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1, Introduction. <his presentatioa is essentially a orief

survey on univalent orieuntatiou-preserving mappings I deriined
on the unit disc U ¢ C whose iwage i8 in C , ana wuica are
of the form

2p -k
(1.1) £(z) = zlzl ' h(z) glz)

where

(1.1.0) 2e {p}] » -172

(1.1.0) h and g are nonvanisaing aualytic functions on U
(1.1.c) g(0) =1 .

vWe shall call sucu wappings to be univalent logharmonic on
U vanisuing at toe origin. They can be cuaracuerized as univalent

solutions of the wonliueur elliptic parvial daiifereutiul equation

(1.2) £ _(z) = a(z) [f(z)/ﬂz)] £(z) ;5 2W=0
2 Z
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waere a(z) bLelongs to the class B of all aualytic functioas

on U uwaving the property that [a(z)| .( 1 Ior all z€U.,
Thereroie & univalent lognarmonic mapping on U is locallj
quasicontormal; however the dilatation K(z) = (1+ [a(2z)] )/(1—[&(2*
may go o inlinity as z approaches U . [ne exponent g

in (1.1.a) depends only on a(0) und can be exprussed by
— 2
(9e3) p = a(0) (1+a(0))/(1-la@)]| ) .

wote tnut all univalent conformal mappings on U are logharmonic
(a=0) . ine compositiou of a couformal premapping with a loghar—
monic mappiuy is agailn loguarmonic. However the composition of
a loguarmonic mapping with a conforwal postmappiay is in general
w0t loguarwonic. In particular iranslations £ - LS o tue
iwsge oY a lognarmonic mapping £ are in geuerul not lognarmonic.
rurthemore, tne iuverse .|‘.‘--'l of a univalent loguarwonic wapping
i aous wot iunerit the property oi loghnarmonicity,

Let £ = zlzlzfs h-§ be a univalent logharmonic mapping on
3

U such tnat £(0) = O ., Then F(I) = log £(e” ) is a univalent
aaruouic mapping on {} : Im(‘g ) < 0} « SUcu wappings are close-—
ly related to the theory of miniwal surfaces and nhave been studied

by several autnors.

2. wapping Proulems.

2.8) Let L be a simply counected domain of C woich
contains. tne origin. Given a €B , is there a univalent solution
£ or (1.2) such tuat 2(U) = QL and £(0) = O . Unfortunatly
the answer is no. In particular there is no logasrmoaic univalent

wapping from U outo C\ (o0 ,-d] 9 d>0 y with a(z) = -2
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(see [2]). But toere is a weaxer form of tne xiwmann wapping

Theorem.

Theorsm 2.1. [2]. Let (1L be a bounded simply connecied

domain of ¢ wuich countains the origin and wuose boundary S

is locally connected (i.c., caca priwe end is a siuplcetun). Taen

there is for each a€B a univalent solution f of 1,2 such that

2.1.1) (o) c (L . )
1)
2.1.2) £(z) = c zlz] ' (1 + 0o(1)) if z—0 and c¢>0 ,
( p as in (1.3)).

2.1.3) ln £(z) = 2(e1%) oxists aud is in PR on PUNE ;
z —eit .
E 1is countable.
2.1.4) For each e% €U , we have that
it it it =
f.(e °) = ess 1im 2(e ) _and £ (e ©°) = ess lim 2(elF)
1 & tdt
0 0
exists and are in 09 .
it : it
2.1.5) For e °€E , the cluster set of £ atv e ° 1ies on
it it

a nelix joining the point £ (e ©) to the point £,(e

Reuarks.

1) 1z la(z)l {k {1 for all z2€U, then £(U) = Q .
t

it i it
2) If e °€E and £¥(e °) = f,(e ©°) then the clusver

it it
set of £ at e ° is the circle |w| = |£¥(e ©)| .
R it . ity
3) If e €E and 4, = f.(e ) # £7(e )=Az,cneu
there are infinitely many helices from 44 to As e lthe claim
2.1.5) states tnat tne cluster set lies on one of taca.

Thus, for example, the cluster set of
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i(z) = 2 [(1—1)/(1-2)]-0::9 {-2arg [(1-12)/(1-2)]}

at z = 1 lies on tne nelix, §(T) = exp(-T+i(X /2 +71)
joining tae points £*(1) = e~ /2 una £,(1) = -a>*/2
whereas tne cluster set of £ at 2z = -1 18 the straight line
segment from f,(-1) = e~ X/2 o £%(-1) = -e32/2

4) If L is strictly starlike thea £ 18 uniquely deter-

nined.

