ANNALES

UNIVERSITATIS MARIAE CURIE-SKZODOWSKA LUBLIN-POLONIA
 VOL. XL, 1
 sectio a
 1986

Departement de mathematiques
Universild Laval

Z. ABDULHADI, W. HENGARTNER

Univalent Logharmonic Mappings

Odweorowania jednolistrne log-harmonicze

Однолистные лог-гармоввческие отобраления

1. Introduction. 'rhis presentation is essentially a urief survey on univalent orientatiou-preserving mappings i deined on the unit disc U C C whose image is in C, and minicir are of the form

$$
\begin{equation*}
f(z)=2|z|^{2 \beta} h(z) \overline{B(z)} \tag{1.1}
\end{equation*}
$$

where
(1.1.a) $\operatorname{ze}\{\beta\}>-1 / 2$
(1.1.b) b and g are nonvanisains amalytic functions on U $(1.1 . c) \quad g(0)=1$.

We shall call sucis eappings to be univalent logharmonic on J vanisidng at tio origin. They can oe cuaracturizua as unfualent solutions of the jonilieur elliptic partial alifereutial equation
(1.2) $\overline{f_{\bar{z}}(z)}=a(z)[\overline{f(z)} / f(z)] f_{z}(z) ; \quad \dot{L}(u)=0$
snere $a(z)$ welongs to the class B of all auslytic functions on U having the property that $|a(z)|<1$ ior all $z \in U$. Theiefore a univalent lognarmonic mapping on U is locally quasiconformal; however the dilatation $K(z)=(1+|a(z)|) /(1-\mid a(2))^{\prime}$ may go io iniinity as z approaches oU . The exponent β In (1.1.a) depends only on $a(0)$ and can be expresseci by

$$
\beta=\overline{a(0)}(1+a(0)) /\left(1-|a(0)|^{2}\right)
$$

s.ote tnat all univalent conformal mappings on U are loyharmowic ($a \equiv 0$) . iue compositiou of a couformal premapping with a loghar monic mappius is asain logisarmonic. However the composition of \& lofasmonic mapping with a conformal postmappiof is in general isois lognarmocic. In particular translations 1 - wo $0 i$ tie image or a logiarmonic mapping f are in generul not loginarmonic. rurthenore, the isverse f^{-1} of a univalent logisarmonic mapping I aous hot luheritt the property of lognarmonicity.

Let $\mathcal{I}=2|z|^{2 \beta} \mathrm{n} \cdot \overrightarrow{\mathrm{B}}$ be a univalent logharmontc mapping on U such that $f(O)=0$. Then $P(J)=\log f\left(\theta^{5}\right)$ is a univalent ournoulc mapping on $\{\zeta: \operatorname{Im}(\})<0\}$. Suca manpinss are closely related to the tioury of minimal surfaces and have been studied by several autnors.
2. 山apping Protleins.
2.4) Let Ω be a simply cownected domain of C woich contains. toe origin. Given $a \in B$, is tiere a univelent solution I OI (1.2) sucin inat $I(U)=\Omega$ and $\tilde{I}(0)=0$. Unfortunatiy the answer is no. In particular there is no lognamonic univalent sapping from U outo $C \backslash(\infty,-d], d\rangle 0$, with $a(z)=-2$
(see [2]). But there is a weaker form of the Riemann Lapping Theorem.
 there is for each $a \in S$ a univalent solution f of 1,2 such that
2.1.1) $f(\bar{f}) \subset \Omega$.
2.1.2) $f(z)=c z|z|^{2 \beta}(1+0(1)) \quad$ if $z \rightarrow 0$ and $c>0$, (β as in (1.3)).
 $f_{*}\left(e^{i t_{0}}\right)=\underset{t \uparrow t_{0}}{\operatorname{ess} \lim P\left(e^{i t}\right) \text { and } f^{*}\left(e^{i t_{0}}\right)=\underset{t \downarrow t_{0}}{\operatorname{ess}} \lim \hat{I}\left(e^{i t}\right), ~\left(t_{0}\right)}$ exists and are in $\partial \Omega$.
2.1.5) For $e^{i t_{0} \in E}$, the cluster set of $\mathcal{I}^{\text {at }} e^{i t_{0}}$ Ines on a helix joining the point $f^{*}\left(e^{\text {it }}\right)$ to the point $f_{*}\left(e^{\text {it }} \xlongequal{f}\right.$

Remarks.

