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The Maximum of |a31 + A|a21 for Bounded Univalent Functions 

Maksimum wyrażenia |«31 + A|o21 dla funkcji jednolistnych ograniczonych

Abstract. In the class 5(6) of bounded univalent functions the coefficient body (a2,a3) is 
thoroughly analyzed. This allows estimating |<l3| in terms of |a2 |. Hence, instead of the classical 
linear combination |a3 + Ao2 | one is able to maximize also |a3| + A|a21. This slight modification 
appears to give rise to involved estimations which for certain b- intervals remain necessarily computer 
based Moreover, strong tangential effects exist, yielding some endpoints needed with unsatisfactory 
accuracy.

1. Introduction. Consider the class

5(6) = {/|/(2) = 6(2 + a222+...),|/(*)l<l, 0 < 6 < 1}

of bounded normalized univalent functions analytic in the unit disc U: |2| < 1. The 
leading coefficient ft, constant in S(b), characterizes the class. The limit process b —» 0 
allows a uniform approximation of

S= {F\F(z) = z + a2z2 +

the class of not necessarily bounded normalized univalent functions. Thus, in this 
sense,

S = 5(0).

In 5(6) the coefficient problems are essentially harder than those in S. This is 
mainly due to the fact that in 5(6) extremal functions usually vary with the index n 
depending, of course, on the problem and the value of 6 in question. Already the first 
indexes may offer quite involved estimations, as can be seen in what follows.

There exist certain traditional functionals which have been used in testing the 
knowledge available. The ’’founding” one is |a3 + Aa2| which is maximized in 5(6) for 
real A, e.g. in [3] and for complex A in [2]. More recently use is made of the functional 
|a3 + Aa2| which in 5(6) was studied in [5]. The aim of the present paper is to discuss 
such a test case which needs the complete characterization of the first non-trivial 
coefficient body (a2,a3) in 5(6). In [6] first tries in this direction were made when
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estimating (031 in terms of |«t21- It appears that the functional |d31 + A|a21 serves us 
well. The maximizing of it requires, indeed, all the facts available for (a2,a3) and 
is just on the limit of solvability. Altogether, the distance between the present and 
previously mentioned functionals seems to be large enough to be publicized.

If the maximum of |o31 in |a2| is available the same holds also for the maximum 
of |o31 + A|a2|. This is finally to be maximized in the variable left i.e. in x = |a2| 6 
[0,2(1 - 6)].

Let us start by mentioning those basic facts of the coefficient body (a2, a3 ) which 
yield the estimation of |a31 to be needed. It appears that this estimation is straight
forward save in the interval 0.5 < b < e-1/2. There the most complicated part of the 
coefficient body, with nonsymmetric boundary functions, is involved and necessitates 
computer based comparisons.

2. The boundary of the coefficient body (a2,a3). In [4], [5] and [6] the 
coefficient body (a2, a3 ) was normalized by rotation

T-1/(r«), r = e'v,

so that a2 = |a21 > 0. Thus, it is located in the upper half of the space (JV, Y,Z) with 
X = Re a3, Y = Im a3, Z = a2. The plane Z — a2 = constant yields the intersection 
AT(a2), the boundary of which can be presented by aid of three types of arcs to be 
called I, II and III. Let us consider these arcs more closely.

In I the boundary function f is of the type 2:2. This means that f(U) is a slit do
main where the slit system has 2 starting points and 2 endpoints. The corresponding 
notation will be applied for other extremal functions and domains, too.

We may parametrize the points of I by using the rotation angle v . According to 
[5], p. 11, we can summarize the result as follows.

Summary 1. The boundary points 1 C cW(a2) are connected with /unctions 2:2 
with two unequal diametral radial slits. I w a circular arc:

I“’ ' (1 + 2¿6)|a2,2| = Ä = 1 - 62 + Í1 + -¿fc)la’l2 °)'

The points of this can be located by using v as follows:

-<v<v0 = <
zr, |a2| < 26|lnf»|;
__ 2b In b

la21 > 26|lnfe|,
l«2|

Re a3 = (1 + |a2|2 + 7?cos2u,

Im a3 = — 7?sin2t>.

Thus, I is a whole circle for |a2| < 26| In 6| and a part of a circle for |a2| > 26| In ft|.