Outline oI tae proof.

a) ditoout loss of generality we may assume that a(0) =0 .
Indeed, if not, then consider tce domain fl = {wlwlzr ;w eSl} ;
wnere a(z) = [(1+a(05)(au)-a(o))] / [(1+a(0))_(1-a(o)a(z))] .

is toe desired wapping for Sl and @ then

-l

Ir
T = ;mzf , &= Ko-mm(o)) vV (1—[3(0)|2) satisfies lheorem
2.1. i

b) Let § ve the conformsl mapping frow U onto Sl
worualized oy €(0) =0, €7D0 . Put r = (4-1/n) and
_Q_n = §(|zl<rn) . Then tuere is a wapping fu from U onto
-ﬂ-n satisiying Tneoreu 2.1 with respect to &n(z) = a(rnz)
(see [2]). 5ince dist (0 ,?0,) L (£,),(0) {16 distiv ,20) ,
vwere is a suosequeuce of fn whicd converges locally uniformlly
to a univaleut solution £ of (1.2). ¥inally, tne roisson inte-

gral applied to log f/z gives the required properties.

2.0, Let D ve un arvitrary domain of C whicu contains

iniinity. we are interested in conditions suca Lnat D can Le

uepped oy univaleut logynarmonic mappings £ , f(e@) = o0 outo
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a canonical domains,

Theorem 2.2. [1]. Let D be a domain of arbitrary

connectivity containing tiae poiat at infinity. rix 2,6 U and
let a be in H(D) , la(z)] {1 for all zew ,

a(z,) = my /(1+m ) and a(®) = w /(1+u) goere w, and o

are nonnegative integers. Jeuote LY i a conforual mapping oI

D onto a radial slit dowaiun onormalized by j{(zo) =0 aud

$(z)=2+001) a8 z—w .12

o
1+a(z) $°(2) 1+a(z,) 1
i-a(z) §(z) 1-a(z,) L 5

us

(2.1) Re I}L,‘Lz)dz} = Re
of

defines an exact differential on D\ {ﬂo] » then there is a

univalent logharmonic Zuuction whicn waps O ounto a raaiali slit

dowain and is normalized oy

2n
(2.2)° £(zy) =0 and £(2) = zlzl (1 + 0(1)) as z-—>x .

rurthemore, if D has finitely many woundary componeuts, tner

f 1is uniquely determined,

Rkewark, If D 1is simply connected tnen tue conaition on
(2.1) i8 not active since it is satisiied whenever a(®) is

real.

Theorew 2.3.[1]. Let D be as in Theorew 2.2 wita

a(e0 ) = a(zo) = a /{1+m) , meﬂu{O} , and let v be a conior-

mal mapping of D onto circular slit domain BOT@alized oy




Z. Abdulhadl, W, Hengartner

y(z,) =0 and y(z) =12+ 0(1) as z—>0 . If
[+-at2) Yi(z)  dealz,) 1
L1+a(z) Y(“ '1+a(z°) 2-2_

o

dz }

(@3)  Iaf{p,2)az] = 1

uerines an exact dirferential on D‘\{ao} s then ihere is a uni-

valent lognarmonic function that mapa D onto a circular slit

dowain and is normalized by

2m
(ce)  1(2z) = 0 and i(z) = zlzl (1+ 0(1) as z-—>ew .

Furtnermore, if D has finitely many boundary components, then

f ie uniquely deteruwined.

newark. If D 1is simply connected, then the condition ou
(¢3) is not active since it is satisfied, whenever a(e2) =

= a'\'ao) €R .,

5. Univalent starlike logharmonic wappinga. Let ) ve

a siwply counected Gowain of C whica contains the origin. «e
say Lust Sl 1s o -spirallike, -X/2 { oc /2, 12 w efd
iuplies that woexp(~te’™) € Q for all t)0.1If x =0,
the domain is called starlike (w. r. to toe origin). Let

S:h be the set of all univalent lowuerwonic wmappings £ on

U sucu tuat 1(0) =0, g(0) = h(0) =1, and 2(U) is
ol =-spirallike domain,

) T X 0)
Sth = Spp s

3% = fre s;;nn'(u)} , aud s*:{sss;hnaw)} .
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2 —
Jhenever we use the representation f£(z) = z\z| s h(z)glz)
for a univalent logharuwonic mapping on U we mean that h and
g are nonvanishing analytic functions on U normalized by
g0) = 1.
L i * -
For each f = z|zl h-g € SLn , We associate the function

Y(z) = zh(z) /g(z) € H(U) . The first result is:

Theorem 3.1. [4].

a) If r=z|z|29h'§es;h.then $=zn/ges" .

b) Conversly, if $ €S” and a¢B , taen thers is a unicue

cougle (h,g) of nonvanishing analytic functions on U such

that $ = zh /g and f = 21z1°P b g is a univalent solution
of (1.2) in

®
Smo

Outline of the proof.

* v ]
a) Let feSy, and y=-p/(1+p+p) . Taen
? = f]flar € S;:h where o = -arg(1+2F) € (-N/2, T/2) .
The corresponding dilatation function a vanishes at the origin
and therefore f = z Tx-’g'- 5 B(0) = &) = 1, Put
-~ s _“211 : o<
ylz) = zh(Z)Ls(z)] i . Then ¥ is in S ., Finally

- TR 2iut
R I_’n/(s)'e ]0'1“ /cos(et) = z /g € 3% .

b) Let 2 €S™ and a€B be given. Put

5" sa(s) $°(s) + a(s) p&(s) - B L)
8(z) = oxp ASke i
s a$(8) (1-a(s))
- a8 __
h(z) = ¢ (z)glz) /2 and £ = z{z] "-h g , waere (> is as in

(1.3). Then h and g are nonvanishing and analytic on U
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h(0) = g(0) = 1, and £ 4s a solution of (1.2). Following
backforwards the first part of the proof one concludes that £

is the desired solution.