1) If $|a(z)| \leqslant k<1$ for all $z \in U$, then $f(U)=\Omega$.
2) If $e^{i t_{0}} \epsilon E$ and $f^{*}\left(e^{i t_{0}}\right)=I_{*}\left(e^{i t_{0}}\right)$ then the cluster set of f at $e^{i t_{0}}$ is the circle $|w|=\left|P^{*}\left(e^{i t_{0}}\right)\right|$.
3) If $e^{i t_{0}} \in E$ and $\Delta_{1}=f_{*}\left(e^{i t_{0}}\right) \neq f^{*}\left(e^{i t_{0}}\right)=\dot{L}_{2}$, then there are infinitely many helices from A_{1} to \dot{i}_{2}. The claim 2.1.5) states that the cluster set lies on one of then. Thus, for example, the cluster set of

$$
\dot{f}(z)=2[(1-\bar{z}) /(1-z)] \cdot \exp \{-2 \arg [(1-12) /(1-z)]\}
$$

at $z=1$ lies on the helix, $\gamma(\tau)=\exp (-\tau+i(\pi / 2+\tau))$ joining toe points $f^{*}(1)=-0^{-\pi / 2}$ and $f_{6}(1)=-0^{3 \pi / 2}$, whereas the cluster set of f at $z=-1$ is the straight line segment from $f_{*}(-1)=-e^{-\pi / 2}$ to $f^{*}(-1)=-e^{3 \pi / 2}$.
4) If Ω is strictly starlike then I is uniquely deter mined 。

Outline of tine proof.

a) ilitiout 1088 of generality wo may assume that $a(0)=0$. Incieed, if not, then consider the domain $\tilde{\Omega}=\left\{w|w|^{2} \gamma ;\right.$ we $\}$, where $\tilde{a}(z)=[(1+\overline{a(0)})(a(2)-a(0))] /[(1+a(0))(1-\overline{a(0)} a(2))]$. II \vec{i} is toe desired mapping for $\tilde{\Omega}$ and \tilde{a} then $I=\tilde{I}|\tilde{I}|^{2 \delta}, \quad \delta=\overline{a(U)}(1+a(0)) /\left(1-|a(0)|^{2}\right)$ satisfies lineorem 2.1.
b) Let Φ ie the conformal mapping from δ onto Ω urmalized oJ $\Phi(0)=0, \Phi^{\prime}(0)>0$. Put $r_{n}=(1-1 / n)$ and $\Omega_{n}=\Phi\left(|z|<r_{n}\right)$. Then there is a mapping f_{L} from U onto Ω_{n} sailsiy1ng ineorem 2.1 with respect to $a_{n}(z)=a\left(r_{n} z\right)$ (see $[2]$). Since dist $\left(0, \partial \Omega_{1}\right) \leqslant\left(1_{n}\right)_{z}(0) \leqslant 16$ uist(u, $\partial \Omega$), visere is a subsequence of f_{n} which converges locally uniformly to a univalent solution f of (1.2). finally, the poisson interferal applied to los $f / 2$ gives the required properties.
2.b; Let D ie uh aruitrary domain of \bar{C} whicis contains iniinity. we are interested in conditions sucia lint D can be iappeci dy univalent lo甘aarmonic mappings $f, f(\infty)=\infty$ outo
a canonical domains.

(2.1) $\operatorname{Re}\left\{\mu_{1}(z) d z\right\}=H_{e}\left\{\left[\frac{1+a(z)}{1-a(z)} \frac{\Phi^{\prime}(z)}{\Phi^{\prime}(z)}-\frac{1+a\left(z_{0}\right)}{1-a\left(z_{0}\right)}-\frac{1}{z-z_{0}}\right] u z\right\}$
defines an exact differential on $D \backslash\{\infty\}$, then there is a univalent logharmonic Function which naps is onto a racial slit domain and is normalized by
(2.2). $f\left(z_{0}\right)=0$ and $f(z)=z|z|^{2 m}(1+0(1))$ as $z \longrightarrow \infty$

Furthemore, if D has finitely many vounciary components, then 1 is uniquely determined.

