
ANNALES

UNIVERSITATIS MARIAE C U R I E - S K L O D O W S K A

LUBLIN —POLONIA
VOL. XL, 1 SECTIO A 1986

Département de mathématiques 
Université Laval

Z. ABDULHADI, W. HENGARTNER

Univalent Logharmonic Mappings

Odwaorowania jednolistme log-harmoniczne
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1, Introduction. This presentation, is essentially a urief 

survey on univalent orientation-preserving mappings i deiined 

on the unit disc U £ C whose image is in C , and which are 

of the form .

26 ------
(1.1) f(z) = z|zl h(z) g(z)

where

(1.1.a) Re [(?,] -1/2

(1.1.0) h and g are nonvanishing analytic functions on U 

(1.1.c) g(0) = 1

•Ve shall call such mappings to be univalent logharmonic on 

U vanisning at the origin. They can be cnaracuerized as univalent 

solutions of the nonlinear elliptic partial differential equation

F(z) = a(z) [f(zj/f(z)] f (z) ;
Z *■ z

(1.2) f(u) = 0
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where a(,z) belongs to the class B of all analytic functions 

on U naving the property that [atz)[ 1 for all z€U . 

Therefore a univalent lognarmonic mapping on U is locally 
quasiconiormalj however the dilatation K(.z) = U+Ia(.z)l 1a(.zjJ

may go to infinity as z approaches 'iU . The exponent |J 

in Q'l.'l.a) depends only on a(O) and can be expressed by

____ 2
U.3) £ = a(,0) U+aCOj)/U-|a(O)| )

i.ote tnat all univalent conformal mappings on U are logharmonic 

(a=0) . fue composition of a conformal premapping with a loghar- 

monic mapping is again logharmonic. However the composition of 

a logharmonic mapping with a conformal postmapping is in general 

not logharmonic. In particular translations f - wQ of the

image of a logharmonic mapping f are in general not logharmonic.
-1

rurthemore, the inverse f of a univalent lognarmonic mapping 

f uoes not inherit the property of logharmonicity.
Let f = zlzl^f* h-g- be a univalent logharmonic mapping on 

U such tnat f(.O) = 0 . Then ft J ) = log f(.e^ J is a univalent 

narmonic mapping on { J : Xm(. oj . ouch mappings are close

ly related to the theory of minimal surfaces and have been studied 

by several autnors.

2. mapping Problems.

2.a) Let D. be a simply connected domain of 0 which 

contains, tne origin. Given a € B , is there a univalent solution 

f of Q1.2) such that fQDJ = jQ. and £QO) = 0 . bnfortunatly 

the answer is no. In particular there is no lognarmonic univalent 

mapping from U onto C\(.oo ,-d] , d>0 , with a(z} = -z
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(sea [2]}. hut tnei-e is a weaker form of the itiemann capping 

Theorem.

Theorem 2.1. {2]. ¡jet fl be a bounded simply connected 

domain of 0 which contains the origin and wnose boundary ''b SJ. 

is locally connected (.i.e. each prime end is a sineletun). Then

there is for each aCB a univalent solution f of 1,2 such that

2.1.1) f(U) C fl .
2ft

2.1.2) f(.z) = c zlz| (.1 + o(1)) if z —»0 and c")>0 ,

(. (3 as in (1.3)).
2.1.3) lim f(,z) = ite11*) exists and is in on 7)u''E ;

z-^e* 1 2 3* --------- ------------------- —

E is countable.
2.1.4) for each eit:* e^U , we have that

it. . it * it„
f*(e °) = ess lim I(,e ) and f (.e °)

exists and are in 0- . 
it

2.1.5) S’or e °«E , the cluster set of f at

a helix joining the point i (,e ) to the point f*(,e 7

ess lim î(.eit) 
tit0

it
e 0 lies on

Remarks.

1) If |a(z)l^k^1 for all z€U , then f(.U) = Q .
it . it it

2) If e °£E and f (.e °) = f*(.e °) then the cluster
it. . * i*« I

set of f at e 0 is the circle |w| = |f (e °) [ .
itn * it„

3) If e °«E Al = f*(.e °) # f*(,e °) = A^ , then

there are infinitely many helices from Aq to Ag . The claim

2.1,5) states that tne cluster set lies on one of them.

Thus, for example, the cluster set of
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f(,z) = z [(.l-D/U-z)] • exp |-2arg [(.1-iz)/(.1-z)jj

at z = 1 lies on tne helix, JtT) = expQ-T +i(.X/2 +X )) 
joining tne points f*(,1) = -e~ and fw(,1) = -e^^^2 ,

whereas the cluster set of f at z = -i is the straight line 
segment from f*Q-l) = -e-^¡2 to f*Q-i) = -e^^^2 .

4) If ft is strictly starlike then f is uniquely deter

mined.

Outline of the proof.

a) .Tithout loss of generality we may assume that a(.O) = 0 
Indeed, if not, then consider the domain Jt = £w|wl2i" ; w < P-j 

wnere a(.z) = [(.1+atO))<a(.z)-a(O))J / [t1+a(.O)Xl-a(.O)a(.z)5] .