The gap left in I C 97V(a2) is filled by a more complicated arc II ([5], p. 19):
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Summary 2. The boundary points on the arc II C dN(a2) belong to the functions 
1:2 with a forked slit. The points of the upper half of II, parametrized in v, are 
determined through the formulae

'__ 26 In 6
arc cos —r- = t>o < v < 7r,

l«2|
g In g - g + 6 - lg2_ q. g = g(a2) e [6,1],

' Re a3 =*|a212 + 2g|a2|cosu + (1 — 62 + 2(g - 6)2)cos2t>,

Im a3 = —2g|a2|sinv — (1 - 62 + 2(g — 6)2)sin2v;

E(g) = — g2 — g arc cos g — ||o2|sint> > 0.

The existence condition E(a) > 0 ([5], p. 19) yields the interval 26| In 6| < kl< 
|a21 for which the ivhole II C 9JV(a2). The double root of E(b) — 0 determines |«2|:

E(a) = \/l. — cr2 — a arc cos g — (g

, 2(glng — g + 6) f~2a2 = - —=---------- - \/ln2 g +
arc cos g v

In g — g + 6) —------ = 0,
arc cos g

(arc cos g)2.

For the remaining interval |d2| < |a2| < 2(1 — 6) there is a gap in II (in the upper 
and lower parts which are symmetric with respect to the X axis) which is filled by the 
arc III CdN(a2)fi

i
The final arc III is governed by the results of [5], p. 45. The limiting values 

foi > V02 of the gap in II are obtained from the above existence condition.

Summary 3. The boundary points on the arc III C dX(a2) are connected with 
the functions 1:1 with one curved slit. Again, take the upper half of III, parametrized 
in v.

vG]vOi,Wo2[; vOi and v02 satisfy:

( £(6) = \/l - g2 - garccosg --|a2|\/l - cos2 >• = 0,

2
cos v = r—v(g In g — g + 6).

I«2|

The points of III are expressed in two variables a,ui, located in a triangle T ([5], 
p. 46). With the normalization to be stated below for U and 1 the triangle T C the
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first quadrant of the au -plane. The connection between a and lj for a given |<*21 can 
be deduced from |a212 — U2 + V2, where

Ü = |a21 cos v = Ci In--------1- C2 (cot a — cot u) + a — u>) < 0,
cosu)

ii- , sma<i2 sin v = C2 In —----sin tv + Ci (tan a — tanw — a + u>) > 0;

_ sma —&smw
Ci = 2——------r- cos a cos u),sin(a — w)

C2 =2

For the points of 111 holds finally:

cos a — b cos w 
sin(a — w)

sin a sin tv.

Re a3 =|a212 + |a2|(Ci cosv + C2 sinv) + cos2t)(l — b2 + CiC2(tana — tanw)

C2 z . —2 . —2
----— (sin Q ~ Sln W)b

Im a3 =|a2|(C2 cosv — Ci sinv) — sin2v[l — b2 + CiC2(tana — tana?)

V

«

With respect to the endpoints of the arc III there are two alternatives (cf. Figure 
3) 1° t>oi belongs to the intersection II D III or 2° vOi belongs to I D III. In the 
case 1° voi is obtained from (*) and also from the Ci,C2-formulae for w = 0. In 
the case 2° we are on the boundary Eire of T where cos a = ftcosw and hence (cf. [5] 
pp. 33-35):

6 = a3-a22= Cir-’a2 + r"J(l - b2), Cj = 0, C, = 2<r;

a = cos a = fecosu).

For the points of I Summary 1 yields

b = 6° + Re-’2’’, R — \

Hence for r at the intersection:

o - 2or-1 |a2| + r-2(l - 62) = i’ + (l - 6* + ^j)r_2

2c°8a = 2a=fei(T + r_1)i

2 In 6cos i) = -—r cos a.
|ai|
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Thus we have in the above cases:

Completion of Summary 3. In the case II n III uOi w determined directly 
from (*). In the case I D III for the endpoint (a,w) and for the corresponding uOi — u 
holds |nj|’-r2 + r2,

U = 2<7 In b,

, V = 2<r(tana — tanw — o + w),

<7 — cos a = 6cosw,

26 In 6cos t> = —;—i- cos a.
|a,|

3. The sharp estimates of |a31'in |a2|. According to the analysis in [6], the 
following sharp upper bounds, connected with I, are valid.