Hemari. If D is simply connected then tue condition on (2.1) is not active since it is saisisiled whenever $a(\infty)$ is real.

$$
\begin{aligned}
& \text { Theorem 2.3.[1]. Let } D \text { be as in Theorem } 2.2 \text { wits } \\
& \left.a(\infty)=a\left(z_{0}\right)=\pi / i 1+m\right), ~ m \in \operatorname{iv}\{0\} \text {, and lot } \psi \text { be a conium } \\
& \text { mar mapping of } D \text { onto circular slit domain normalized by }
\end{aligned}
$$

$\psi\left(z_{0}\right)=0$ and $\psi(z)=z+O(1)$ as $z \rightarrow \infty$. If
(2.3) Im $\left\{\mu_{2}(z) d z\right\}=\operatorname{Im}\left\{\left[\frac{1-a(z)}{1+a(z)} \frac{\psi^{\prime}(z)}{\psi(z)}-\frac{1-a\left(z_{0}\right)}{1+a\left(z_{0}\right)}-\frac{1}{z-z_{0}}\right] d z\right\}$
ciefines an exact difierential on $D \backslash\{\infty\}$, then there is a univalent lognarmonic function that mapa D onto a circular alit dowain and is normalized by

$$
(<. \dot{+}) \quad I\left(z_{0}\right)=0 \text { and } f(z)=z|z|^{2 m}(1+0(1)) \text { as } z \rightarrow \infty .
$$

Furthermore, if D has finitely many boundary components, then f is uniquely determined.
iemarix. If D is simply connected, then the conciltion os (द́.う) is not active since it is satisfied, whenever $a(\infty)=$ $\left.=a i_{0}\right) \in R$.
3. Univalent starlike logharmonic mapyings. Let Ω iu a simply comected ciomalu of σ winca contains the origin. .e sai liuat Ω is α-spirallike, $-\pi / 2<\alpha<\pi / 2$, if $⿴_{0} \in \Omega$ iuplies that $w_{0} \exp \left(-t^{1 \alpha}\right) \in \Omega$ for all $t \geqslant 0$. If $\alpha=0$, the domain is called starlike (w. r. to tae origin). Let $S_{\text {Lh }}^{\alpha}$ be the set oi all undvalent loyiarmonic mappinss f on u sucis tiat $\hat{i}(0)=0, g(0)=h(0)=1$, and $f(0)$ is α-spirallike domain,

$$
\begin{aligned}
& S_{L h}^{*}=S_{L h}^{*=0}, \\
& S^{\alpha}=\left\{\tilde{L} \in S_{L i L}^{*} \cap \ddot{I}(U)\right\}, \text { aud } S^{*}=\left\{\sum \in S_{L h}^{*} \cap \ddot{H}(U)\right\} .
\end{aligned}
$$

Whenever we use the representation $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}$ for a univalent logharnonic mapping on U we mean that h and g are nonvanishing analytic functions on U normalized by $g(0)=1$.

For each $f=z|z|^{2 \beta} h \cdot \bar{G} \in S_{L h}^{*}$, we associate the function $\psi(z)=z h(z) / g(z) \in H(J)$. The first result is:

Theorem 3.1. [4].
a) If $P=2|z|^{2 \beta} \mathrm{~b} \overline{\mathrm{~B}} \in \mathrm{~S}_{\mathrm{Lh}}^{*}$, then $\Phi=z \mathrm{~h} / \mathrm{g} \in \mathrm{S}^{*}$.
b) Conversly, if $I \in S^{*}$ and $a \subset B$, then there is a unique couple (h, g) of nonvanishing analytic functions on U such that $\Phi=z \mathrm{~h} / \mathrm{g}$ and $\mathcal{P}=2|z|^{2 \beta} \mathrm{~h} \overline{\mathrm{~B}}$ is a univalent solution of (1.2) in $S_{\text {Ib }}^{*}$.

