LUBLIN-POLONIA

VOL. XIIV, 9
SECTTIO A

Department of Mathentatirs
Iniversity of Helsinki

O. TAMMI

The Maximum of $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ for Bounded Univalent Functions
Maksimum wyrażenia $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ dla funkcji jednolistnych ograniczonych

Abstract

In the class $S(b)$ of bounded univalent functions the coefficient body $\left(a_{2}, a_{3}\right)$ is thoroughly analyzed. This allows estimating $\left|a_{3}\right|$ in terms of $\left|a_{2}\right|$. Hence, instead of the classical linear combination $\left|a_{3}+\lambda a_{2}\right|$ one is able to maximize also $\left|a_{3}\right|+\lambda\left|a_{2}\right|$. This slight modification appears to give rise to involved estimntions which for certain b-intervals remain necessarily computer based. Moreover, strong tangential effects exist, yielding some endpoints needed with unsatisfactory accuracy.

1. Introduction. Consider the class

$$
S(b)=\left\{f\left|f(z)=b\left(z+a_{2} z^{2}+\ldots\right),|f(z)|<1,0<b<1\right\}\right.
$$

of bounded normalized univalent functions analytic in the unit disc $U:|z|<1$. The leading coefficient b, constant in $S(b)$, characterizes the class. The limit process $b \rightarrow 0$ allows a uniform approximation of

$$
S=\left\{F \mid F(z)=z+a_{2} z^{2}+\ldots\right\},
$$

the class of not necessarily bounded normalized univalent functions. Thus, in this sense,

$$
S=S(0)
$$

In $S(b)$ the coefficient problems are essentially harder than those in S. This is mainly due to the fact that in $S(b)$ extremal functions usually vary with the index n depending, of course, on the problem and the value of b in question. Already the first indexes may offer quite involved estimations, as can be seen in what follows.

There exist certain traditional functionals which have been used in testing the knowledge available. The "founding" one is $\left|a_{3}+\lambda a_{2}^{2}\right|$ which is maximized in $S(b)$ for real λ, e.g. in [3] and for complex λ in [2]. More recently use is made of the functional $\left|a_{3}+\lambda a_{2}\right|$ which in $S(b)$ was studied in [5]. The aim of the present paper is to discuss such a test case which needs the complete characterization of the first non-trivial coefficient body (a_{2}, a_{3}) in $S(b)$. In [6] first tries in this direction were made when
estimating $\left|a_{3}\right|$ in terms of $\left|a_{2}\right|$. It appears that the functional $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ gerves us well. The maximizing of it requires, indeed, all the facts available for (a_{2}, a_{3}) and is just on the limit of solvability. Altogether, the distance between the present and previously mentioned functionals seems to be large enough to be publicized.

If the maximum of $\left|a_{3}\right|$ in $\left|a_{2}\right|$ is available the same holds also for the maximum of $\left|a_{3}\right|+\lambda\left|a_{2}\right|$. This is finally to be maximized in the variable left i.e. in $x=\left|a_{2}\right| \in$ [0, 2(1-b)].

Let us start by mentioning those basic facts of the coefficient body $\left(a_{2}, a_{3}\right)$ which yield the estimation of $\left|a_{3}\right|$ to be needed. It appears that this estimation is straightforward save in the interval $0.5<b<e^{-1 / 2}$. There the most complicated part of the coefficient body, with nonsymmetric boundary functions, is involved and necessitates computer based comparisons.
2. The boundary of the coefficient body $\left(a_{2}, a_{3}\right)$. In [4], [5] and [6] the coefficient body (a_{2}, a_{3}) was normalized by rotation

$$
\tau^{-1} f(\tau z), \quad \tau=e^{i v}
$$

so that $a_{2}=\left|a_{2}\right| \geq 0$. Thus, it is located in the upper half of the space (X, Y, Z) with $X=\operatorname{Re} a_{3}, Y=\operatorname{Im} a_{3}, Z=a_{2}$. The plane $Z=a_{2}=$ constant yields the intersection $N\left(a_{2}\right)$, the boundary of which can be presented by aid of three types of arcs to be called I, II and III. Let us consider these arcs more closely.

In I the boundary function f is of the type 2:2. This means that $f(U)$ is a slit domain where the slit system has 2 starting points and 2 endpoints. The corresponding notation will be applied for other extremal functions and domains, too.

We may parametrize the points of I by using the rotation angle v. According to [5]. p. 11, we can summarize the result as follows.

Summary 1. The boundary points I $\subset \partial N\left(a_{2}\right)$ are connected with functions $2: 2$ with two unequal diametral radial slits. I is a circular arc:

$$
\left.\left.\left|a_{3}-\left(1+\frac{1}{2 \ln b}\right)\right| a_{2}\right|^{2}\left|=R=1-b^{2}+\left(1+\frac{1}{2 \ln b}\right)\right| a_{2}\right|^{2} \quad(\geq 0)
$$

The points of this can be located by using v as follows:

$$
\begin{cases}\frac{\pi}{2} \leq v \leq v_{0}= \begin{cases}\pi, & \left|a_{2}\right| \leq 2 b|\ln b| \\ \overline{\operatorname{arc}} \cos \frac{2 b \ln b}{\left|a_{2}\right|}, & \left|a_{2}\right| \geq 2 b|\ln b|\end{cases} \\ \operatorname{Re} a_{3}=\left(1+\frac{1}{2 \ln b}\right)\left|a_{2}\right|^{2}+R \cos 2 v \\ \operatorname{Im} a_{3}=-R \sin 2 v\end{cases}
$$

Thus, I is a whole circle for $\left|a_{2}\right| \leq 2 b|\ln b|$ and a part of a circle for $\left|a_{2}\right|>2 b|\ln b|$.
The gap left in $I \subset \partial N\left(a_{2}\right)$ is filled by a more complicated arc II ([5], p. 19):

Summary 2. The boundary points on the arc II $\subset \partial N\left(a_{2}\right)$ belong to the functions 1:2 with a forked slit. The points of the upper half of II, parametrized in v, are determined through the formulae

$$
\left\{\begin{array}{l}
\overline{\operatorname{arc}} \cos \frac{2 b \ln b}{\left|a_{2}\right|}=v_{0} \leq v \leq \pi \\
\sigma \ln \sigma-\sigma+b-\frac{\left|a_{2}\right| \cos v}{2}=0 ; \quad \sigma=\sigma\left(a_{2}\right) \in[b, 1] \\
\operatorname{Re} a_{3}=\left|a_{2}\right|^{2}+2 \sigma\left|a_{2}\right| \cos v+\left(1-b^{2}+2(\sigma-b)^{2}\right) \cos 2 v, \\
\operatorname{Im} a_{3}=-2 \sigma\left|a_{2}\right| \sin v-\left(1-b^{2}+2(\sigma-b)^{2}\right) \sin 2 v \\
E(\sigma)=\sqrt{1-\sigma^{2}}-\sigma \overline{\operatorname{arc}} \cos \sigma-\frac{1}{2}\left|a_{2}\right| \sin v \geq 0 .
\end{array}\right.
$$

