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The Maximum of |a3| + A|a;| for Bounded Univalent Functions

Maksimum wyrazenia |az| + A|az| dla funkcji jednolistnych ograniczonych

Abstract. In the class S(b) of bounded univalent functions the coefficient body (a3, asz) is
thoroughly analyzed. This allows estimating |(13l in terms of |az|. Hence, instead of the classical
linear combination |a3 + /\az| one is able to maximize also |a;| + /\|02|. This slight modification
appears to give rise to involved estimations which for certain b-intervals remain necessarily computer
based. Moreover, strong tangential effects exist, yielding some endpoints needed with unsatisfactory

accuracy.

1. Introduction. Consider the class
SB)={f|f(2)=blz+a2> +..)1f(2)] <1, 0< b< 1}

of bounded normalized univalent functions analytic in the unit disc U:|z| < 1. The
leading coefficient b, constant in S(b), characterizes the class. The limit process b — 0
allows a uniform approximation of

S={F|F(z)=z+azzz+...},

the class of not necessarily bounded normalized univalent functions. Thus, in this
sense,

S = 5(0).

In S(b) the coefficient problems are essentially harder than those in S. This is
mainly due to the fact that in S(b) extremal functions usually vary with the index n
depending, of course, on the problem and the value of bin question. Already the first
indexes may offer quite involved estimations, as can be seen in what follows.

There exist certain traditional functionals which have been used in testing the
knowledge available. The "founding” one is |a; + Aa3| which is maximized in S(b) for
real A, e.g. in [3] and for complex ) in [2]. More recently use is made of the functional
|as + Aa;| which in S(b) was studied in [5]. The aim of the present paper is to discuss
such a test case which needs the complete characterization of the first non-trivial
coefficient body (az,a3) in S(b). In [6] first tries in this direction were made when
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estimating |a3| in terms of |a;|. It appears that the functional |as| + A|az| serves us
well. The maximizing of it requires, indeed, all the facts available for (a3,a3) and
is just on the limit of solvability. Altogether, the distance between the present and
previously mentioned functionals seems to be large enough to be publicized.

If the maximum of |a;| in |a;| is available the same holds also for the maximum
of |ag| + Alaz|. This is finally to be maximized in the variable left i.e. in z = |a;| €
[0,2(1 — b))

Let us start by mentioning those basic facts of the coefficient body (a2, a3) which
yield the estimation of |a;| to be needed. It appears that this estimation is straight-
forward save in the interval 0.5 < b < e~*/2, There the most complicated part of the
coefficient body, with nonsymmetric boundary functions, is involved and necessitates
computer based comparisons.

2. The boundary of the coefficient body (az,a3). In [4], [5] and [6] the
coefficient body (a2, a3) was normalized by rotation

i f(rz), T=¢",

so that a; = |az| 2 0. Thus, it is located in the upper half of the space (X, Y, Z) with
X =Rea3, Y =Ima;z, Z = a;. The plane Z = a; = constant yields the intersection
N(ay), the boundary of which can be presented by aid of three types of arcs to be
called I, IT and III. Let us consider these arcs more closely.

In I the boundary function f is of the type 2:2. This means that f(U) is a slit do-
main where the slit system has 2 starting points and 2 endpoints. The corresponding
notation will be applied for other extremal functions and domains, too.

We may parametrize the points of I by using the rotation angle v . According to
[5]. p. 11, we can summarize the result as follows.

Summary 1. The boundary points I C ON(az) are connected with functions 2:2
with two unequal diametral radial slits. 1 1s a circular erc:

1 2 2 2
- — =R=1- =2 0).
|a3 1+ 21nb)lazl | R=1-¥+(1+ 21nb)|¢12| (2 0)
The points of this can be located by using v as follows:
. l T, |az| < 2b|1nb);
I<v<u= 2bInb
- e lﬁ?coa T a2l > 2b|Inb),
' |az|
5 1 3
Rea3=(1+21nb)|ag| + R cos2v,
. Im a3 = —Rsin2v.

Thus, 1 is a whole circle for |az| < 2b|Inb| and a part of a circle for |az| > 25|Inb|.

The gap left in I C AN(a;) is filled by a more complicated arc II ([5], p. 19):
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Summary 2. The boundary points on the arc II C AN (az) belong to the functions
1:2 with a forked shit. The points of the upper half of II, parametrized in v, are
determined through the formulae

arc cos

2blnb

laz]

vp <v <,

|az| cos v

2

olno—o+b- =0; o=oc(az)€[b1],
<« Re a3 =’|02|2 + 20|az|cosv + (1 = b + 2(0 ~ b)?) cos 2v,

Im a3 = —20]a,|sinv — (1 — b% + 2(0 — b)?)sin 2v;

| E(0) = V1 - 0? — o &tccosa — Yag|sinv > 0.