Outline of the proof.
a) Let $\quad \rho \in S_{L h}^{*}$ and $\gamma=-\beta /(1+\beta+\bar{\beta})$. Ten $\tilde{I}=f|f|^{2} \gamma \in S_{\text {Lh }}^{\alpha}$ where $\quad \alpha=-\arg (1+2 \delta) \in(-\pi / 2, \pi / 2)$. The corresponding dilatation function \tilde{a} vanishes at the origin and therefore $\tilde{f}=2 \tilde{h} \cdot \overline{\tilde{g}}, \tilde{b}(0)=\tilde{g}(0)=1$. Put $\psi(z)=z \tilde{h}(z)[\tilde{g}(z)]^{-a^{2 i \alpha}}$. Then ψ is in S^{α}. Finally $\left.\Phi=z[\tilde{a} / \tilde{g})^{-\theta^{2 i \alpha}}\right] e^{-i \alpha} / \cos (\alpha)=2 \mathrm{~L} / \mathrm{g} \in \mathrm{S}^{*}$.
b) Let $\Phi \in S *$ and $a \in B$ be given. Put
$g(z)=\exp \int_{0}^{z} \frac{s a(s) \Phi^{0}(s)+a(s) \beta \Phi(s)-\bar{\beta} \Phi(s)}{s \Phi(s)(1-a(s))} d s$
$h(z)=\Phi(z) g(z) / z$ and $\rho=z|z|^{2 \beta} \cdot h \bar{g}$, where β is as in (1.3). Then n and g are nonvanishing and analytic on iv,
$h(0)=g(0)=1$, and i is a solution of (1.2). Following backforwards the first part of the proof one concludes that f is the desired solution.

Remark. There is no similar result for the family of convex mappings. Indeed, $\psi(z)=z$ is a convex mapping, $a(z)=z^{4} \in B$, but $f(z)=z /\left|1-z^{4}\right|^{1 / 2}$ is not a convex mapping.

An immediate consequence of Theorem 3.1 18:

Corollary 3.2. [4]. If $\mathcal{L} \in S_{\mathrm{Lh}}$ then $f(r z) / r \in S_{\mathrm{Lh}}$ for all r (0,1) .

However, Corollary 3.2 may fail whenever $f(0) \neq 0$. Indeed, fo= each $z_{0} \in U \backslash\{0\}$, one can give an example of univalent loghar manic mapping I such that $f\left(z_{0}\right)=0$, and $f(\mathbb{P})$ is starlike but no level set $f(|z|<r),\left|z_{0}\right|<r<1$, is a starlike domain (see [4]).

For the first application let us consider the problem

$$
\operatorname{Min} \int_{f(U)}|w|^{p} d u d v ; p \geqslant 0 \text { given. }
$$

over all solutions of (1.2) whose function $a(2)$ vanishes at the origin and for which $f_{z}(0)=1$. The optimal solution is $f(z)=z(\overline{1+(p+2) z /(p+4)})(p+4) /(p+2) /(1+(p+2) z /(p+4))$
which by Theorem 3.1 is starlike univalent. In the case of the minimal area problem $(p=0)$ the extremal function is not a convex mapping.

Another consequence of Theorem 3.1 is tie following integral representation for mappings in S_{Lh} :

$$
\begin{equation*}
s_{\text {Lh }}^{*}=\left\{\int_{\partial U x D 0} X(z, j, \xi) d \mu(\xi) d \nu(\xi)\right\}_{\mu, \eta} \tag{3.1}
\end{equation*}
$$

where K is a fired kernel function and where μ and λ are probability measures on the Bored 6-algebra of ∂U. Even $11 \mathrm{~S}_{\text {Lh }}^{\text {is not compact the relation (3.1) was be used for opt- }}$ mization problems over subclasses of starlike univalent logharmoafc mappings $P=z|z|^{2 \beta} n \cdot \bar{B}$ having 1 fixed exponent β. In particular, one gets for $a(0)=0$ and $f \in S_{\text {Lh }}^{*}$

$$
r \exp \{-4 r /(1+r)\} \leqslant|f(z)| \leqslant r \exp \{4 r /(1-r)\}
$$

The inequalities are sharp [3].
4. Automorphisms of logharmonic mappings. In this section We are concerned with univalent logharmonic mappings from U onto U . With no $208 s$ of generality we shall assume that $f(0)=0$ and $h(0)>0$. Otherwise, we consider an appriopriate Moebius transformation of the preimage. Let $A U^{T} T_{\text {Lh }}(U)$ denote the class of such mappings.

