ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XL, 1

SECTIO A

1986

Département de mathématiques Université Laval

Z. ABDULHADI, W. HENGARTNER

Univalent Logharmonic Mappings

Odwzorowania jednolistne log-harmoniczne

Однолистные лог-гармовические отображения

<u>1. Introduction.</u> This presentation is essentially a brief survey on univalent orientation-preserving mappings i defined on the unit disc $U \in C$ whose image is in C, and which are of the form

(1.1)
$$f(z) = 2|z|^{20} h(z) \overline{g(z)}$$

where

(1.1.a) $\operatorname{Re}\left\{\beta\right\}$ -1/2 (1.1.b) h and g are nonvanishing analytic functions on U (1.1.c) g(0) = 1

We shall call such mappings to be univalent logharmonic on U vanishing at the origin. They can be characterized as univalent solutions of the monlinear elliptic partial differential equation

(1.2)
$$\frac{f(z)}{z} = a(z) \left[\frac{f(z)}{f(z)} \right] f(z); \quad f(0) = 0$$

where a(z) belongs to the class B of all analytic functions on U maving the property that |a(z)| < 1 for all $z \in U$. Therefore a univalent lognarmonic mapping on U is locally quasiconformal; however the dilatation K(z) = (1+|a(z)|)/(1-|a(z)|)may go to infinity as z approaches ∂U . The exponent β in (1.1.a) depends only on a(0) and can be expressed by

(1.3)
$$\beta = \overline{a(0)} (1+a(0))/(1-|a(0)|^2)$$

Note that all univalent conformal mappings on U are logharmonic ($a \equiv 0$). The composition of a conformal premapping with a logharmonic mapping is again logharmonic. However the composition of a logharmonic mapping with a conformal postmapping is in general not logharmonic. In particular translations $f - w_0$ of the image of a logharmonic mapping f are in general not logharmonic. Furthemore, the inverse f of a univalent logharmonic mapping i does not inherit the property of logharmonicity.

Let $f = 2|z|^{2\beta} h \overline{g}$ be a univalent logharmonic mapping on U such that f(0) = 0. Then $F(\overline{J}) = \log f(e^{\overline{J}})$ is a univalent narmonic mapping on $\{\overline{J}: \operatorname{Im}(\overline{J}) \leq 0\}$. Such mappings are closely related to the theory of minimal surfaces and have been studied by several autnors.

2. Mapping Problems.

<u>2.a)</u> Let Ω be a simply connected domain of C which contains the origin. Given $a \in B$, is there a univalent solution f of (1.2) such that $f(U) = \Omega$ and f(O) = O. Unfortunatly the answer is no. In particular there is no lognermonic univalent mapping from U onto $C \setminus (\infty, -d]$, $d \ge 0$, with a(z) = -z

2

(see [2]). But there is a weaker form of the Riemann sapping Theorem.

Theorem 2.1. [2]. Let Ω be a bounded simply connected domain of C which contains the origin and whose boundary $\Im \Omega$ is locally connected (i.o. cach prime and is a simpleton). Then there is for each add a univalent solution f of 1,2 such that

- 2.1.1) $f(U) \subset \Omega$. 2.1.2) $f(z) = c z |z|^{\beta} (1 + o(1)) \underline{if} z \longrightarrow 0 \underline{and} c > 0$, (β as in (1.3)).
- 2.1.3) $\lim_{z \to e^{it}} f(z) = \hat{f}(e^{it})$ exists and is in $\Im \Omega$ on $\Im U \setminus E$; E is countable.

 $f_{\pm}(e^{it_0}) = ess \lim_{t \to t_0} \hat{f}(e^{it}) = ess \lim_{t \to t_0} \hat{f}(e^{it})$ exists and are in $\partial \Omega$.

Remarks.

1) If $|a(z)| \leq k \leq 1$ for all $z \in U$, then $f(U) = \Omega$. 2) If $e^{it_0} \in E$ and $f^*(e^{it_0}) = f_*(e^{it_0})$ then the cluster set of f at e^{it_0} is the circle $|w| = |f^*(e^{it_0})|$.

3) If $e^{it_0} \in E$ and $A_1 = f_*(e^{it_0}) \neq f^*(e^{it_0}) = A_2$, then there are infinitely many helices from A_1 to A_2 . The claim 2.1.5) states that the cluster set lies on one of them. Thus, for example, the cluster set of

$$f(z) = z \left[(1-\overline{z})/(1-z) \right] \cdot \exp \left\{ -2\arg \left[(1-iz)/(1-z) \right] \right\}$$

at z = 1 lies on the helix, $f(T) = \exp(-T + i(T/2 + T))$ joining the points $f^*(1) = -e^{-T/2}$ and $f_*(1) = -e^{3T/2}$, whereas the cluster set of f at z = -i is the straight line segment from $f_*(-i) = -e^{-T/2}$ to $f^*(-i) = -e^{3T/2}$.