The ezistence condition E(c) > 0 ([5], p. 19) ytelds the interval 2b|1n b| < |ay| <
|@2| for whick the whole II C N(az). The double root of E(b) = 0 determines |aa|:

1
E(0) = V1 —-0% -0 afccoso — (dlno — o + b) ki =0,
arc cos o
|a,i=_2_<Lg_-°_+i)\/lnz,,+(mmsa)z,
arc cos o

For the remaining interval |a;| < |az| < 2(1—b) there 1s a gap in II (in the upper
and lower parts which are symmetric with respect to the X azis) which is filled by the
arc III C ON(ay)).

The final arc III is governed by the results of [5], p. 45. The limiting values
vo1, Vo2 of the gap in Il are obtained from the above existence condition.

Summary 3. The boundary points on the arc IIl C dN(az) are connected with
the functions 1:1 with one curved slit. Again, take the upper half of I1I, parametrized
nv.

v € Junr, a2}  voi and vz satisfy:

— l . -
(+) ) E(b)=\/1—az—a¢ﬁ'—ccosa—-9-|a2|\,/]—cns7r-=-.n,

cosvy = -2—(alno —a+b).
az|

The points of 11l are ezpressed in two variables a,w, located in a triangle T ([5],
p. 46). With the normalization to be stated below for U and V' the triangle T C the
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first quadrant of the aw-plane. The connection between a and w for a given |ay| can
be deduced from |az|? = U? + V2, where

. cos o

U = |azlcosv =Cjln w + Cy(cota —cotw + a —w) <0,
w

- sina

V = lazlsinv = Cy In + C)(tana — tanw —a + w) > 0;

sinw

] sina — bsinw
Ci =2———————— cosacosw,
sin(a — w)
()
cosa — bcosw ;
| C; =2——————sinasinw.

sin(a — w)
For the points of 111 holds finally:
' Re a3 =|ay)? + |az|(C) cos v + Cy sinv) + cos 2v[1 — b? + C,Cy(tan a — tanw)
2
- &(sin_2 a —sin"?w)),
2
Im a3 =|a;|(Cz cosv — C) sinv) — sin2v[1 — b? + C,Cy(tan a — tanw)

2

- -C%(sin_2

a —sin"? w)).

With respect to the endpoints of the arc III there are two alternatives (cf. Figure
3) 1° g, belongs to the intersection II N III or 2° wvgy belongs to I N IIL In the
case 1° wvg; is obtained from (+) and also from the C),C;—formulae for w = 0. In
the case 2° we are on the boundary arc of T where cosa = bcosw and hence (cf. [5]
pp- 33-35):

§=a3—al=Cyt7'qy +172(1-4%), C; =0, C = 20;
0 =cosa = bcosw.

For the points of I Summary 1 yields

— KO —-12v - |02| — = 2 M
6=6 +RC ,6 —2lnb|R 1 b+2lnb

Hence for 7 at the intersection:

2
0=201""|az|+ 17 °(1 - =68+ (1 -0+ —")r
1 2 1 b2 5° 1 b’l la2| -2

2Inb
- Jaa|
=9y = 1921 -1y,
2cosa-2a—21nb(f+f )i
2Inb
cosv = cosa.

aa|
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Thus we have in the above cases:

Completion of Summary 3. In the case II N III vg, ts determined directly
from (+). In the case I N 111 for the endpoint (a,w) and for the corresponding vy, = v
holds
; |ag|2 — }-,2 + Vz'

U=20Inb,
V =20(tana — tanw — a + w),

0 = cosa = bcosw,

Inb

|aa|

cCosv =

3. The sharp estimates of |a3| in |az|. According to the analysis in [6], the
following sharp upper bounds, connected with I, are valid.

)e2<b<1
(1) las] <1 -6 —Jaz?, 0<[az] S 2(1-0).

Equality holds for the whole |a;|-interval, at the left diametral point of N(a;) and
the equality function is of the type 2:2 with two unequal radial slits along the same
diameter.

2)0< b<el/?
1
(2 laal S1=8% + (14 ;)laal’, 0 lazl < 2b]Inb.

On the above sharpness interval equality is reached for 2:2-mappings with two sym-
metric curved slits at the right diametral point of N(a;). The inegnality (2) remains
to be true, but unsharp, up to the point 2(1 - b).

The cases 1) and 2) are united to yield (2) at

3)b=¢"1/?