1) e"1/2 < 6< 1

(1) |o3|<l-62-|a2|’, 0 < |<x2| < 2(1 - fr).

Equality holds for the whole |a2|-interval, at the left diametral point of AT(a2) and 
the equality function is of the type 2:2 with two unequal radial slits along the same 
diameter.

2) 0 < b < e"’/2

(2) |aj|<l-&2 + (l +A-W’ 0 < l«21 < 26|In6|.
In b

On the above sharpness interval equality is reached for 2:2-mappings with two sym
metric curved slits at the right diametral point of A(a2). The inequality (2) remains 
to be true, but unsharp, up to the point 2(1 - 6).

The cases 1) and 2) are united to yield (2) at

3) 6 = e-1/2
In this case there is a one parametric family of extremal functions which belong 

to the points of I. The family starts from unsymmetric radial slit case 2:2 mentioned 
above and evolves through unsymmetric curved 2:2- cases up to the final one which is 
either symmetric curved 2:2-case, symmetric or unsymmetric limiting l:2-case and 
finally curved l:l-case with one slit shrinked to a point. All these extremal domain 
types are schematically presented in Figure 1.

If 0 < b < e~i/2 and |a21 > 26| In 6) the arcs II and III yield the following result 

0 < 6 < 0.5 < e~1/2, |a2| >26|ln6:

(3)
i l«31 < l«212 - 2|a2|a + 1 - b2 + 2(<r - 6)2,
( <rln<7 — <7 + 6 + j |a21 = 0; <7 = <7(|«2p € 1&, !]•
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The estimation is sharp for 2f>| In 6| < |a2 | < 2(1 — 6) and the equality holds at the 
right diametral point of Nfaj) i.e. for the symmetric l:2-mapping.

Finally, the interval left, 0.5 < b < e~^2, with |a2| > 26| In 6| requires analyzing 
thoroughly the points of III, by using the formulae in Summary 3. The results are 
best expressed in connection of the final combination |a31 + A|a21 we now turn to 
maximize.

4. Maximizing |a3| + A(o21 by symmetric extremal functions. The max
imum of |a31 for a fixed |a2| implies similarly maximum for the functional |a3| + 
A|a21, A E R. This is finally to be maximized in the variable left: |a2| = x E 
(0,2(1 — 6)]. Let us consider this problem on the intervals found in Section 3.

a) e_1/2 < 6 < 1; F,
According to (1)

(4) |a31 + A|a21 < 1 - 62 + Ax - x2 = 1 - 62 + ^j- - (x - ^)2 = F,(z)

A2<! - i* + A-.
4

Equality in the last estimation is reached for z = y 6 (0,2(1 — 6)] provided 

0< A <4(1-6).

Both estimations are sharp simultaneously, because z = |a2| = £ E [0,2(1 — 6)]. 
If e-1/2 < 6 < 1 the extremal function is uniquely of radial 2:2-type with usually 
unequal slits. At 6 = e-1^2 there hold the following one-parametric extremal families:

0 < A < 2e-1/2: The extremal function starts from radial 2:2-function pro
ceeding to symmetric curved-slit 2:2-function which, at A = 2e-1/2 is the limiting 
symmetric l:2-case.

2e_|/2 < A < 4(1 — e-1/2): Again, the extremal type starts from radial 2:2- 
function and ends up to unsymmetric limiting l:2-case which finally is of limiting 
2:2-type with one slit shrinked to a point (cf. schematic presentation in Figure 1).

The upper bound Fi(z) = 1 — 62 + Ax — x2 in (4) is maximized at z = 2(1 — 6) 
if A > 4(1 — 6) | > 2(1 — 6). Similarly, if A < 0 Fj is maximized at z = 0.
The former extremal case is the radial slit-mapping and the latter one the symmetric 
radial slit-mapping 2:2. In Figure 1 the extremal domains for e-1/2 < 6 < 1, A g R 
are schematically drawn.

b) 0 < 6< e"’/2; F2
Next apply the estimation (2) which is valid for the whole z = |a2 (-interval 

(0,2(1 — 6)] but sharp only for the interval (0,26| In 6|):

(5) |o31 + A|a2( < 1 - 62 + Ax + (l + ¡^)x2 = F2(z)

= 1 - 62 -
A2

4(1 + h76>
+ (1 + hT6)(x +

2(1 + i^
-r
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Fig. 1.