The existence condition $E(\sigma) \geq 0([5], \mathrm{p} .19)$ yields the interval $2 b|\ln b|<\left|a_{2}\right| \leq$ $\left|\bar{a}_{2}\right|$ for which the whole II $\subset \partial N\left(a_{2}\right)$. The double root of $E(b)=0$ determines $\left|\hat{a}_{2}\right|$

$$
\left\{\begin{array}{l}
E(\sigma)=\sqrt{1-\sigma^{2}}-\sigma \overline{\operatorname{arc}} \cos \sigma-(\sigma \ln \sigma-\sigma+b) \frac{\ln \sigma}{\overline{\operatorname{arc}} \cos \sigma}=0, \\
\left|\tilde{a}_{2}\right|=-\frac{2(\sigma \ln \sigma-\sigma+b)}{\overline{\operatorname{arc} \cos \sigma} \sqrt{\ln ^{2} \sigma+(\overline{\operatorname{arc}} \cos \sigma)^{2}}} .
\end{array}\right.
$$

For the remaining interval $\left|\tilde{a}_{2}\right|<\left|a_{2}\right|<2(1-b)$ there is a gap in II (in the upper and lower parts which are symmetric with respect to the X-axis) which is filled by the arc III $\left.\subset \partial N\left(a_{2}\right)\right)$.

The final arc III is governed by the results of [5], p. 45. The liniting values v_{01}, v_{02} of the gap in II are obtained from the above existence condition.

Summary 3. The boundary points on the arc III $\subset \partial N\left(a_{2}\right)$ are connected with the functions 1:1 with one curved slit. Again, take the upprr half of III, parametrized in v.
(*)

$$
\left\{\begin{array}{l}
v \in\left|v_{01}, v_{02}\right| ; \quad v_{01} \text { and } v_{02} \quad \text { satisfy: } \\
E(b)=\sqrt{1-\sigma^{2}}-\sigma \overline{a r c} \cos \sigma-\frac{1}{2}\left|a_{2}\right| \sqrt{1-\cos ^{2} r}=0 \\
\cos v=\frac{2}{\left|a_{2}\right|}(\sigma \ln \sigma-\sigma+b)
\end{array}\right.
$$

The points of III are expressed in two variables α, ω, located in a triangle T ([5], p. 46). With the normalization to be stated below for \tilde{U} and \tilde{V} the triangle $T \subset$ the
first quadrant of the $\alpha \omega$-plane. The connection between α and ω for a given $\left|a_{2}\right|$ can be deduced from $\left|a_{2}\right|^{2}=U^{2}+\tilde{V}^{2}$, where

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\tilde{U}=\left|a_{2}\right| \cos v=C_{1} \ln \frac{\cos \alpha}{\cos \omega}+C_{2}(\cot \alpha-\cot \omega+\alpha-\omega) \leq 0 \\
\tilde{V}=\left|a_{2}\right| \sin v=C_{2} \ln \frac{\sin \alpha}{\sin \omega}+C_{1}(\tan \alpha-\tan \omega-\alpha+\omega) \geq 0
\end{array}\right. \\
\left\{\begin{array}{l}
C_{1}=2 \frac{\sin \alpha-b \sin \omega}{\sin (\alpha-\omega)} \cos \alpha \cos \omega \\
C_{2}=2 \frac{\cos \alpha-b \cos \omega}{\sin (\alpha-\omega)} \sin \alpha \sin \omega
\end{array}\right.
\end{array}\right.
$$

For the points of III holds finally:

$$
\left\{\begin{aligned}
\operatorname{Re} a_{3}= & \left|a_{2}\right|^{2}+\left|a_{2}\right|\left(C_{1} \cos v+C_{2} \sin v\right)+\cos 2 v\left[1-b^{2}+C_{1} C_{2}(\tan \alpha-\tan \omega)\right. \\
& \left.-\frac{C_{2}^{2}}{2}\left(\sin ^{-2} \alpha-\sin ^{-2} \omega\right)\right] \\
\operatorname{Im} a_{3}= & \left|a_{2}\right|\left(C_{2} \cos v-C_{1} \sin v\right)-\sin 2 v\left[1-b^{2}+C_{1} C_{2}(\tan \alpha-\tan \omega)\right. \\
& \left.-\frac{C_{2}^{2}}{2}\left(\sin ^{-2} \alpha-\sin ^{-2} \omega\right)\right]
\end{aligned}\right.
$$

With respect to the endpoints of the arc III there are two alternatives (cf. Figure 3) $1^{0} \quad v_{01}$ belongs to the intersection II \cap III or $2^{\circ} \quad v_{01}$ belongs to I \cap III. In the case $1^{\circ} v_{01}$ is obtained from ($*$) and also from the C_{1}, C_{2}-formulae for $w=0$. In the case 2° we are on the boundary arc of T where $\cos \alpha=b \cos \omega$ and hence (cf. [5] pp. 33-35):

$$
\begin{aligned}
& \delta=a_{3}-a_{2}^{2}=C_{1} \tau^{-1} a_{2}+\tau^{-2}\left(1-b^{2}\right), C_{2}=0, C_{1}=2 \sigma \\
& \sigma=\cos \alpha=b \cos \omega .
\end{aligned}
$$

For the points of I Summary 1 yields

$$
\delta=\delta^{0}+R e^{-i 2 v}, \delta^{0}=\frac{\left|a_{2}\right|}{2 \ln b}, R=1-b^{2}+\frac{\left|a_{2}\right|^{2}}{2 \ln b}
$$

Hence for τ at the intersection:

$$
\begin{aligned}
\sigma=2 \sigma \tau^{-1}\left|a_{2}\right|+\tau^{-2}\left(1-b^{2}\right) & =\delta^{o}+\left(1-b^{2}+\frac{\left|a_{2}\right|^{2}}{2 \ln b}\right) \tau^{-2} \\
\Rightarrow \quad 2 \cos \alpha=2 \sigma & =\frac{\left|a_{2}\right|}{2 \ln b}\left(\tau+\tau^{-1}\right) ; \\
\cos v & =\frac{2 \ln b}{\left|a_{2}\right|} \cos \alpha .
\end{aligned}
$$