If f is tne desired mapping for P- and a then
X = , i= a(0)(,1+a(,Q)) / Q1- |a(.O)| 2) satisfies Theorem

2.1.

b) Let J be the conformal mapping from U onto P-

normalized by $(.0) = 0 , . Put ra = Q1-1/n) and

= J(,lzl<^rn) . Then there is a mapping f^ from U onto 

satisfying Theorem 2.1 with respect to anQz) = ai.r^z}

(.see [2]). oince dist (.0 ,QfQ)z(,O) ^16 uist(.u /d Q )

there is a subsequence of fQ which converges locally uniformity 

uo a univalent solution f of (1.2J. Pinally, tne Poisson inte

gral applied to log i/z gives the required properties.

2.0J Let D be an arbitrary domain of C which contains 

infinity, we are interested in conditions such Chat Ü can be 

mapped by univalent lognarmonic mappings f , ) = <» onto
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(2.1) Re
f 1 [ il+a(z)
f*t***l- *• 1+a(z) $\z) 1+a(z )

1-a(z) £(z) 1-a(z ) z-z

a canonical domains.

Theorem 2.2. [l]. Let D be a domain of arbitrary 

connectivity containing the point at Infinity, fix zQ 6 h and 

let a be in H(D) , |a(z)| 1 for all zib ,

a(zQ) = mQ /(1+mQ) and at.«0) = m /(1+m) where mQ and m 

are nonnegative integers. Denote by 5 a conformal mapping ox'

D onto a radial slit domain normalized by $ (zQ) = 0 and 

$(z) = z + 0(1) as z —»a® . If

dX *

-

defines an exact differential on D\ , then there is a

univalent logharmonic function which maps it onto a radial slit 

domain and is normalized by

2m
(2.2)' f(zQ) = 0 and f(z) = z)zl (1 + o(1)) as z—>£» .

Furthemore, if D has finitely many boundary components, then 

f is uniquely determined.

he nark.. If h is simply connected tnen tne condition on 

(2.1) is not active since it is satisfied whenever ai«0) is 

real.

Theorem 2.3. [l], Let I) be as in Theorem 2.2 witn 

a(<w ) = a(zQ) = m /(1+m) , m«i-tu{oj , and let y be a conf’or- 

mal mapping of D onto circular slit domain normalized uy
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Ÿ(zQ) = 0 and vj»(z) = z + OU) as z—?eo . If

(2.3) Im j/l2(.z)dzj ^'(z)

^(z)

1-aUo)

1+a(zQ)

1

z-z„
dz

dexines an exact differential on D\|ooj , then ¿here is a uni

valent logharmonic function chat maps D onto a circular silt 

domain and is normalized by

2m
(2.4) f(z0) = 0 and f(z) = z|z| (1 + o(1)) as z —>co .

Purthermore, if D has finitely many boundary components, then 

f is uniquely determined.

hemark. If D is simply connected, then the condition on

(2.3) is not active since it is satisfied, whenever a(®° ) =

= a(aQ) € H .

3. Univalent starlike logharmoalc mappings. Let Xi. be 

a simply connected domain of C which contains the origin. ..e 

say that H is ot -spirallike, -3T/2 oc <3T/2 , if w0«A
implies that woexp(-te^oi ) < XI for all t^.0 .If oc = Q , 

the domain is called starlike (w. r. to the origin). Let 

SLh De the set of all univalent logharmonic mappings f on 

U such that f(O) = 0 , g(O) = h(0) = 1 , and f(U) is 

oi -spirallike domain,

S* - 3<=0 bLh “ bLh ’

3* = [f« 3hhn H(U) j , and 3* = « 3LhnH(U)j .
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.Whenever we use the representation fQz) = z\zl hQz)g(.z) 

for a univalent logharmonic mapping on Ü we mean that h and 

g are nonvanishing analytic functions on U normalized by 

g(0) = 1 .
2/» _ *

For each f = z|zl h-g £ S-^ , we associate the function 

^(.z) = zh(.z) /g(.z) e HQU) . The first result is:

Theorem 3.1. [VJ.

a) If f = z | z] 2 h "g € S*h » ttxen f = zh /g £ S* .

b) Conversly, if 5 £ S* and a < B , then there is a unique 

couple (h,g) of nonvanishing analytic functions on U such 
that 5 = zh /g and f = z | zl 2 h "g" is a univalent solution

of (.1.2) in Sj*^ .

Outline of the proof.

a) Let f 6 SLh Y = ~ P / C1+(l + /!>) . Then
f = f I f |2 T" g s*h where a. = -arg(,1+2 y ) € (.-7T/2 , 3[/2) .

The corresponding dilatation function a vanishes at the origin

and therefore f = z h-g , h(,O) = g(,0) = 1 . Put 
~ T~ 1 n2iet x

^(.z) = zh<z) [g(.z)J- . Then 'f' is in S . Finally

5 = z ¡n/(.g)“e Je-io¿ /cosQot) = z h/g e 3* .

b) Let £es* and a£3 be given. Put

g(.z) = bxp
saQs) $/(.s) + a(.s) (j£(.s) - 5(.s)

a^t3 *) <1-a(s))
ds

_ 2ft _
h(,z) = 2 (,z)g(.z) /z and f = z|z| -h g , where (?> is as in

(.1.3). Then h and g are nonvanishing and analytic on U ,
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h(0) = g(0) = 1 , and f is a solution of (1.2). Following 

backforwards the first part of the proof one concludes that f 

is the desired solution.