4) If Ω is strictly starlike then f is uniquely determined.

Outline of the proof.

a) Without loss of generality we may assume that a(0) = 0. Indeed, if not, then consider the domain $\widehat{\Omega} = \left\{ w \| w \|^2 \mathcal{C} ; w \in \Omega \right\}$, where $\overline{a(z)} = \left[(1+\overline{a(0)})(a(z)-a(0)) \right] / \left[(1+a(0))(1-\overline{a(0)}a(z)) \right]$. If \widetilde{r} is the desired mapping for $\widehat{\Omega}$ and \widetilde{a} then $r = \widetilde{r} \| \widetilde{r} \|^{2\delta}$, $\delta = \overline{a(0)}(1+a(0)) / (1-|a(0)|^2)$ satisfies Theorem 2.1.

b) Let Φ be the conformal mapping from U onto Ω normalized by $\Phi(0) = 0$, $\Phi'(0) > 0$. Put $r_n = (1-1/n)$ and $\Omega_n = \Phi(|z| \langle r_n)$. Then there is a mapping f_n from U onto Ω_n satisfying Theorem 2.1 with respect to $a_n(z) = a(r_n z)$ (see [2]). Since dist $(0, \Im \Omega_1) \langle (f_n)_z(0) \rangle \langle 16$ dist $(0, \Im \Omega)$, there is a subsequence of f_n which converges locally uniformly to a univalent solution f of (1.2). Finally, the Poisson integral applied to log f/z gives the required properties.

2.5) Let D be an arbitrary domain of \overline{C} which contains infinity. we are interested in conditions such that D can be aspped by univalent lognarmonic mappings f, $f(\infty) = \infty$ onto

a canonical domains.

Theorem 2.2. [1]. Let D be a domain of arbitrary connectivity containing the point at infinity. Fix $z_0 \in D$ and let a be in H(D), |a(z)| < 1 for all $z \in D$, $a(z_0) = m_0 / (1+m_0)$ and $a(\infty) = m / (1+\omega)$ where m_0 and m are nonnegative integers. Denote by Φ a conformal mapping of D onto a radial slit domain normalized by $\Phi(z_0) = 0$ and $\Phi(z) = z + O(1)$ as $z \rightarrow \infty$. If

(2.1) Re
$$\left\{ \mu_{1}(z)dz \right\} = \operatorname{Re} \left\{ \left[\frac{1+a(z)}{1-a(z)} \frac{\Phi'(z)}{\Phi(z)} - \frac{1+a(z_{0})}{1-a(z_{0})} - \frac{1}{z-z_{0}} \right] uz \right\}$$

defines an exact differential on $D \setminus \{\infty\}$, then there is a univalent logharmonic function which maps $\hat{\nu}$ onto a radial slit domain and is normalized by

(2.2) $f(z_0) = 0$ and f(z) = z|z| (1 + o(1)) as $z \rightarrow \infty$

Furthemore, if D has finitely many boundary components, then f is uniquely determined.

<u>Remark.</u> If D is simply connected then the condition on (2.1) is not active since it is satisfied whenever $a(\infty)$ is real.

Theorem 2.3. [1]. Let D be as in Theorem 2.2 with $a(\infty) = a(z_0) = w / (1+w)$, $m \in N \cup \{0\}$, and let ψ be a conformal mapping of D onto circular slit domain normalized by

$$\psi(z_0) = 0$$
 and $\psi(z) = z + 0(1)$ as $z \rightarrow \infty$. If

(2.3)
$$\operatorname{Im}\left\{\mu_{2}(z)dz\right\} = \operatorname{Im}\left\{\begin{bmatrix}\frac{1-a(z)}{1+a(z)} & \frac{\psi'(z)}{\psi(z)} - \frac{1-a(z_{0})}{1+a(z_{0})} - \frac{1}{z-z_{0}}\end{bmatrix}dz\right\}$$

defines an exact differential on $D \setminus \{\infty\}$, then there is a univalent lognarmonic function that maps D onto a circular slit domain and is normalized by

(z,4) $i(z_0) = 0$ and $i(z) = z |z|^{2m} (1 + o(1))$ as $z \rightarrow \infty$.

Furthermore, if D has finitely many boundary components, then f is uniquely determined.

<u>Newark.</u> If D is simply connected, then the condition ou (2.5) is not active since it is satisfied, whenever $a(\infty) = = a(z_{\alpha}) \in \mathbb{R}$.