Thus we have in the above cases:
Completion of Summary 3. In the case II \cap III v_{01} is determined directly from (*). In the case I \cap III for the endpoint (α, ω) and for the corresponding $v_{01}=v$ holds

$$
\left\{\begin{array}{l}
\left|a_{2}\right|^{2}=\tilde{Y}^{2}+\tilde{V}^{2} \\
\tilde{U}=2 \sigma \ln b \\
\tilde{V}=2 \sigma(\tan \alpha-\tan \omega-\alpha+\omega) \\
\sigma=\cos \alpha=b \cos \omega \\
\cos v=\frac{2 b \ln b}{\left|a_{2}\right|} \cos \alpha
\end{array}\right.
$$

3. The sharp estimates of $\left|a_{3}\right|$ in $\left|a_{2}\right|$. According to the analysis in [6], the following sharp upper bounds, connected with I, are valid.
1) $e^{-1 / 2}<b<1$

$$
\begin{equation*}
\left|a_{3}\right| \leq 1-b^{2}-\left|a_{2}\right|^{2}, \quad 0 \leq\left|a_{2}\right| \leq 2(1-b) . \tag{1}
\end{equation*}
$$

Equality holds for the whole $\left|a_{2}\right|$-interval, at the left diametral point of $N\left(a_{2}\right)$ and the equality function is of the type $2: 2$ with two unequal radial slits along the same diameter.
2) $0 \leq b<e^{-1 / 2}$

$$
\begin{equation*}
\left|a_{3}\right| \leq 1-b^{2}+\left(1+\frac{1}{\ln b}\right)\left|a_{2}\right|^{2}, \quad 0 \leq\left|a_{2}\right| \leq 2 b|\ln b| . \tag{2}
\end{equation*}
$$

On the above sharpness interval equality is reached for $2: 2$-mappings with two symmetric curved slits at the right diametral point of $N\left(a_{2}\right)$. The inequality (2) remains to be true, but unsharp, up to the point $2(1-b)$.

The cases 1) and 2) are united to yield (2) at
3) $b=e^{-1 / 2}$

In this case there is a one parametric family of extremal functions which belong to the points of I. The family starts from unsymmetric radial slit case $2: 2$ mentioned above and evolves through unsymmetric curved 2:2-cases up to the final one which is either symmetric curved 2:2-case, symmetric or unsymmetric limiting 1:2-case and finally curved 1:1-case with one slit shrinked to a point. All these extremal domain types are schematically presented in Figure 1.

If $0 \leq b<e^{-1 / 2}$ and $\left|a_{2}\right|>2 b|\ln b|$ the arcs II and III yield the following result

$$
0 \leq b \leq 0.5<e^{-1 / 2}, \quad\left|a_{2}\right| \geq 2 b \mid \ln b:
$$

$$
\left\{\begin{array}{l}
\left|a_{3}\right| \leq\left|a_{2}\right|^{2}-2\left|a_{2}\right| \sigma+1-b^{2}+2(\sigma-b)^{2} \tag{3}\\
\sigma \ln \sigma-\sigma+b+\frac{1}{2}\left|a_{2}\right|=0 ; \quad \sigma=\sigma\left(\left|a_{2}\right|\right) \in[b, 1] .
\end{array}\right.
$$

The estimation is sharp for $2 b|\ln b| \leq\left|a_{2}\right| \leq 2(1-b)$ and the equality holds at the right diametral point of $N\left(a_{2}\right)$ i.e. for the symmetric 1:2-mapping.

Finally, the interval left, $0.5<b<e^{-1 / 2}$, with $\left|a_{2}\right|>2 b|\ln b|$ requires analyzing thoroughly the points of III, by using the formulae in Summary 3. The results are best expressed in connection of the final combination $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ we now turn to maximize.
4. Maximizing $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ by symmetric extremal functions. The maximum of $\left|a_{3}\right|$ for a fixed $\left|a_{2}\right|$ implies similarly maximum for the functional $\left|a_{3}\right|+$ $\lambda\left|a_{2}\right|, \lambda \in \mathbf{R}$. This is finally to be maximized in the variable left: $\left|a_{2}\right|=x \in$ $[0,2(1-b)]$. Let us consider this problem on the intervals found in Section 3.
a) $e^{-1 / 2} \leq b<1 ; F_{1}$

According to (1)

$$
\begin{align*}
\left|a_{3}\right|+\lambda\left|a_{2}\right| & \leq 1-b^{2}+\lambda x-x^{2}=1-b^{2}+\frac{\lambda^{2}}{4}-\left(x-\frac{\lambda}{2}\right)^{2}=F_{1}(x) \tag{4}\\
& \leq 1-b^{2}+\frac{\lambda^{2}}{4}
\end{align*}
$$

Equality in the last estimation is reached for $x=\frac{\lambda}{2} \in[0,2(1-b)]$ provided

$$
0 \leq \lambda \leq 4(1-b)
$$

Both estimations are sharp simultaneously, because $x=\left|a_{2}\right|=\frac{\lambda}{2} \in[0,2(1-b)]$. If $e^{-1 / 2}<b<1$ the extremal function is uniquely of radial 2:2-type with usually unequal slits. At $b=e^{-1 / 2}$ there hold the following one-parametric extremal families:
$0 \leq \lambda \leq 2 e^{-1 / 2}$: The extremal function starts from radial 2:2-function proceeding to symmetric curved-slit $2: 2$-function which, at $\lambda=2 e^{-1 / 2}$ is the limiting symmetric $1: 2$-case.
$2 e^{-1 / 2}<\lambda<4\left(1-e^{-1 / 2}\right)$: Again, the extremal type starts from radial 2:2function and ends up to unsymmetric limiting $1: 2$-case which finally is of limiting 2:2-type with one slit shrinked to a point (cf. schematic presentation in Figure 1).