In this case there is a one parametric family of extremal functions which belong
to the points of I. The family starts from unsymmetric radial slit case 2:2 mentioned
above and evolves through unsymmetric curved 2:2-cases up to the final one which is
either symmetric curved 2:2-case, symmetric or unsymmetric limiting 1:2-case and
finally curved 1:1-case with one slit shrinked to a point. All these extremal domain

types are schematically presented in Figure 1.
If0<b<e'/? and |az| > 2b|Inb| the arcs II and III yield the following result

0<b<05<e? |ag|>2b|Inb:

[ laal < laz|* - 2laz]o +1 - b +2(a — b)?,

) lalna—a+b+%|a2|=0; a = o(|az|) € [b,1].
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The estimation is sharp for 2b|Inb| < |a;z| < 2(1 — b) and the equality holds at the
right diametral point of N(a3) i.e. for the symmetric 1:2-mapping.

Finally, the interval left, 0.5 < b < e~!/2, with |a;| > 2b|In b| requires analyzing
thoroughly the points of III, by using the formulae in Summary 3. The results are
best expressed in connection of the final combination |a3| + A|laz| we now turn to
maximize.

4. Maximizing |a;| + Ala;| by symmetric extremal functions. The max-
imum of |a;| for a fixed |a;| implies similarly maximum for the functional |a3| +
Alaz], A € R. This is finally to be maximized in the variable left: |a;] = z €
[0,2(1 — b)]. Let us consider this problem on the intervals found in Section 3.

a)e /2 <b<1; F
According to (1)

A A
(4) las| + Mlaa| <1 -0 4+ Az —22=1-b2 + it (x— 5)2 = Fy(z)
/\2

<1-8 4+ =.

<1-b°+ 2
Equality in the last estimation is reached for r = % € [0,2(1 — b)] provided

0< A<4(1-b)

Both estimations are sharp simultaneously, because z = |az| = 2 € [0,2(1 - b)].

If e/ < b < 1 the extremal function is uniquely of radial 2:2-type with usually
unequal slits. At b= e~'/2 there hold the following one-parametric extremal families:

0 < A < 2¢7'/2: The extremal function starts from radial 2:2-function pro-
ceeding to symmetric curved-slit 2:2-function which, at A = 2¢7!/2 is the limiting
symmetric 1:2-case.

2¢ /2 < X\ < 4(1 — e'/2): Again, the extremal type starts from radial 2:2-
function and ends up to unsymmetric limiting 1:2-case which finally is of limiting
2:2-type with one slit shrinked to a point (cf. schematic presentation in Figure 1).

The upper bound Fy(z) = 1 — b? + Az — z? in (4) is maximized at z = 2(1 — b)
if A > 4(1-0b) & -’,} > 2(1 = b). Similarly, if A < 0 F) is maximized at z = 0.
The former extremal case is the radial slit-mapping and the latter one the symmetric
radial slit-mapping 2:2. In Figure 1 the extremal domains for e/2<b<1, AeR
are schematically drawn.

b)0<b<e V2 F
Next apply the estimation (2) which is valid for the whole £ = |az|-interval
[0,2(1 — b)] but sharp only for the interval [0, 25| In b|]:

1
(5) |03| + /\'GQI <1- b? + Az + (1 + ln_b)zz = Fz(.‘t)
A2 : 1 A
=1-b - —+ (4= + —)
s ﬁ;E) AT+ lnb)
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Fig. 1.

Depending on the values of A we obtain three different cases.

b)) el<b<e 2, 0<A<4b(1+1Inb); A<O
In this interval (1 + I—I—b) < 0. Therefore
n

'\'2
Fe)S1-# - —=——
0+53)

A

" 2(1+41/Inb)’
eration we see, that F; is sharply estimated on the whole interval x € [0,2(1 - b)|
provided that

with the equality at z = Taking the sharpness interval into consid-

To = ———A—l—— S —2blnb
2(1 + Hﬁ}]
=
(6) 0 < A< 4b(1+Inb).

The extremal mapping is of curved synunetric 2:2-type reducing to a limiting
1:2-type at A = 4b(1 + In b) (Figure 2).
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A

“2(141/inb)
at ¢ = 0 i.e. for the symmetric radial slit-mapping 2:2 (Figure 2).

If A < 0the number z, = < 0 which implies that F; is maximized

bz) b=€—l, A<0
F(z)=1-b0+ Az <1-b%

This estimation is sharp for A < 0, z = 0 i.e. for the symmetric radial-slit mapping
2:2.