Depending on the values of A we obtain three different cases.

bj e-1 < ft < e-1/2, 0 < A < 4fc(l + lni>); A<0
In this interval (l + < 0. Therefore

In b

F2(x) < 1 - 62--------
4(l + h?6)

with the equality at x =----------. Taking the sharpness interval into consid-
2(l + l/ln6)

eration we see, that F2 is sharply estimated on the whole interval t 6 [0,2(1 - 6)] 
provided that

x„  -----------1— < —26 In 6
+ In 6

=>

(6) 0 < A <46(1+In6).

The extremal mapping is of curved symmetric 2:2-type reducing to a limiting 
l:2-type at A = 46(1 + In 6) (Figure 2).
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If A < 0 the number x„ — -yrr-,--- -77—rr < 0 which implies that Fj is maximized
2(1 + 1/ m b)

at x — 0 i.e. for the symmetric radial slit-mapping 2:2 (Figure 2). 

b2) b = e-1, A < 0

F2(x) = 1 — b2 + Xx < 1 — ft2.

This estimation is sharp for A < 0, x = 0 i.e. for the symmetric radial-slit mapping 
2:2.

Observe that for A > 0 (6) yields no information at b =■ e-1. The case A = 0 is 
thoroughly studied formerly (e.g. [5], pp. 71-77) and is therefore excluded here.

ba) 0 < 6 < e~’, A <. 0
The factor 1 + —- > 0. Therefore we can expect sharp maximum from (5) only 

In b
if A < 0 and at x = 0. Clearly

F2(0) > F2(2(l - b))

for
|A| = -A>2(l-i)(l + j^).

Thus, the symmetric 2:2 radial-slit mapping yields the maximum if |A| is big enough. 
The exact result requires, however, also the information implied by (3).

c) 0 < b < 0.5 < e~ */2; F2, G 
FYom (3) we obtain

(7)

|«31 + A|a21 < 1 — b2 + 4(o — b - a In <r)2 + 2( A - 2<r)(cr - b - a In a) 

+ 2(tr - b)2 = G,

|a21 = 2(<r — b — a In a) € [26|lnb|,2(l — b)]; <r = tx(|a21) 6 [b, 1].

The connection between |a2| and a is one-ta-one. Therefore G depends on |a2| 
and can be interpreted as a function of a too, for which

dG , / , t A.— = 81n<r(<rln<7 + b - -)„. 
da 4

If b — | e [0,e—1 ], then ( )„ = 0 has a root, to be called <t„, which lies in the 

interval [e~1,1). FYom the sign of — we see that o„ is at least a locally maximizing 
point of G for the A-values for which

4(b - e~’ ) < A < 46.
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If b — 7 < 0 <=> A > 46, then ( )„ < 0 and —— > 0 and hence a = 1 yields the da
maximum for |<»21 =2(1 — 6) i.e. for the radial slit-mapping.

If 6 — 4 > e-1 <=> A < 4(6 — e-1) then ( )0 > 0 and —— < 0 which implies that 
a<7

a = b is the maximizing value in which case |a2| = 26| In b\.
The above concerns the maximizing of G on [26| In 6|, 2(1 — 6)]. The complete

result for |a31 + A|«21 on [0,2(1 — 6)] requires the use of both F2 and G.

ci) e-1 < 6 < 0.5, 46(1 + In 6) < A < 46; A > 46 
If A lies on the first interval, then

0 < 6- - < - 6 In 6. 
4 “

This implies that a„ £ [6,1] and G is globally maximized at that point. For F2 there 
holds

F2(26| ln6|) = A - 46(1 + In 6) > 0, F^x) = 2(1 + <0.In b
Thus on x € [0,2(1 — 6)] the functional |a31 + A|a21 is globally maximized at the point 
corresponding to <ro, i.e. for a symmetric l:2-function (Figure 2).

If A > 46 then

xo > 26|ln6|.

Thus F2 is maximized at x = 26| In 6|. Because 6 — | < 0 G is maximized at a„ = 1. 
Hence |c»31 + A|a21 reaches the maximum at x = 2(1 — 6) i.e. for the radial slit mapping.

c2) 0 < 6 < e-1, 0 < A < 46; A > 46; A < 0
Now 1 + l/ln6 > 0. Take first 0 < A which implies x„ < 0. Therefore F2 is

maximized at x = 26| In 6|. For the first A-interval is 4(6 — e_1) < 0 < A < 46. Hence
G and also |«31 + A|a21 is maximized at a0 i.e. for the symmetric l:2-function.