The upper bound $F_{1}(x)=1-b^{2}+\lambda x-x^{2}$ in (4) is maximized at $x=2(1-b)$ if $\lambda>4(1-b) \Leftrightarrow \frac{\lambda}{2}>2(1-b)$. Similarly, if $\lambda<0 \quad F_{1}$ is maximized at $x=0$. The former extremal case is the radial slit-mapping and the latter one the symmetric radial slit-mapping 2:2. In Figure 1 the extremal domains for $e^{-1 / 2} \leq b<1, \lambda \in \mathbf{R}$ are schematically drawn.
b) $0 \leq b<e^{-1 / 2}$; F_{2}

Next apply the estimation (2) which is valid for the whole $x=\left|a_{2}\right|$-interval $[0,2(1-b)]$ but sharp only for the interval $[0,2 b|\ln b|]$:

$$
\begin{align*}
\left|a_{3}\right|+\lambda\left|a_{2}\right| & \leq 1-b^{2}+\lambda x+\left(1+\frac{1}{\ln b}\right) x^{2}=F_{2}(x) \tag{5}\\
& =1-b^{2}-\frac{\lambda^{2}}{4\left(1+\frac{1}{\ln b}\right)}+\left(1+\frac{1}{\ln b}\right)\left(x+\frac{\lambda}{2\left(1+\frac{1}{\ln b}\right)}\right)^{2} .
\end{align*}
$$

Fig. 1.

Depending on the values of λ we obtain three different cases.
$\left.\mathrm{b}_{1}\right) e^{-1}<b<e^{-1 / 2}, 0<\lambda \leq 4 b(1+\ln b) ; \quad \lambda<0$
In this interval $\left(1+\frac{1}{\ln b}\right)<0$. Therefore

$$
F_{2}(x) \leq 1-b^{2}-\frac{\lambda^{2}}{4\left(1+\frac{1}{\ln b}\right)}
$$

with the equality at $x=-\frac{\lambda}{2(1+1 / \ln b)}$. Taking the sharpness interval into consideration we see, that F_{2} is sharply estimated on the whole interval $x \in[0,2(1-b)]$ provided that

$$
x_{0}=-\frac{\lambda}{2\left(1+\frac{1}{\ln b}\right)} \leq-2 b \ln b
$$

\Rightarrow
(6)

$$
0<\lambda \leq 4 b(1+\ln b) .
$$

The extremal mapping is of curved symmetric 2:2-type reducing to a limiting 1:2-type at $\lambda=4 b(1+\ln b)$ (Figure 2).

If $\lambda<0$ the number $x_{o}=-\frac{\lambda}{2(1+1 / \operatorname{in} b)}<0$ which implies that F_{2} is maximized at $x=0$ i.e. for the symmetric radial slit-mapping 2:2 (Figure 2).
$\left.b_{2}\right) \quad b=e^{-1}, \lambda<0$

$$
F_{2}(x)=1-b^{2}+\lambda x \leq 1-b^{2} .
$$

This estimation is sharp for $\lambda<0, x=0$ i.e. for the symmetric radial-slit mapping 2:2.

Observe that for $\lambda>0$ (6) yields no information at $b=e^{-1}$. The case $\lambda=0$ is thoroughly studied formerly (e.g. [5], pp. 71-77) and is therefore excluded here.
b3) $0 \leq b<e^{-1}, \lambda<0$
The factor $1+\frac{1}{\ln b}>0$. Therefore we can expert sharp maximum from (5) only if $\lambda<0$ and at $x=0$. Clearly

$$
F_{2}(0)>F_{2}(2(1-b))
$$

for

$$
|\lambda|=-\lambda>2(1-b)\left(1+\frac{1}{\ln b}\right) .
$$

Thus, the symmetric 2:2 radial-slit mapping yields the maximum if $|\lambda|$ is hig enongh The exact result requires, however, also the information implied by (3).
c) $0 \leq b \leq 0.5<e^{-1 / 2} ; F_{2}, G$

From (3) we obtain

$$
\left\{\begin{align*}
\left|a_{3}\right|+\lambda\left|a_{2}\right| \leq & 1-b^{2}+4(\sigma-b-\sigma \ln \sigma)^{2}+2(\lambda-2 \sigma)(\sigma-b-\sigma \ln \sigma) \tag{7}\\
& \quad+2(\sigma-b)^{2}=G
\end{align*}\right\}
$$

The connection between $\left|a_{2}\right|$ and σ is one-to-one. Thercfore G depends on $\left|a_{2}\right|$ and can be interpreted as a function of σ too, for which

$$
\frac{d G}{d \sigma}=8 \ln \sigma\left(\sigma \ln \sigma+b-\frac{\lambda}{4}\right)_{o}
$$

If $b-\frac{\lambda}{4} \in\left[0, e^{-1}\right]$, then ()$_{0}=0$ has a root, to be called σ_{0}, which lies in the interval $\left[e^{-1}, 1\right]$. From the sign of $\frac{d G}{d \sigma}$ we see that σ_{o} is at least a locally maximizing point of G for the λ-values for which

$$
0<b-\frac{\lambda}{4}<e^{-1}
$$

\Longleftrightarrow

$$
4\left(b-e^{-1}\right)<\lambda<4 b .
$$

If $b-\frac{\lambda}{\lambda} \leq 0 \Leftrightarrow \lambda \geq 4 b$, then ()$_{0}<0$ and $\frac{d G}{d \sigma}>0$ and hence $\sigma=1$ yields the maximum for $\left|a_{2}\right|=2(1-b)$ i.e. for the radial slit-mapping.

If $b-\frac{\lambda}{4}>e^{-1} \Leftrightarrow \lambda<4\left(b-e^{-1}\right)$ then ()$_{0}>0$ and $\frac{d G}{d \sigma}<0$ which implies that $\sigma=b$ is the maximizing value in which case $\left|a_{2}\right|=2 b|\ln b|$.

The above concerns the maximizing of G on $[2 b|\ln b|, 2(1-b)]$. The complete result for $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ on $[0,2(1-b)]$ requires the use of both F_{2} and G.
$\left.c_{1}\right) \quad e^{-1} \leq b \leq 0.5,4 b(1+\ln b) \leq \lambda<4 b ; \lambda \geq 4 b$
If λ lies on the first interval, then

$$
0<b-\frac{\lambda}{4} \leq-b \ln b
$$

This implies that $\sigma_{0} \in[b, 1]$ and G is globally maximized at that point. For F_{2} there holds

$$
F_{2}(2 b|\ln b|)=\lambda-4 b(1+\ln b) \geq 0, F_{2}^{\prime \prime}(x) \equiv 2\left(1+\frac{1}{\ln b}\right)<0 .
$$

Thus on $x \in[0,2(1-b)]$ the functional $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ is globally maximized at the point corresponding to σ_{0}, i.e. for a symmetric 1:2-function (Figure 2).