The first theorem characterizes completely mappings in $\Delta U T_{I h}(U)$.

Theorem 4.1. [4]. Let b and B be two nonvanishing analytic functions on U. Then $f(z)=z|z|^{2 \beta} h(z) \cdot \overline{g(z)}$ is in $\Delta U T_{I_{h}}(U)$ satisfying $h(0)>0$ and $g(0)=1$ if and only if
$B=1 / h, \operatorname{Re}\{\beta\}>-1 / 2$ and $\operatorname{Re}\left\{2 h^{\circ} / h\right\}>-1 / 2$ on 0. We nor associate to each $f(z)=2|2|^{2 \beta} h(2) / \overline{h(2)}$ in $\operatorname{AUT}_{\mathrm{Lh}}(\mathrm{U})$, the mapping $\Phi(z)=z(h(z))^{2} \in S^{*}$.

Theorem 4.2. [4].
a) For each $\Phi \in S^{*}$ and for each $\beta, \operatorname{Re}\{\beta\}>-1 / 2$, there is one and only one $\mathcal{I} \in \operatorname{AUT}_{\text {Lh }}(U)$ such that $f(z) /\left(\Phi(z)|z|^{2 \beta}\right)>0$ for every $z \in U$ and $h(0)=1$.
b) For each $a \in B$, there is a unique solution of (1.2) which is in $\operatorname{AUT}_{\text {In }}(U)$.

Remarks.

1. Part a) of Theorem 4.2 is quite surprising. Indeed, consider $\Phi(z)=z /(1-z)^{2}$ and $\beta=0$. Then arg $f\left(\theta^{1 t}\right)=$ $=\arg \Phi\left(\theta^{i t}\right)= \pm \pi$, almost everywhere; however $\mathcal{f}(U)=U$. To bs more precise, the corresponding mapping is $f(z)=z(1-\bar{z}) /(1-z)$ satisfying $f\left(e^{i t}\right)=-1$ for all $0<|t| \leqslant \pi$, and where the cluster set of f at the point 1 is the unit circle.
2. Part b) of Theorem 4.2 states that 2.1.1) and 2.1.3) in Theorem 2.1 can be replaced by $f(U)=U$.

REFERENCES

[1] Abdulaad, 2., Bshouty, D., Hengartner, 习., Canonical Lappings in $\sum_{\text {y }}$, Heat. Vesnik $37(1985)$, 9-20.
[2] Abdulhadi, 2., Bshouty, D., Univalent mappings in $f(D)$, preprint.
[3] Abdulhadi, 2., Bshouty, D., Starlike functions in Sa, preprint.
[4] Abdulhadi, Z., Hengartner, it., Spirallike logharmonic mappings, preprint.

STRESZCZENIE

Abstract

Podano przeglad najwatnlejszych wlasnoscl odwzorowan logcharmonlcznych, tzn, roknowartosclowych, lokalnle quaskonforemnych odwzorowań \& kota jednostkowego w plaszczyene zespolona, majacych postac $f(z)=z|z|^{2 G} h(x) \overline{g(z)}$, gdzie β, h, g speteniaja warunki (1.1a)-(1.1.c), waględnie rownowatny warunek (1.2).

PEBMOE

Представленнии обзор самых вазннх свойств дог-гармовмческих отобрамений или однолистянх, локально квазиконџориных отобрадений ρ едияичкого круго в пвоскости видя $\rho(z)=z|z|^{2 \ell}(z) \overline{\mathrm{g}(z)}$ где $\quad \mathrm{b}, \mathrm{g}, \mathrm{\beta}$ удовлетворяот усдовиям (1.1.a) - (1.1.0) мли эквивалентному условид (1.2).