3. Univalent starlike loghermonic mappings. Let Ω be a simply connected domain of C which contains the origin. We say that Ω is α -spirallike, $-\pi/2 < \alpha < \pi/2$, if $w_0 \in \Omega$ implies that $w_0 \exp(-te^{i\alpha}) \in \Omega$ for all $t \ge 0$. If $\alpha = 0$, the domain is called starlike (w. r. to the origin). Let S_{Lh} be the set of all univalent loghermonic mappings f on U such that f(0) = 0, g(0) = h(0) = 1, and f(0) is α -spirallike domain,

$$\begin{split} \mathbf{S}_{\mathbf{Lh}}^{\star} &= \mathbf{S}_{\mathbf{Lh}}^{\star=0} \quad , \\ \mathbf{S}^{\star} &= \left\{ \mathbf{f} \in \mathbf{S}_{\mathbf{Lh}}^{\star} \wedge \mathbf{H}(\mathbf{U}) \right\} \quad , \quad \text{and} \quad \mathbf{S}^{\star} &= \left\{ \mathbf{f} \in \mathbf{S}_{\mathbf{Lh}}^{\star} \wedge \mathbf{H}(\mathbf{U}) \right\} \end{split}$$

Whenever we use the representation $f(z) = z |z|^{2\beta} h(z) \overline{g(z)}$ for a univalent logharmonic mapping on U we mean that h and g are nonvanishing analytic functions on U normalized by g(0) = 1.

For each $f = z |z|^2 h - \overline{g} \in S_{Lh}^*$, we associate the function $\Psi(z) = zh(z) / g(z) \in H(U)$. The first result is:

Theorem 3.1. [4].

a) If $f = 2|z|^{2\beta}h \overline{g} \in S_{Lh}^*$, then $\overline{\Phi} = zh/g \in S^*$.

b) Conversity, if $\mathbf{\hat{f}} \in \mathbf{S}^*$ and $\mathbf{a} \in \mathbf{B}$, then there is a unique couple (h,g) of nonvanishing analytic functions on U such that $\mathbf{\hat{\Phi}} = \mathbf{zh} / \mathbf{g}$ and $\mathbf{f} = \mathbf{z} |\mathbf{z}|^{2\beta} \mathbf{h} \mathbf{\overline{g}}$ is a univalent solution of (1.2) in $\mathbf{S}_{\mathrm{Lh}}^*$.

Outline of the proof.

a) Let $f \in S_{Lh}^{*}$ and $\gamma = -\beta / (1+\beta+\beta)$. Then $\tilde{f} = f |f|^{2} \tilde{r} \in S_{Lh}^{*}$ where $\alpha = -\arg(1+2\gamma) \in (-\pi/2, \pi/2)$. The corresponding dilatation function \tilde{a} vanishes at the origin and therefore $\tilde{f} = z \tilde{h} \cdot \tilde{g}$, $\tilde{h}(0) = \tilde{g}(0) = 1$. Put $\psi(z) = z\tilde{h}(z) [\tilde{g}(z)]^{-e^{2i\alpha}}$. Then ψ is in S^{*} . Finally $\tilde{\Psi} = z [\tilde{n}/(\tilde{g})^{-e^{2i\alpha}}] e^{-i\alpha} / \cos(\alpha) = z h/g \in S^{*}$.

b) Let $\mathbf{\Phi} \in \mathbf{S}^*$ and $\mathbf{a} \in \mathbf{B}$ be given. Put

$$g(z) = \exp \left(\sum_{n=1}^{\infty} \frac{sa(s) \not \underline{f}(s) + a(s) \beta \not \underline{\Phi}(s) - \overline{\beta} \not \underline{\Phi}(s)}{s \not \underline{\Phi}(s) (1-a(s))} \right) ds$$

 $h(z) = \overline{\Phi}(z)g(z)/z$ and $f = z|z|^{2\beta} \cdot h \cdot \overline{g}$, where β is as in (1.3). Then h and g are nonvanishing and analytic on U, h(0) = g(0) = 1, and f is a solution of (1.2). Following backforwards the first part of the proof one concludes that f is the desired solution.

<u>Remark.</u> There is no similar result for the family of convex mappings. Indeed, $\psi(z) = z$ is a convex mapping, $a(z) = z^4 \in B$, but $f(z) = z / |1-z^4|^{1/2}$ is not a convex mapping.

An iumediate consequence of Theorem 3.1 is:

Corollary 3.2. [4]. If $f \in S_{Lh}^*$ then $f(rz)/r \in S_{Lh}^*$ for all $r \in (0,1)$.

However, Corollary 3.2 may fail whenever $f(0) \neq 0$. Indeed, for each $z_0 \in U \setminus \{0\}$, one can give an example of univalent logharmonic mapping f such that $f(z_0) = 0$, and f(U) is starlike but no level set f(|z| < r), $|z_0| < r < 1$, is a starlike domain (see [4]).