If $\lambda \geq 4 b$ then

$$
x_{o}=\frac{\lambda}{2\left|1+\frac{1}{\ln b}\right|} \geq \frac{2 b}{\left|1+\frac{1}{\ln b}\right|}>2 b|\ln b| .
$$

Thus F_{2} is maximized at $x=2 b|\ln b|$. Because $b-\frac{\lambda}{4} \leq 0 \quad G$ is maximized at $\sigma_{o}=1$. Hence $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ reaches the maximum at $x=2(1-b)$ i.e. for the radial slit-mapping.
ca) $0 \leq b<e^{-1}, 0<\lambda<4 b ; \lambda \geq 4 b ; \lambda<0$
Now $1+1 / \ln b>0$. Take first $0<\lambda$ which implies $x_{0}<0$. Therefore F_{2} is maximized at $x=2 b|\ln b|$. For the first λ-interval is $4\left(b-e^{-1}\right)<0<\lambda<4 b$. Hence G and also $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ is maximized at σ_{0} i.e. for the symmetric 1:2-function.

If we take $\lambda \geq 4 b$ similar reasoning shows that $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ is maximized by the radial slit-mapping.

Let finally $\lambda<0$. Now $x_{o}>0$ and therefore $F_{2}(0)=1-b^{2}$ might yield the maximum for $\left|a_{3}\right|+\lambda\left|a_{2}\right|$. At least for $4\left(b-e^{-1}\right)<\lambda<0$ there exists $\sigma_{o} \in\left[e^{-1}, 1\right]$ which maximizes G. It maximizes also $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ if

$$
G\left(\sigma_{0}\right) \geq F_{2}(0)=1-b^{2} .
$$

Consider the equality case. Because σ_{o} is the root of ()$_{0}=0$ we have for it $\lambda=4(\sigma \ln \sigma+b), G=1-b^{2}+\lambda\left(\sigma-\frac{\lambda}{4}\right)+2(\sigma-b)^{2}$. Hence, in the equality case $G\left(\sigma_{0}\right)=F_{2}(0) \Leftrightarrow \lambda\left(\sigma-\frac{\lambda}{4}\right)+2(\sigma-b)^{2}=0$. For σ_{o} and λ belonging to the limit case we thus have

$$
\left\{\begin{array}{l}
\lambda=4(\sigma \ln \sigma+b) \tag{8}\\
(\sigma-b)^{2}+2(\sigma \ln \sigma+b)(\sigma-\sigma \ln \sigma-b)=0
\end{array}\right.
$$

In the following Table there are numerical values determining some points of the limiting curve $\lambda=\lambda(b)$

Tab. 1.

b	σ_{o}	$\lambda=\tilde{\lambda}(b)$
e^{-1}	e^{-1}	0
0.35	$0.446^{\prime} 036^{\prime} 140$	$-0.040^{\prime} 438^{\prime} 564$
0.3	$0.515^{\prime} 348^{\prime} 288$	$-0.166^{\circ} 522^{\prime} 916$
0.25	$0.558^{\prime} 798^{\prime} 102$	$-0.300^{\prime} 808^{\prime} 328$
0.2	$0.593^{\prime} 010^{\prime} 158$	$-0.439^{\prime} 495^{\prime} 008$
0.15	$0.622^{\prime} 159^{\prime} 601$	$-0.581^{\prime} 004^{\prime} 821$
0.1	$0.648^{\prime} 045^{\prime} 493$	$-0.724^{\prime} 473^{\prime} 971$
0.05	$0.671^{\prime} 627^{\prime} 813$	$-0.869^{\prime} 368^{\prime} 333$
10^{-2}	$0.693^{\prime} 062^{\prime} 266$	$-1.012^{\prime} 404^{\prime} 738$
10^{-9}	$0.693^{\prime} 485^{\prime} 183$	$-1.015^{\prime} 332^{\prime} 776$

For $\tilde{\lambda}<\lambda<4 b$ the symmetric 1:2-mapping is the extremal one. For $\lambda<\bar{\lambda}$ the symmetric 2:2-radial slit-mapping is the maximizing one. On $\lambda=\lambda$ itself both of those types hold simultaneously.

In the terminal case $b=0(8)$ yields for $\sigma \neq 0$:

$$
\begin{aligned}
& \sigma_{0}=e^{\frac{1-\sqrt{3}}{2}}=0.693^{\prime 485} 184, \\
& \bar{\lambda}=-2(\sqrt{3}-1) e^{\frac{1-\sqrt{3}}{2}}=-1.015^{3} 33778
\end{aligned}
$$

The maximal $\left|a_{3}\right|+\lambda\left|a_{2}\right|=1$ and is attained also by the symmetric $2: 2$-radial slitmapping. The results are schematically illustrated in Figure 2.

By the comparison consider the neighboring point $b=0, \lambda=-1$ in which $\max \left(\left|a_{3}\right|-\left|a_{2}\right|\right)=G\left(\sigma_{0}\right)=\frac{3}{4}+\sigma_{0}\left(2 \sigma_{o}-1\right)=1.029$, where $4 \sigma_{o} \ln \sigma_{0}+1=0$. This agrees with the result of $[1]$, p. 114.
d) $0.5<b<e^{-1 / 2}$; G

Now move on to consider the troublesome interval d) where also unsymmetric extremal domains for $\left|a_{3}\right|$ exist. Here we must rely upon the results of [6], pp. 306-311. According to this (7) remains to hold for the maximum so far as

$$
\begin{equation*}
2 b|\ln b| \leq\left|a_{2}\right| \leq \tilde{\sigma}(b) \tag{9}
\end{equation*}
$$

where $\tilde{\sigma}(b)$ is the root of

$$
\begin{equation*}
\sigma \ln \sigma-\frac{\sigma}{2}+b=0 \tag{10}
\end{equation*}
$$

The maximal $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ is found from maximal $G=G\left(\sigma_{o}\right)$, where σ_{o} is the root of

$$
\begin{equation*}
\sigma \ln \sigma+b-\frac{\lambda}{4}=0 \tag{11}
\end{equation*}
$$

The extremal domain is of symmetric 1:2-type. The largest λ for which the above remains to hold is the smallest λ of next Section. This λ appears to be

$$
\lambda=2 \tilde{\sigma}(b),
$$

as will be seen in Section 5, e).

