(K)=G$ and conversely $11 \quad \mathcal{C}\left(M, z_{0}\right), f\left(r_{i} \theta\right)=\eta$ and $f(K)=G$ then $G \in U$. This implies that if $\eta \in G$ and η is ifxed then $\eta=f\left(r e^{i \theta}\right), f \in C\left(H, z_{0}\right)$ and we have:

$$
\begin{equation*}
g(0, \eta, G)=-\log r \tag{2.1}
\end{equation*}
$$

It is noticeable that the function ρ_{0} satisfying $\sup _{f, \theta}\left|f\left(r_{0} e^{i \theta}\right)\right|=$ $=|\eta|$ where $0<r_{0}<1$ ineed, $0 \leqslant \theta \leqslant 2 \pi, \quad 1 \in C\left(M, 2_{0}\right)$ attains the value in such a point $z \in K$ that the modulus $|z|$ is the least possible. It is easy to see that the problem of sinding I_{0} is equivalent to that of linding the domain $G_{0} \in J$ for which:
(2.2)

$$
\sup g(0, \eta, G)=g\left(0, \eta G_{0}\right) \quad, \quad G \in U .
$$

Similarly，the problem of determining the function $f_{q} \in G\left(H, z_{0}\right)$ ， attaining a fixed value $\eta,|\eta|<\delta\left(i, z_{0}\right)\left(\delta\left(i:, z_{0}\right)\right.$ denotes the robe constant for the class $C\left(i, i, z_{0}\right)$ ）at z with the smallest possible modulus is equivalent to that of finding the domain $G_{1}, G_{\gamma} \in U$ ，which satisfies the following condition：

$$
\begin{equation*}
\text { inf } g(0, \eta, G)=g(0, \eta, G), \quad G \in U \text {. } \tag{2.3}
\end{equation*}
$$

The assumption $|\eta|<\delta\left(L, z_{0}\right)$ is essential，since when $|\eta| \geqslant \delta\left(\mathbb{N}, z_{0}\right)$ then the infimum（2．3）is equal to zero． The extremal domains G_{0} and G_{1} will be obtained by using Hadamards formula［2］for the variations of Green＇s function．

Suppose that the function $z=h(w)$ maps conformally the domain G ，with the boundary Γ consisting of a finite number of analytic arcs onto the unit disk K so that $h(0)=0$ ． Then Green ${ }^{\circ}$ s function 18：

$$
\begin{equation*}
g(m, \eta ; G)=\log \left|\frac{1-h(\boxplus) \bar{h}(\eta)}{h(w)-h(\eta)}\right| \tag{2.4}
\end{equation*}
$$

and iadamard＇s formula can be written in tie following form［1］：

$$
\begin{equation*}
\delta_{g}(0, \eta, G)=\frac{1}{2 \pi} \int_{\Gamma}\left|h^{\prime}(w)\right|^{2} \frac{1-|h(\eta)|^{2}}{|h(w)-h(\eta)|^{2}} \delta_{n}(s) d s \text {, } \tag{2.5}
\end{equation*}
$$

where $\delta n(s)=\varepsilon p(s)$ is the normal displacement，which is to be taken positive，if the displacement vector coincides with the outward pointing normal，and negative，if it has the opposite direction．Furthermore，$p(s)$ is a piece⿴囗十介ise continuous function of the arc length s on Γ ．

Notice that:

$$
\begin{equation*}
g\left(0, z_{0}, G\right)=\frac{1}{2 \pi} \int_{\Gamma}\left|h^{0}(w)\right|^{2} \frac{1-\left|h\left(z_{0}\right)\right|^{2}}{\left|b(w)-b\left(z_{0}\right)\right|^{2}} \delta_{n(s)} d s . \tag{2.6}
\end{equation*}
$$

Function
(2.7) $\quad H(W)=\frac{H_{\eta}(w)}{H_{Z_{0}}(w)}$,
where $H_{\eta}(w)=\frac{1-|h(\eta)|^{2}}{|h(w)-b(\eta)|^{2}}$ and $H_{z_{0}}(w)=\frac{1-\left.\ln \left(z_{0}\right)\right|^{2}}{\left|h(w)-h\left(z_{0}\right)\right|^{2}}$, varies in a certain monotonic manner for fixed η and z_{0} and for w moving on Γ. It gives the followings

Lemma 1. If the boundary Γ of the domain G is a Jordan curve and the points A, B, C divide I into three arcs not reducing to points, then among these arcs there exist two arcs L_{1} and L_{2} such that for any arcs I_{1} and I_{2}, $I_{1} \subset L_{1}$ and $I_{2} \subset L_{2}$ the following inequality holds: (2.8) $\max _{w \in \mathcal{L}_{1}} H(w) \leqslant \min _{w \in 1_{2}} H(w)$.