If we take A > 46 similar reasoning shows that |a31 + A|«21 is maximized by the 
radial slit-mapping.

Let finally A < 0. Now xo > 0 and therefore F2(0) = 1 — b2 might yield the 
maximum for |a3| + A|a21. At least for 4(6 — e-1) < A < 0 there exists co g [e_l, 1] 
which maximizes G. It maximizes also |<J31 + A|a21 if

G(a.)>F2(0) = l-6i.

Consider the equality case. Because ao is the root of ( )„ = 0 we have for it 
A = 4(<t In a + 6), G = 1 - 62 + A(<r - |) + 2(<r - 6)2. Hence, in the equality case 
G(<x0) = F2(0) 4» A(<t - |) + 2(<r - 6)2 = 0. For a0 and A belonging to the limit case 
we thus have

(
A = 4(<rln<7 + 6),

(<r - 6)2 + 2(a In a + 6)(<r - a Ina - 6) = 0.
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In the following Table there are numerical values determining some points of the 
limiting curve A = A(6)

Tab. 1.

6 A = A(6)
e"1 c“1 0
0.35 0.446 036 140 -0.040438564
0.3 0.515348288 —0.166'522'916
0.25 0.558798 102 —0.300'808’328
0.2 0.593010 158 —0.439495008
0.15 0.622T59601 -0.581 004821
0.1 0.648045493 —0.724’473'971
0.05 0.671'627'813 -0.869'368'333
io-2 0.693062266 —1.012404738
IO“9 0.693485T83 -1.015*332*776

For A < A < 46 the symmetric l:2-mapping is the extremal one. For A < A the 
symmetric 2:2-radial slit-mapping is the maximizing one. On A = A itself both of 
those types hold simultaneously.

In the terminal case 6 = 0 (8) yields for a / 0:

<7„ = = 0.693485 184,

A = —2(\/3 - l)e 2 = -1.015 332 778.

The maximal |a31 + A|a21 = 1 and is attained also by the symmetric 2:2-radial slit
mapping. The results are schematically illustrated in Figure 2.

By the comparison consider the neighboring point 6 = 0, A = — 1 in which 
max (|a3| - |a2|) = G{ao') = j + <To(2<to - 1) = 1.029, where 4<roln<70 + 1=0. This 
agrees with the result of [1], p. 114.

d) 0.5 < 6 < e-*/»; G
Now move on to consider the troublesome interval d) where also unsymmetric 

extremal domains for |a3| exist. Here we must rely upon the results of [6], pp. 306-311. 
According to this (7) remains to hold for the maximum so far as

26| In 6| < |o2| < <r(b)(9)

where a(6) is the root of

(10) <7 In <7 — — + 6 = 0.
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The maximal |a3| + A|«21 is found from maximal G — G(<r0), where a0 is the root of

(11) <7 In (7 + 6- - = 0. 4
The extremal domain is of symmetric l:2-type. The largest A for which the above 
remains to hold is the smallest A of next Section. This A appears to be

A = 2er(fe),

as will be seen in Section 5, e).

5. Maximizing |«3| + A|n2| by nonsymmetric extremal functions,

e) 0.5 < 6 < e-’/2; 2(7(6) < A < 2|n2(6)| — A(6)
According to [6], p. 310, the smallest |o2| for which |o31 is still maximized by 

non-symmetric 1:2 mappings is

|n2| = d(6),
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the root of (10). The maximal |«31 is

|a3| = 1 — 62+2(<r —6)2 — |a2|2.

Thus
|«31 + A|o2 I < -x2 + Ax + 1 - fc2 + 2(<t - b)2 = F3(.t) 

= l-52+2(a-6)2 + ^-(x-^)2 

<l-62+2(<7-i>)2 + y,

with the equality at

a(6) < |a2| = * = £•

This yields for A in e)

(12) A > 2a(6), a In a — — + 6 = 0,

where equality is the limit case in d).
Next, ask for the upper bound of A for which the above 1:2 extremal type still 

holds. According to Summary 2 we have in the limiting case

E(a) = \/l — a2 — <rarccos<7 - ^|<i2|\/l — cos2 u = 0,

cos v = ?—r(<7 In a — a + 6), 
l«2l

<7 In <7 — — + 6 = 0 => <7 = d = d(6)

cos v = —
l«2|’

\/l - <72 - <7 arc cos (7 - ~ =

=> ___ _
(n2(2 = |«212 = <72 + (2y/l - <72 — atffccoser)2.