Remark. There is no aimilar result for the family of convex
wappings. Indeed, W(z) = z is a convex mapping, a(z) = 2t eB 3
but f£(z) = z /|1-z%| /2 {5 not a convex mapping.

An iwmediate consequence of Theorem 3.1 is:

* *
Corollary 3.2. [4]. It fesp, then f(rz)/r €Sy, for
all r €(0,1) .
However, Corollary 3.2 may fail whenever £(0) # O . Indeed,

for each z, € U\[O} » one can give an example of univalent loghar-
monic mapping £ such that I(zo) =0, and f£(U) 48 starlike
but no level set f(lz1{r), |z,/{r{1, 18 a starlike domain

(see [4]).
For the first spplication let us consider the problem

P
Min J |w] dudv 3j p>/0 given ,
£(U0)
over all solutions of (1.2) whose function a(z) vanishes at the

origin and for which £ (0) = 1 . The optimal solution is
i :

(pr4)/(p+2) ;
2(z) = z (1 + (p+2)z/(p+4)) /(1 + (pr2)z/(p+4))

which by Theorem 3.1 is starlike univalent. In the case of the
minimal area problem (p=0) the extremal function is not a

convex mapping.
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Another consequence of Theorem 3.1 is tae following lntegral
representation for mappings in SI:b. :

(3.1) S;hz [( K(z,7,¢8) du(T)dd(¥)
l%vau e : T ped

where K 1s a fixed kernel function and where g4 and 9  are
probability measures on the Borel f-alsebra of U . Even
it s;h is not coampact the relation (3.1) way be used for opti-
mization problems over subclasses of starlike univalent logharmo-
nic mappings £ = z]zlzﬂ b-g baving fixed exponent p . In

particular, one gets for a(0) = O and £ € S{h

r exp {-4r /e)} £ 12(2)]  r oexp {ar /(1-1-)} !
The inequalities are sharp [}],

4, Automorphisms of logharmonic mappings. In this section

we are concerned with univalent logharmonic mappings from U
onto U . With no loss of generality we shall assume that
£(0) = O and h(0) ) O . Otherwise, we consider an apprgopriate
Moebius transformation of the preimage. Let AUTLh(U) denote
the class of such mappings.

The first theorem characterizes completely mappings in
AUTm(U) .

Theorem 4.1. [4] let h and g be two nonvanishing ana-

lytic functions on U . Then £(z) = zlzlz’ h(z)-g(z) is in

AUT;, (U) satisfying h(O);)O and g(0) = 1 1if and only if
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g=1n, Refp] > -1/2 ana Re{zn/n} > -1/2 on U.
We now assoclate to each £(z) = zlzlzﬂ h(z)/m) in

AUT;, (0) , the mapping &(z) = 2(h(z))2 € 8° .

Theorem 4.2. [4]

a) For each ¥ €s” and for each B Re{rs}}—’l/z :
there is one and only one f € AUTLh(U) such that
f(z)/(I(z)lzlzﬂ')>0 for every z&U and h(0) = 1.

b) For each a€B , there is a unique solution of (1.2)

which is in AUTM(U) d

Remarks.
1, Part a) of Theorem 4.2 is quite surprising. Indeed,
consider ¢ (z) = z/(1—z)2 and (=0 . Then arg f(eit) =
= arg & (o1t = :51' , almost everywhere; however £(U) = U .
To be more precise, the corresponding mapping is
£(z) = 2(1-2z) /(1-z) satisfying £(el%) = =1 for anl
0 £ 151 £IC , and where the cluster set of f at the point 1

is the unit circle. g
2. Part b) of Theorem 4.2 states that 2.1.1) and 2.1.3) in

Theorem 2.1 can be replaced by Z£(U) =T .,
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STRESZCZENIE

Podano przegliad najwaznlejszych wiasnoécl odwzorowart log-
<harmonicznych, tzn. réinowartoéciowych, lokalnle quasikonforemnych
odwzorowarn { kota jednostkowego w plaszczyzn@ zespolons, majqcych
postaé f(z) = zlziz"" h(z);?z_) + gdzie (& , h, g speiniajq warunki
(1.1a)=(1.1.c), wzglednie réwnowazny warunek (1.2).

PE3K¥E

[lpeacTaBreHAu? 0630p cCaMhWx BaAxXHHX CBO#CTB ZOr-rapuMoRMyec-
Kknx orobpaxeHufl AN OAHOXUCTHHX, JOKAALHO xnaauxou@opuugﬁ oTo6-
paxeanfi f enMAMUROro kpyra B mzockoctm ouma £(z) = z|z|“h(z) 2(z)
rxe h,g.p YHOBAETBOPADT YCAOBHAM (1.1.a) ~ (1.1.0) mam dkBuBA-~
AeRTHOMY yCAOBMD (1.2) .