The proof is similar to the proof of the lemma 3.1 in [1]. If tie domain G_{0} satisfies (2.2) i. e. it gives the maximal value for Green's function, then there exists a constant λ such that for the admissible variation G_{0} giving the domains from the considered class the condition:
(2.9) $\quad g\left(0, \eta_{,}, G_{0}\right)+\lambda \delta E\left(0, z_{0}, G_{0}\right)=0$
must be fulfilled.
Hence, when the variation of the domain G is adaissible, $\delta_{g}\left(0, z_{0}, G\right)=0$ and $\delta_{g}(0, \eta, G)>0$ then the domain G cannot give the maximum of Green's function.
3. Theorem I. The boundary of the domain G_{0} satisfyins condition (2.2) consiata of the one arc of the circuaferunce $\mid: 1=$: and one stralght ilne seement connecting its endpoints. Proof. We 11rat note that the domain G_{0} 代th respect to its normalization is not identical with the whole disk $K(i)$, if >1. Let U_{n} denote the olass of the closed, convex polygons G with at most a vertices containine points $0, z_{0}$ and ifed η, includedin the disk $E(B)$ and such that $E\left(0, z_{0}, \mathcal{G}\right)=$ $=-\log z_{0}$. Por eaci polygon we can find suci a fucction $\perp \in C\left(f i, z_{0}\right)$ that $f(K)=G$. Hence U_{n} containe tase extreasal domain G_{n} for which:
(3.1) $g\left(0, \eta, G_{n}\right)=\sup g(0, \eta, G), \quad G \in U_{n}$.

If $G o$ is the extremal domain aatisiying (2.2). tion thoro exists subsequence $\left\{G_{n_{k}}\right\}$ winlch convarges to G_{0} in the sencu of nucleus convergence. The domains G_{n} and G_{0} we datermine oy eliminatios from the classes U_{n} and O these domains wisici cannot be extreical 1. e. by admissiole variation the conditioc (2.9) Le not satiefied. Ne dufine the oundary variation at tia same way as in [1]. In eacn individual case oi tne domain eliminatine we take the angles of rotation to satisfy tia
following condition:
(3.2) $\left.\int_{i_{1}} \ln (w)\right|^{2} \frac{1-\left.\ln \left(z_{0}\right)\right|^{2}}{\left|h(w)-h\left(z_{0}\right)\right|^{2}} p(s) d s=$

$$
=\int_{1_{2}}\left|b^{0}(W)\right|^{2} \frac{1-\left|h\left(z_{0}\right)\right|^{2}}{\left|h(w)-h\left(z_{0}\right)\right|^{2}}(-\rho(s)) d s
$$

where I_{1} and I_{2} are the arcs of the curve such that:

$$
\max _{w \in 1_{2}} H(w) \leqslant \min _{w \in L_{1}} d(w)
$$

Tint existence of such arcs follows from leman 1.
tho above inequality implies:
(3.3) $\int_{I_{2}}\left|b^{\prime}(w)\right|^{2} H_{\eta}(w)(-\delta n(s)) d s<\int_{2_{1}}\left|b^{\prime}(w)\right|^{2} H_{\eta}(w) \delta n(s) d s$,
and it means that $\delta_{g}\left(O, z_{0}, G\right)=0$ while $\hat{\delta}_{G}(O, \eta, G)>0$. Therefore condition (2.9) is not satisfied, so the domain G does not maximize Green's function. In order to present the easy of the elimination tine domains $G \in U$ which do not satisfy condition (2.9) we prove:

Leman 2. If the polygon G_{n} satisfies the condition (3.1), then at most one vertex with the angle less than T lies inside $K(M)$ and all the others $21 e$ on the circumference $\{w:|w|=M\}$. roof. Suppose that, contrary to this, A and B are vertices of G_{n} with angles less thar π which lie 1asiue K(1f) . Let C be an ariitrary vertex of G_{n} different from A and B.

The points A B , C divide \prod_{n} into time parts and in vies of lemma 1 there exists segments l_{1} and l_{2} each adding A or B as one of its endpoints such that (2.8) wolds. Ie non turn I_{1} outwards and I_{2} inwards about their endpoints by moving a or B (see [1] p. 12) and the angles of rotations are chosen so that (3.2) holds. Such a treatment leads to domains within the class U_{n}, and does not change Green's function in the point ${ }^{2}$ while it increases in the point η. We see that Green's function cannot attain a maximum at η for such a domain. In otoer cases the way of treatment is similar as in $[1]$.

We can show likewise by putting $p_{1}(8)=-p(s)$ that G_{1} satislying (2.3) has the same shape as G_{0} i. e. the boundary of the domain G_{1} consists of the one arc of circumiarence $|w|=$ w and the segment connecting its endpoints.