The largest |«21 = |a2| yields the largest A = A so that |fi2( =

(13) A < A(6) = 2|n2| = 2yJa2 — (2\/l - a2 - darccosar)2.
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In Table 2 there are some numerical values for the limits (12) and (13). In Figure 
4 is the region of unsymmetric 1:2 extremal cases for the interval

2d(6) < A < A(6).

b <7

Tab. 2.

2er(6) 2|a3(6)| = A(t)
e-V2 0.606'530'660 1.213061 319 1.541015982
0.606 0.632 078 626 1.264 157252 1.527886918
0.603 0.673 141 177 1.346 282 354 1.525'263’534
0.6 0.697 688043 1.395376 086 1.533'825'577
0.59 0.753’547’402 1.507094804 1.577'888'895
0.58 0.794'568'895 1.589 137790 1.628'279'621
0.57 0.828 893142 1.657786284 1.679*512*550
0.56 0.859T6T676 1.718'323'352 1.730011'824
0.55 0.886'632'605 1.773'265'210 1.779*165*964
0.54 0.912 022416 1.824 044 832 1.826721*330
0.53 0.935785 255 1.871'570'510 1.872*582*862
0.52 0.958230497 1.916'460'994 1.916732*519
0.51 0.979'580 163 1.959'160'326 1.959*191*294
0.5 1 2 2

f) 0.5 < 6 < e-1/2; A > A(6)
Until now we have been dealing with the extremal domains of the type 2:2 or 1:2 

and their limit cases. On the strip f) left these rather simple types are no more valid. 
The maximum will be reached by extremal functions of the type 1:1. The parametric 
presentation of the boundary arc III is described in Summary 3. According to it the 
boundary domain of the curved l:l-type is determined by a point (a,w) € T (Figure 
3). In order to understand how the extremal curved l:l-type is shifted to a radial 
slit-mapping, we may consider certain niveau-lines ¡«2! = constant and determine 
the points (q,w) maximizing |c»31. In Figure 3 there are examples of two main cases, 
6 < 0.6 and 6 > 0.6. If b < 0.6, the extremal point (a,w) tends to the origin and if 
b > 0.6 to the point (?r/2,7r/2). Consider the first case more closely.
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Fig. 3.

In the first case the point (a,u-’) tends to the origin along an arc (Figure 3) and 
hence finally along the tangent of this arc. Hence we may put w = ka (0 < k < 1) 
and will find the following developments by using the formulae of Summary 3:

| o 21 = 2(1 — b) + A/] a2 + Af2<*4 + . • •,

|a3| = |f?3| + Ma2+AT2a4+...;

|<i31 + A|a21 — |I?31 + A • 2(1 — b) + (N\ + AA/i )a2 + (N2 + AA/2 )q4 + ... . 

The radial slit-mapping is the extremal one provided

TVj + \Mi <0, N2 + \M2 < 0.

The equality requires for the limiting A and fc:

=
Af, M2(15)
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The numbers M,, 2V, and R3 are determined by the following expressions:

Ai, = (1 - 6) k2 In2 k ,

M, = - [3-(4 + 24)t-5(l -HP+(2 + 4i)P - 3»e]

1 kink f 
+ 3 1 - k [ 

4-1(1-4)

2 + (1 - b)k + (1 - b)k2 - 2bk2 - 2bk3) +

' k2 In2 k
.(1-fc)2

ar 2 Ql + R3Q2 + R3R2 
j\j2 — — ■;

Hnly-^(3 + 2(l-6)fc-36fc2)

t - *) + - 4(1 - 3)H,

Q2 = ■ ■ 1 [36 - (2 + 56 + 262)fc + (-4 + 46 - 662)fc2 + (-8 + 206 - 662)fc3
•)( 1 A’j

+ (2 + 56- 1662 )k4 + (—36 + 662)fc5]

+ | In * - 1) [2 + (1 - b)k + (1 - 6)fc2 - 26fc3]

+ 2(to^-i)n,tt3 + 2(1_t)t3tt!1|.