Fig. 2.
5. Maximizing $\left|a_{3}\right|+\lambda\left|a_{2}\right|$ by nonsymmetric extremal functions.
e) $0.5<b<e^{-1 / 2} ; 2 \tilde{\sigma}(b)<\lambda<2\left|\tilde{\tilde{a}}_{2}(b)\right|=\hat{\lambda}(b)$

According to $[6]$, p. 310, the smallest $\left|a_{2}\right|$ for which $\left|a_{3}\right|$ is still maximized by non-symmetric 1:2-mappings is

$$
\left|a_{2}\right|=\tilde{\sigma}(h) .
$$

the root of (10). The maximal $\left|a_{3}\right|$ is

$$
\left|a_{3}\right|=1-b^{2}+2(\tilde{\sigma}-b)^{2}-\left|a_{2}\right|^{2} .
$$

Thus

$$
\begin{aligned}
\left|a_{3}\right|+\lambda\left|a_{2}\right| & \leq-x^{2}+\lambda x+1-b^{2}+2(\tilde{\sigma}-b)^{2}=F_{3}(x) \\
& =1-b^{2}+2(\tilde{\sigma}-b)^{2}+\frac{\lambda^{2}}{4}-\left(x-\frac{\lambda}{2}\right)^{2} \\
& \leq 1-b^{2}+2(\tilde{\sigma}-b)^{2}+\frac{\lambda^{2}}{4},
\end{aligned}
$$

with the equality at

$$
\tilde{\sigma}(b) \leq\left|a_{2}\right|=x=\frac{\lambda}{2}
$$

This yields for λ in e)

$$
\begin{equation*}
\lambda \geq 2 \tilde{\sigma}(b), \tilde{\sigma} \ln \tilde{\sigma}-\frac{\tilde{\sigma}}{2}+b=0, \tag{12}
\end{equation*}
$$

where equality is the limit case in d).
Next, ask for the upper bound of λ for which the above $1: 2$ extremal type still holds. According to Summary 2 we have in the limiting case

$$
\left\{\begin{array}{l}
E(\sigma)=\sqrt{1-\sigma^{2}}-\sigma \overline{\operatorname{arc}} \cos \sigma-\frac{1}{2}\left|a_{2}\right| \sqrt{1-\cos ^{2} v}=0, \\
\cos v=\frac{2}{\left|a_{2}\right|}(\sigma \ln \sigma-\sigma+b), \\
\sigma \ln \sigma-\frac{\sigma}{2}+b=0 \Rightarrow \sigma=\tilde{\sigma}=\tilde{\sigma}(b)
\end{array}\right.
$$

\Rightarrow

$$
\cos v=-\frac{\sigma}{\left|a_{2}\right|}
$$

$$
\sqrt{1-\sigma^{2}}-\sigma \overline{\operatorname{arc}} \cos \sigma-\frac{1}{2}\left|a_{2}\right| \sqrt{1-\frac{\sigma^{2}}{\left|a_{2}\right|^{2}}}=0
$$

$$
\Rightarrow \quad\left|a_{2}\right|^{2}=\left|\tilde{\tilde{a}}_{2}\right|^{2}=\tilde{\sigma}^{2}+\left(2 \sqrt{1-\tilde{\sigma}^{2}}-\tilde{\sigma} \overline{a r} \bar{c} \bar{c} \cos \bar{\sigma}\right)^{2}
$$

The largest $\left|a_{2}\right|=\left|\tilde{\tilde{a}}_{2}\right|$ yields the largest $\lambda=\tilde{\tilde{\lambda}}$ so that $\left|\tilde{\tilde{a}}_{2}\right|=\frac{\bar{\lambda}}{2}$;

$$
\begin{equation*}
\lambda \leq \tilde{\tilde{\lambda}}(b)=2\left|\tilde{\tilde{a}}_{2}\right|=2 \sqrt{\tilde{\sigma}^{2}-\left(2 \sqrt{1-\tilde{\sigma}^{2}}-\tilde{\sigma} \overline{\operatorname{arc}} \cos \tilde{\sigma}\right)^{2}} \tag{13}
\end{equation*}
$$

In Table 2 there are some numerical values for the limits (12) and (13). In Figure 4 is the region of unsymmetric $1: 2$ extremal cases for the interval

$$
2 \tilde{\sigma}(b)<\lambda<\tilde{\lambda}(b) .
$$

Tab. 2.

b	$\tilde{\sigma}$	$2 \tilde{\sigma}(b)$	$2\left\|\tilde{\tilde{a}}_{2}(b)\right\|=\tilde{\tilde{\lambda}}(b)$
$e^{-1 / 2}$	$0.606^{\prime} 530^{\prime} 660$	$1.213^{\prime} 061^{\prime} 319$	$1.541^{\prime} 015^{\prime} 982$
0.606	$0.632^{\prime} 078^{\prime} 626$	$1.264^{\prime} 157^{\prime} 252$	$1.527^{\prime} 886^{\prime} 918$
0.603	$0.673^{\prime} 141^{\prime} 177$	$1.346^{\prime} 282^{\prime} 354$	$1.525^{\prime} 263^{\prime} 534$
0.6	$0.697^{\prime} 688^{\prime} 043$	$1^{\prime} .395^{\prime} 376^{\prime} 086$	$1.533^{\prime} 825^{\prime} 577$
0.59	$0.753^{\prime} 547^{\prime} 402$	$1.507^{\prime} 094^{\prime} 804$	$1.677^{\prime} 888^{\prime} 895$
0.58	$0.794^{\prime} 568^{\prime} 895$	$1.589^{\prime} 137^{\prime} 790$	$1.628^{\prime} 279^{\prime} 621$
0.57	$0.828^{\prime} 893^{\prime} 142$	$1.657^{\prime} 786^{\prime} 284$	$1.679^{\prime} 512^{\prime} 550$
0.56	$0.859^{\prime} 161^{\prime} 676$	$1.718^{\prime} 323^{\prime} 352$	$1.730^{\prime} 011^{\prime} 824$
0.55	$0.886^{\prime} 632^{\prime} 605$	$1.773^{\prime} 265^{\prime} 210$	$1.779^{\prime} 165^{\prime} 964$
0.54	$0.912^{\prime} 022^{\prime} 416$	$1.824^{\prime} 044^{\prime} 832$	$1.826^{\prime} 721^{\prime} 330$
0.53	$0.935^{\prime} 785^{\prime} 255$	$1.871^{\prime} 570^{\prime} 510$	$1.872^{\prime} 582^{\prime} 862$
0.52	$0.958^{\prime} 230^{\prime} 497$	$1.916^{\prime} 460^{\prime} 994$	$1.916^{\prime} 732^{\prime} 519$
0.51	$0.979^{\prime} 580^{\prime} 163$	$1.959^{\prime} 160^{\prime} 326$	$1.959^{\prime} 191^{\prime} 294$
0.5	1	2	2

f) $0.5<b<e^{-1 / 2} ; \lambda \geq \tilde{\tilde{\lambda}}(b)$

Until now we have been dealing with the extremal domains of the type 2:2 or 1:2 and their limit cases. On the strip f) left these rather simple types are no more valid. The maximum will be reached by extremal functions of the type $1: 1$. The parametric presentation of the boundary arc III is described in Summary 3. According to it the boundary domain of the curved 1:1-type is determined by a point $(\alpha, \omega) \in T$ (Figure 3). In order to understand how the extremal curved 1:1-type is shifted to a radial slit-mapping, we may consider certain niveau-lines $\left|a_{2}\right|=$ constant and determine the points (α, ω) maximizing $\left|a_{3}\right|$. In Figure 3 there are examples of two main cases, $b<0.6$ and $b>0.6$. If $b<0.6$, the extremal point (α, ω) tends to the origin and if $b>0.6$ to the point ($\pi / 2, \pi / 2$). Consider the first case more closely.