Remark. There is no similar result 'for the family of convex 
mappings. Indeed, \p(z) = z is a convex mapping, a(z) = z* e B , 

but f(z) = z /[1-z4l not a convex mapping.

An immediate consequence of Theorem 5.1 is:

Corollary 5.2. [4]. If f € S*h then f(rz)/r < S*^ for 

all r «(0,1) .

However, Corollary 5.2 may fail whenever f(0) £ 0 . Indeed, 
for each zQeU\{o] , one can give an example of univalent loghar- 

monic mapping f such that f(zQ) = 0 , and f(U) is starlike 

but no level set f(lz|<(r) , |zQ|^r^1 , is a starlike domain 

(see [4]).

For the first application let us consider the problem

Min dudv p 0 given ,

over all solutions of (1.2) whose function a(z) vanishes at the

origin and for which f (0) = 1 . The optimal solution is 
z

f(z) = z (1 + (p+2)z/(p+4)j
(p+4)/(p+2)

/(1 + (p+2)z/(p+4))

which by Theorem 5.1 is starlike univalent. In the case of the 

minimal area problem (p=0) the extremal function is not a 

convex mapping.
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Another consequence of Theorem >.1 is the following integral
«representation for mappings in :

U
5.1) S* = if K(.Z,7 , C ) dkt T )d?i -f)

I J-aux t>v J /I »?

where K is a fixed kernel function and where jm. and ? are 

probability measures on the Borel 6~-algebra of QU . Bven 

if S*h is not compact the relation 0.1) “ay be used for opti

mization problems over subclasses of starlike univalent logharmo- 

nic mappings f = z]zl h-g having fixed exponent ft .In 

particular, one gets for a(.O) = 0 and f £

r exp [-4r /Q1+r)J (fQz)| r exp [4r /Q1-r)j

The inequalities are sharp [¿J.

4. Automorphisms of logharmonlc mappings. In this section 

we are concerned with univalent logharmonlc mappings from U 

onto U . With no loss of generality we shall assume that 

f(0) = 0 and hQO) 0 . Otherwise, we consider an appropriate 

Moebius transformation of the preimage. Let AUTTh(,U) denote 

the class of such mappings.

The first theorem characterizes completely mappings in 

AUT^IU) .

Theorem 4.1. [4]. Let h and g be two nonvanishing ana

lytic functions on U . Then f(.z) = zlzl h(,z)-g(.z) is in 

AUT^CU) satisfying h(,0)^0 and g(,0) = 1 if and only if
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g = 1/h , Reffj] > -1/2 and Re [zh'/h] -1/2 on U .

We now associate to each f(,z) = z)z|2P h(,z)/h(.z) in 

AUT^jAO) , the mapping $ Qz) = z(.h(.z))2 € S* .

Theorem 4.2. [4].

a) for each 5 €S * and for each p, , Re {p,j -1/2 , 

there is one and only one f £ AUT^QU) such that
f(z)/( 5(.z) Iz| 2 ft ) 0 for every z«U and h(.O) = 1 .

b) for each a 6 B , there is a unique solution of (.1,2) 

which is in AUTt h(.U) .

Remarks.

1. Part a) of Theorem 4.2 is quite surprising. Indeed, 
consider $ (.z) = z/(1-z)2 and p, = 0 . Then arg f(.eit:) =

= arg 5 (e^) = * JC , almost everywhere; however f^U) = 0 .

To b6 more precise, the corresponding mapping is
f(z) = z(.1-z) /(,1-z) satisfying f(eit) = -1 for all

0 |ti OT , and where the cluster set of f at the point 1 

is the unit circle. ■>
2. Part b) of Theorem 4.2 states that 2.1.1) and 2.1.3) in 

Theorem 2.1 can be replaced by f(U) = U .
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STRESZCZENIE

Podano przegląd najważniejszych własności odwzorowań log- 

-harmonlcznych, tzn. równowartościowych, lokalnie quasikon(oremnych 

odwzorowań f koła jednostkowego w płaszczyzną zespoloną, mających 
postać f(z) - z|zj2^ h(z)g(z) , gdzie fi , h, g spełniają warunki 

(l.la)-(l.l.c), względnie równoważny warunek (l.2).

PE3EME

npeacTSBJieHHiii? oóaop caitux bsshux cboüctb jior-rapMOHiiwec- 
KHX OTOÓpaaemiił MAM OAHOAMCTHUX, AOKSAbHO KBa3HKOH$OpMHHX OTOC- 
paxemifi f ejHHKSRoro Kpyro b uaockocth bmas f(z) = z/jzfj n(e> g(z) 

rAe h,g,|a yAOBAeTBopanT yczoBzuM (1.1.a) - (1.1.OJ mak skbhbo- 
AeHTHOMy yCAOBHD (1.2J .