For the first application let us consider the problem

Min $\int_{f(U)} |w|^p dudv$; $p \ge 0$ given,

over all solutions of (1.2) whose function a(z) vanishes at the origin and for which f (0) = 1. The optimal solution is

$$f(z) = z (1 + (p+2)z/(p+4)) / (1 + (p+2)z/(p+4)) / (1 + (p+2)z/(p+4))$$

which by Theorem 3.1 is starlike univalent. In the case of the minimal area problem (p=0) the extremal function is not a convex mapping.

Another consequence of Theorem 3.1 is the following integral representation for mappings in $S_{T,h}^{*}$:

(3.1)
$$S_{Lh}^{*} = \left\{ \int_{\partial U_X \partial U} K(z, \gamma, \varsigma) d\mu(\gamma) d\vartheta(\gamma) \right\} \mu, \vartheta$$

where K is a fixed kernel function and where μ and ∂ are probability measures on the Borel δ -algebra of ∂U . Even if $S_{\rm Lh}^*$ is not compact the relation (3.1) may be used for optimization problems over subclasses of starlike univalent logharmonic mappings $f = z_1 z_1^{-\beta} h \cdot \overline{g}$ having fixed exponent β . In particular, one gets for a(0) = 0 and $f \in S_{\rm Lh}^*$

$$r \exp \left\{-4r / (1+r)\right\} \leq |f(z)| \leq r \exp \left\{4r / (1-r)\right\}$$

The inequalities are sharp [3].

<u>4. Automorphisms of logharmonic mappings.</u> In this section we are concerned with univalent logharmonic mappings from U onto U. With no loss of generality we shall assume that f(0) = 0 and h(0) > 0. Otherwise, we consider an appropriate Moebius transformation of the preimage. Let $AUT_{Lh}(U)$ denote the class of such mappings.

The first theorem characterizes completely mappings in $AUT_{Lb}(U)$.

Theorem 4.1. [4]. Let h and g be two nonvanishing analytic functions on U. Then $f(z) = z |z|^{2\beta} h(z) \cdot g(z)$ is in $AUT_{Lb}(U)$ satisfying h(0) > 0 and g(0) = 1 if and only if g = 1/h, Re{ β } > -1/2 and Re{zh'/h} > -1/2 on U. We now associate to each $f(z) = z|z|^{2\beta} h(z)/h(z)$ in AUT_{Lh}(U), the mapping $\Phi(z) = z(h(z))^{2} \in s^{*}$.

医白喉 医白喉 医白喉 网络

Theorem 4.2. [4].

a) For each $\Phi \in S^*$ and for each β , $\operatorname{Re}\{\beta\} > -1/2$, there is one and only one $f \in \operatorname{AUT}_{Lh}(U)$ such that $f(z)/(\Phi(z)|z|^{2}\beta) > 0$ for every $z \in U$ and h(0) = 1.

b) For each $a \in B$, there is a unique solution of (1.2) which is in $AUT_{I,h}(U)$.

Remarks.

1. Part a) of Theorem 4.2 is quite surprising. Indeed, consider $\Phi(z) = z/(1-z)^2$ and $\beta = 0$. Then arg $f(e^{it}) =$ = arg $\Phi(e^{it}) = \frac{t}{\pi}$, almost everywhere; however f(U) = U. To be more precise, the corresponding mapping is $f(z) = z(1-\overline{z})/(1-z)$ satisfying $f(e^{it}) = -1$ for all $0 < |t| < \pi$, and where the cluster set of f at the point 1 is the unit circle.

2. Part b) of Theorem 4.2 states that 2.1.1) and 2.1.3) in Theorem 2.1 can be replaced by f(U) = U.

REFERENCES

- [1] Abdulhadi, Z., Bshouty, D., Hengartner, W., Canonical mappings in Z_M, Eat. Vesnik 37(1985), 9-20.
- [2] Abdulhadi, Z., Bshouty, D., Univalent mappings in K(D), preprint.

- [3] Abdulhadi, Z., Bshouty, D., Starlike functions in S_M, preprint.
- [4] Abdulhadi, Z., Hengartner, W., Spirallike logharmonic mappings, preprint.

STRESZCZENIE

Podano przegląd najważniejszych własności odwzorowań logharmonicznych, tzn. różnowartościowych, lokalnie quasikonforemnych odwzorowań i koła jednostkowego w płaszczyznę zespoloną, mających postać $l(z) = z|z|^{2\beta} h(z)\overline{g(z)}$, gdzie β , h, g spełniają warunki (1.1a)-(1.1.c), względnie równoważny warunek (1.2).

PESIME

Представленный обзор самых важных свойств лог-гармонических отображений или однолистных, локально квазиконформных отображений f единичного круга в плоскости вида $f(z) = z |z|^{-2} h(z) \overline{g(z)}$ где h,g, β удовлетворяют условиям (1.1.а) - (1.1.0) или эквивалентному условию (1.2).