Fig. 3.

In the first case the point (α, ω^{\prime}) tends to the origin along an arc (Figure 3) and hence finally along the tangent of this arc. Hence we may put $\omega=k \alpha(0<k<1)$ and will find the following developments by using the formulae of Summary 3:

$$
\begin{aligned}
& \left|a_{2}\right|=2(1-b)+M_{1} \alpha^{2}+M_{2} \alpha^{4}+\ldots \\
& \left|a_{3}\right|=\left|R_{3}\right|+N_{1} \alpha^{2}+N_{2} \alpha^{4}+\ldots ; \\
& \left|a_{3}\right|+\lambda\left|a_{2}\right|=\left|R_{3}\right|+\lambda \cdot 2(1-b)+\left(N_{1}+\lambda M_{1}\right) \alpha^{2}+\left(N_{2}+\lambda M_{2}\right) \alpha^{4}+\ldots
\end{aligned}
$$

The radial slit-mapping is the extremal one provided

$$
N_{1}+\lambda M_{1} \leq 0, \quad N_{2}+\lambda M_{2} \leq 0
$$

The equality requires for the limiting λ and k :

$$
\begin{equation*}
-\lambda=\frac{N_{1}}{M_{1}}=\frac{N_{2}}{M_{2}} \tag{15}
\end{equation*}
$$

The numbers M_{i}, N_{i} and R_{3} are determined by the following expressions:

$$
\begin{aligned}
M_{1} & =(1-b)\left[\frac{k^{2} \ln ^{2} k}{(1-k)^{2}}-k\right], \\
M_{2} & =-\left\{\frac{1}{12}\left[3-(4+2 b) k-5(1-b) k^{2}+(2+4 b) k^{3}-3 b k^{4}\right]\right. \\
& \left.+\frac{1}{3} \frac{k \ln k}{1-k}\left[2+(1-b) k+(1-b) k^{2}-2 b k^{2}-2 b k^{3}\right)+\frac{k \ln k}{1-k}\left(3+2(1-b) k-3 b k^{2}\right)\right] \\
& \left.+\frac{1}{4}(1-b)\left[\frac{k^{2} \ln ^{2} k}{(1-k)^{2}}-k\right]^{2}\right\} \\
N_{1} & =\frac{R_{3} Q_{1}+\frac{1}{2} R_{1}^{2}}{R_{3}}, \\
N_{2} & =\frac{\frac{1}{2} Q_{1}^{2}+R_{3} Q_{2}+R_{1} R_{2}}{R_{3}} ; \\
Q_{1} & =\frac{4(1-b)^{2} k^{2}}{(1-k)^{2}}\left(\ln k-\ln ^{2} k\right)+\frac{4(1-b)(1-b k) k}{1-k}-4(1-b)^{2} k,
\end{aligned}
$$

$$
Q_{2}=\frac{1}{3(i-k)}\left[3 b-\left(2+5 b+2 b^{2}\right) k+\left(-4+4 b-6 b^{2}\right) k^{2}+\left(-8+20 b-6 b^{2}\right) k^{3}\right.
$$

$$
\left.+\left(2+5 b-16 b^{2}\right) k^{4}+\left(-3 b+6 b^{2}\right) k^{5}\right]
$$

$$
+\frac{2}{3} \frac{(1-b) k}{1-k}\left\{(2 \ln k-1)\left[2+(1-b) k+(1-b) k^{2}-2 b k^{3}\right]\right.
$$

$$
\left.+\frac{2(\ln k-1) k \ln k}{1-k}\left[3+2(1-b) k-3 b k^{2}\right]\right\}
$$

$$
R_{1}=\frac{4(1-b) k}{1-k}\left[\left(2(1-b)-\frac{1-b k}{1-k}\right) \ln k-(1-b)\right]
$$

$$
R_{2}=\frac{2}{3(1-k)}\left[-2+4 b+\left(6-6 b-2 b^{2}\right) k+\left(6-12 b+6 b^{2}\right) k^{2}+\left(2-6 b+2 b^{2}\right) k^{3}\right.
$$

$$
\left.+\left(-4 b+6 b^{2}\right) k^{4}\right]+\frac{2}{3} \frac{k \ln k}{(1-k)^{2}}\left[-3 b+\left(b+2 b^{2}\right) k+\left(12-13 b+4 b^{2}\right) k^{2}+\left(-9 b+6 b^{2}\right) k^{3}\right]
$$

$$
R_{3}=(1-b)(3-5 b)
$$

In Table 3 are examples of solutions of the system (15). The solutions disappear on certain b-interval, the endpoints of which are connected with double roots of (15). However, as will be seen, all the solutions of (15) are not necessarily connected with the boundary curve in question, on which we write $\lambda=\bar{\lambda}(b)$.

Tab. 3.

b	k	$\tilde{\lambda}(b)$
0.51	$0.000^{\prime} 000^{\prime} 000^{\prime} 034$	$2.040^{\prime} 000^{\prime} 000^{\prime} 041$
0.52	$0.000^{\prime} 010^{\prime} 005$	$2.080^{\prime} 010^{\prime} 313$
0.53	$0.000^{\prime} 912^{\prime} 958$	$2.120^{\prime} 504^{\prime} 746$
$0.532^{\prime} 259^{\prime} 525$	$0.002^{\prime} 800^{\prime} 001$	$2.128^{\prime} 848^{\prime} 489$
$0.556^{\prime} 861^{\prime} 138$	$0.017^{\prime} 873^{\prime} 790$	$2.281^{\prime} 895^{\prime} 555$
0.56	$0.036^{\prime} 032^{\prime} 445$	$2.318^{\prime} 413^{\prime} 422$
0.57	$0.101^{\prime} 969^{\prime} 439$	$2.479^{\prime} 066^{\prime} 567$
0.58	$0.228^{\prime} 182^{\prime} 498$	$2.85^{\prime} 194^{\circ} 744$
0.59	$0.478^{\prime} 278^{\prime} 419$	$3.861^{\prime} 230^{\prime} 351$

At $b=0.6$ the system (15) yields no solution. Actually at this point the curved 1:1-mapping remains to hold when $\lambda \rightarrow+\infty$, i.e. the boundary curve $\lambda=\bar{\lambda}(b)$ has a straight line $b=0.6$ as a vertical asymptot.