R2 = ---- ?— [-2 + 46 + (6 - 66 - 262)fc + (6 - 126 + 662 )k2 + (2 - 66 + 2b2 )k3
3(1 — fc)1

+(-46 + 662)*«] + ? [-36+(6 + 262)fr H 12 - 136 + 462 )fc2+(-96 + 662)P]
3 (1- k)

/?s = (l-6)(3-56).

=
RzQx + jflf

fl3
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In Table 3 are examples of solutions of the system (15). The solutions disappear 
on certain k interval, the endpoints of which are connected with double roots of (15). 
However, as will be seen, all the solutions of (15) are not necessarily connected with 
the boundary curve in question, on which we write A = A(ft).

Tab. 3.

6 k A(&)
0.51 0.000 000 000 034 2.040 000 000 041
0.52 0.000 010 005 2.080010313
0.53 0.000912958 2.120'504'746
0.532259525 0.002 800 001 2.128'848'489

0.556861T38 0.017’873‘790 2.281’895‘555
0.56 0.036032445 2.318'413'422
0.57 0.101'969'439 2.479 066 567
0.58 0.228'182498 2.815T94744
0.59 0.478’278’419 3.861'230’351

At b = 0.6 the system (15) yields no solution. Actually at this point the curved 
1:1-mapping remains to hold when A —♦ +oo, i.e. the boundary curve A = A(6) has a 
straight line 6 = 0.6 as a vertical asymptot.

There exists another possibility for shifting from curved l.T-extremal to the radial 
slit-case: The maximum dies out inside the triangle T leaving to the line segment OP 
the maximizing role. The (»-interval where this happens appears to be, determined 
by PC-accuracy,

(16) 0.522 < b < 0.575.

Sharpening the endpoints by one decimal requires five more decimals in computations. 
In Table 4 there are examples of the boundary A = A(6), on which two simultaneous 
extremal domains exist, one is of curved l:l-type obtained at the point (a,/J), and 
the second is the radial slit-mapping (Figure 4).

Tab. 4.

b A = A(6) A = A(6) Q
0.53 2.120505 2.120761 0.002'126 0.000 001
0.54 - 2.166601 0.001 037 0.000004
0.55 - 2.226 967 0.000819 0.000012
0.56 2.318413 2.318 853 0.000628 0.000 027
0.57 2.479067 2.479 075 0.000533 0.000055
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There remains the strip 0.6 < b < e-1/2, A > A(6). Now passing to the limit 
of radial slit-mappings means that the maximal point (o,w) converges to the point 
P = (tr/2, tr/2) tangentially, i.e. along the straight line

The system (15) appears to be invariant for the alteration

TT

2’

the numbers Mi and Ni are actually covariant i.e. only their signs are changed in this 
mapping. This implies that the numbers k > b~' and A are obtained again from 115). 
Moreover, if

0.606'499'102 = bo<b< e~I/a = 0.606530659

then fc = ft-1 and the expression of the quantity A = A(fc) is simplified in this interval 
to the form

A(6) = 4(1 - &){ 1 +
(1 + 21nfe)[2(l - fc) + (1 h &)lnfr]

(3 - 56)[ln2 6 - (1 - 6)2/fe]
}

In Table 5 there are examples of A(fe) in 0.6 < b < b0.

Tab. 5.

b A = A(6)
0.601 19.628 799892
0.602 8.964'265'801
0.603 5.410‘841'505
0.604 3.635T92986
0.605 2.570’652'838
0.606 1.861'664'495
bo = 0.606499T02 1.589'670'589
0.6065 1.589 219 481
e“1/2 = 0.606'530'659 1.573'877’364 = 4(1 — e-1/2)
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Fig- 4.
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STRESZCZENIE

W pracy tej badano szczegółowo obszar zmienności ((I2, <33 ) współczynników funkcji klasy S(6) 
ograniczonych funkcji jednolistnych. Umożliwia to oszacowanie |«31 w terminach |«21. Zamiast 
rozpatrywać klasyczne wyrażenie |«3 + Afl21 można oszacować od góry wyrażenie |«3 | -+- A|«21• Ta 
drobna modyfikacja pozwala uzyskać skomplikowane oszacowania dla pewnych przedziałów zmien
ności parametru b przy pomocy komputera. Jednakże pewne efekty związane z zachowaniem się 
stycznych nie pozwalają na określenie z dostateczną dokładnością końców tych przedziałów.
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