The function $f_{0}(z)$ maps conformally tie disk K onto tic domain of this type such that $f_{0}(O)=0$ has representation:

$$
\mathcal{L}_{0}(z, M)=e^{i} \psi \frac{凶}{i} \frac{e^{-i \theta} H(z)-e^{1 \theta}}{1+H(z)}
$$

(3.4)

$$
H(z)=e^{2 i \theta}\left(\frac{1-e^{i(\gamma-\alpha)_{z}}}{1-e^{i(\gamma+\alpha)_{z}}}\right)^{\frac{2 \theta}{\alpha}},
$$

$$
\alpha=\frac{4 \pi \theta}{\pi+2 \theta} \quad, \quad 0<\theta<\frac{\pi}{2} \quad,-\pi \leqslant \varphi \leqslant \pi,-\pi \leqslant \psi \leqslant \pi .
$$

The function of the form (3.4) belongs to the class C(in, z_{0}) 11 the following condition holds:

$$
\begin{equation*}
f_{0}\left(z_{0}, m\right)=z_{0} \tag{3.5}
\end{equation*}
$$

Alas because of calculation difficulties we have not discovered the final form of the function which has the type $f_{0}(z, M)$, giving estimation for $|f|$ in $C\left(M, z_{0}\right)$ where $|z|$ is fixed.
4. Let $P \in C\left(\begin{array}{l}i n\end{array} z_{0}\right), \eta=P(z)$ and $G=P(K)$, then $r(\eta, G)=$ $=\left(\eta-|z|^{2}\right)\left|\rho^{0}(z)\right|$. It is known that $\gamma(\eta, G)=\log r(\eta, G)$, where $\gamma(\eta, G)$ denotes the Robin's constant and $r(\eta, G)$ conformal inner radius in η of the domain G. ide can write Hadamard's formula for the Robin's constant in the forms

$$
\begin{equation*}
\delta_{\gamma(\eta, G)}=\frac{1}{2 x} \int_{\Gamma}\left|n^{0}(\omega)\right|^{2} \underline{q}_{\eta}^{2}(\omega) \delta_{n(\theta)} d s . \tag{4.1}
\end{equation*}
$$

The function $H_{q}^{2}(w)$ is monotonic as $H_{q}(w)$ is. Hence, in an analog gical manner as in theorem 1 we obtain estimation for the conformal inner radius $r(\eta, G)$. Maximum and also minimum (for $|\eta|\left\langle\delta\left(M, 2_{0}\right)\right.$) of the value $I(\eta, G), G \in U$ are attained for the domain of the type G_{0}.

We can also note that:

$$
r(0, G)=\left|f^{\prime}(0)\right|=\left|a_{1}(f)\right|
$$

where $f \in C\left(M, z_{0}\right), f(z)=a_{1}(f) z+a_{2}(f) z^{2}+\ldots$.
rience by the continuity:

$$
\left|f^{\prime}(0)\right| \leqslant\left|f_{0}^{\prime}(0)\right| \quad p \in C\left(h, z_{0}\right)
$$

and $f_{0}(2, K)$ is defined by (3.4) and satisfies (3.5).

REFWRENCES

[1] Grzyż, J., Distortion theorems for bounded convex functions II, Ann. Univ. Mariae Curie-Skłodowska, Sect.A, 14 (1960), 7-13. [2] Nehari, Z., Conformal Liapping, New York-Toronto-London 1952.

STRESZCZENIE

Niech $C\left(M_{1} z_{0}\right)$ bedzie klasq lunkcy i jednollatnych i wypuktych w kole jednoatkowym K, takich, te $f(0)=0, f\left(z_{0}\right)=z_{0} \quad 0 \neq z_{0} \in K$, If (z) | $<M$ dla $z \in \mathcal{K}, W$ pracy otrzymano ε pomoca metody warlacyf nej podanej przez J. Krzyza dokladne oszacowanie w klasie $C\left(M, z_{0}\right)$ funkejonairw $|f(z)|$. $\left(1-|z|^{2}\right)\left|\ell^{\circ}(z)\right|$. |f $(0) \mid$.

PEЗDME

Пусть $C(M, \dot{z})$ класс выпуклых о однолистных в едикичном круге К функдий \mathcal{f}, такпх что $f(0)=0, f\left(z_{0}\right)=z_{0}, 0 \neq z_{0} \in \mathbb{R}$, $|\mathcal{f}(z)|<M \quad$ для $z \in \mathbb{Z}$. В этой работе получены вариацмонями метлдом даным Я. Ћргигом, точные оценки в классе $C\left(M, z_{0}\right)$ для функдионалов $|f(z)|,\left(1-|z|^{2}\right)\left|f^{\prime}:(z)\right|,\left|f^{\prime}(0)\right|$.