There exists another possibility for shifting from curved 1:1-extremal to the radial slit-case: The maximum dies out inside the triangle T leaving to the line segment $O P$ the maximizing role. The b-interval where this happens appears to be, determined by PC--accuracy,

$$
\begin{equation*}
0.522<b<0.575 \tag{16}
\end{equation*}
$$

Sharpening the endpoints by one decimal requires five more decimals in computations. In Table 4 there are examples of the boundary $\lambda=\hat{\bar{\lambda}}(b)$, on which two simultaneous extremal domains exist, one is of curved 1:1-type obtained at the point $(\hat{\hat{\alpha}}, \hat{\hat{\beta}})$, and the second is the radial slit-mapping (Figure 4).

Tab. 4.

b	$\lambda=\hat{\lambda}(b)$	$\lambda=\hat{\hat{\lambda}}(b)$	$\hat{\hat{\alpha}}$	$\hat{\hat{\omega}}$
0.53	$2.120^{\prime} 505$	$2.120^{\prime} 761$	$0.002^{\prime} 126$	$0.000^{\prime} 001$
0.54	-	$2.166^{\prime} 601$	$0.001^{\prime} 037$	$0.000^{\prime} 004$
0.55	-	$2.226^{\prime} 967$	$0.000^{\prime} 819$	$0.000^{\prime} 012$
0.56	$2.318^{\prime} 413$	$2.318^{\prime} 853$	$0.000^{\prime} 628$	$0.000^{\prime} 027$
0.57	$2.479^{\prime} 067^{\prime}$	$2.479^{\prime} 075$	$0.000^{\prime} 533$	$0.000^{\prime} 055$

There remains the strip $0.6<b<e^{-1 / 2}, \lambda>\tilde{\tilde{\lambda}}(b)$. Now passing to the limit of radial slit-mappings means that the maximal point (α, ω) converges to the point $P=(\pi / 2, \pi / 2)$ tangentially, i.e. along the straight line

$$
\omega-\frac{\pi}{2}=k\left(\alpha-\frac{\pi}{2}\right)
$$

The system (15) appears to be invariant for the alteration

$$
\alpha^{\prime}=\alpha-\frac{\pi}{2}, \quad \omega^{\prime}=\omega-\frac{\pi}{2}
$$

the numbers M_{i} and N_{i} are actually covariant i.e. only their signs are changed in this mapping. This implies that the numbers $k>b^{-1}$ and λ are obtained again from (15). Moreover, if

$$
0.606 .499102=b_{o} \leq b<e^{-1 / 2}=0.606530659
$$

then $k=b^{-1}$ and the expression of the quantity $\lambda=\hat{\lambda}(b)$ is simplified in this interval to the form

$$
\lambda=\hat{\lambda}(b)=4(1-b)\left\{1+\frac{(1+2 \ln b)[2(1-b)+(1+b) \ln b]}{(3-5 b)\left[\ln ^{2} b-(1-b)^{2} / b\right]}\right\} .
$$

In Table 5 there are examples of $\hat{\lambda}(b)$ in $0.6<b<b_{o}$.

Tab. 5.

b	$\lambda=\hat{\lambda}(b)$
0.601	$19.628^{\prime} 799^{\prime} 892$
0.602	$8.964^{\prime} 265^{\prime} 801$
0.603	$5.410^{\prime} 841^{\prime} 505$
0.604	$3.635^{\prime} 192^{\prime} 986$
0.605	$2.570^{\prime} 652^{\prime} 838$
0.606	$1.861^{\prime} 66^{\prime} 495$
$b_{0}=0.606^{\prime} 499^{\prime} 102$	$1.589^{\prime} 670^{\prime} 589$
$0.606^{\circ} 5$	$1.589^{\prime} 219^{\prime} 481$
$e^{-1 / 2}=0.606^{\circ} 530659$	$1.573^{\prime} 877^{\prime} 364=4\left(1-e^{-1 / 2}\right)$

Fig. 4.

REFERENCES

[1] Duren, P., Univalent functions, Grundlehren der mathematischen Wissenscliaften, Springer Verlag, Berlin-Heidelberg-Tokyo 1983.
[2] Siejka, H. Tammi, O. On marimizing a homogeneous functional in the class of hounded univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Matlı., Vol. 6, 1981, 273-288
[3] Tanımi, O. On the maximalization of the coefficient a_{3} of bounded schlicht functions, Ann Acad Sci. Fenn Ser A I 149, 1953
[1] Tammi, O., Extremal Pmblems for Bounded Univalent Functions, Lecture Notes in Mathematies, 64f, Spring"r Verlag. Herlin-Heidelberg New York 1078
[5] Tammi, O. , Extremal Problems for Bounded Univalent Functions II, ibid, 913, 1982.
[6] Tammi, O. On the geometry of the coefficient body $\left(a_{2}, a_{3}\right)$ for bounded univalent functions and some related coefficient problems, Journal D'Anal. Math., Vol. 46, 1986, 304-317.

STRESZCZENIE

W pracy tej badano szczegółowo obszar zmienności $\left(a_{2}, a_{3}\right)$ wspólczynników funkcji klasy $S(b)$ ograniczonych funkcji jednolistnych. Umożliwia to oszacowanie $\left|a_{3}\right| w$ terminach $\left|a_{2}\right|$. Zamiast rozpatrywać klasyczne wyrażenie $\left|a_{3}+\lambda a_{2}\right|$ można oszacować od góry wyrażenie $\left|a_{3}\right|+\lambda\left|a_{2}\right|$. Ta drobna modyfikacja pozwala uzyskać skomplikowane oszacowania dla pewnych przedzialów zmienności parametru b przy pomocy komputera. Jednakże pewne efekty związane z zachowaniem się atycznych nie pozwalają na określenie z dostateczną dokladnością końców tych przedzialów.
(received June 20, 1991)