Observe that for A > 0 (6) yields no information at b = e¢~!. The case A =0 is
thoroughly studied formerly (e.g. [5), pp. 71-77) and is therefore excluded here.

by) 0<b<ce™, A<O
The factor 1 + ik > 0. Therefore we can expect sharp maximum from (5) only
if A <0 and at z = 0. Clearly

F(0) > F5(2(1 - b))

for ]
Al ==A>2(1-b)(1 + m)

Thus, the symmetric 2:2 radial-slit mapping yields the maximum if |A| is big enough.
The exact result requires, however, also the information implied by (3).

c) 0<b<05<e !’ By G
From (3) we obtain

l' las| + Alaz) €1 b + 40 —h-alno) +2(X - 20)(o -~ b-alno)
(7) +2(c - b)? =G,
]_ |az] = 2(0 — b—alna) € [2b]1ab],2(1 — B)); 0 = a(|az|) € [b, 1)

The connection between |az| and o is one-to-one. Thercfore G depends on |a,|
and can be interpreted as a function of o too, for which

dG A
T = 8lno(olne + b — Z),,

If b— % € [0,e7'], then ( ), = 0 has a root, to be called o,, which lies in the

interval [e~!,1]. Froin the sign of — we see that g, is at least a locally maximizing
point of G for the A-values for which

0<b—-%<t’"l

4b—e 'Y<\ < db
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Ifb—f < 0¢& A > 4, then ( ).,<0!md£fd.E > 0 and hence o = 1 yields the
maximum for |az| = 2(1 — b) i.e. for the radial slitfmapping.

Ifd - -} >e ! & A <4(b—et) then( ), >0and % < 0 which implies that
o = b is the maximizing value in which case |az| = 2b|In b|.

The above concerns the maximizing of G on [2b]Inb|,2(1 — b)]. The complete
result for |az| + Alaz| on [0,2(1 — b)] requires the use of both F; and G.

c1) e 1 <b<05, 4b(1 +1Inb) < A< 4b; A > 4b
If A lies on the first interval, then

0<b-—$$—blnb.

This implies that o, € [b,1] and G is globally maximized at that point. For F; there
holds

F3(2b|Inb]) = A — 45(1 + 1nb) > 0, Fy'(z) = 2(1 + ﬁ} <o.

Thus on z € [0,2(1 — b)] the functional |a;| + Alaz| is globally maximized at the point
corresponding to a,, i.e. for a symmetric 1:2-function (Figure 2).
If A > 4b then

A 2b
= 2
21+

> 2b|In .

To P 1

1
mol 't i
Thus F; is maximized at z = 2b|Inb|. Because b— 3 <0 G is maximized at o, = 1.
Hence |a3|+ A|a; | reaches the maximum at z = 2(1—b) i.e. for the radial slit -mapping.

ca) 0<b<e,0<A<db A>4b A<0

Now 1+ 1/Inb > 0. Take first 0 < A which implies z, < 0. Therefore F; is
maximized at z = 2b|In b|. For the first A-interval is 4(b—e™') < 0 < A < 4b. Hence
G and aleo |a3| + A|az| is maximized at o, i.e. for the symmetric 1:2-function.

If we take A > 4b similar reasoning shows that |az| + Alaz| is maximized by the
radial slit-mapping.

Let finally A < 0. Now z, > 0 and therefore F3(0) = 1 — b* might yield the
maximum for |az| + Alaz|. At least for 4(b—e~') < A < 0 there exists 0, € [e™',1]
which maximizes G. It maximizes also |a3| + A|az| if

G(o,) 2 F(0) = 1- .

Consider the equality case. Because o, is the root of ( ), = 0 we have for it
A=4(clno+b), G=1-b"+ Ao - %) + 2(o — b)2. Hence, in the equality case
G(0,) = F3(0) & (o — 2) + 2(c — b)* = 0. For 0, and A belonging to the limit case
we thus have

A =4(clno +b),

(8)
(0 —=b)? +2(clno +b)(oc—olno —b)=0.
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In the following Table there are numerical values determining some points of the

limiting curve A = A(b)

Tab. 1.

b o, A= A(b)

el |e! 0

0.35 | 0.446°036'140 | —0.040'438 564
0.3 |0.515348°288 | —0.166°'522'916
0.25 | 0.558'798°102 | —0.300°808 328
0.2 |0.593'010'158 | —0.439°495'008
0.15 | 0.622'159'601 | —0.581°004'821
0.1 | 0.648°045'493 | —0.724'473'971
0.05 | 0.671'627'813 | —0.869°368333
102 | 0.693°062'266 | —1.012°404 738
10~° | 0.693'485'183 | —1.015'332'776

For A < A < 4b the symmetric 1:2-mapping is the extremal one. For A < A the
symmetric 2:2-radial slit-mapping is the maximizing one. On A = A itself both of
those types hold simultaneously.

In the terminal case b =0 (8) yields for o # 0:

7 =0.693'485'184,

O, =¢€

» 1—13
A=-2(V3-1) 7 =-1015332778.

The maximal |a3| + Alaz| = 1 and is attained also by the symmetric 2:2-radial slit-
mapping. The results are schematically illustrated in Figure 2.

By the comparison consider the neighboring point 4 = 0, A = —1 in which
max (|a3| — |az]) = G(0o) = 3 + 0,(20, — 1) = 1.029, where 40,1n0, + 1 = 0. This
agrees with the result of [1}, p. 114.

d) 05<b<eV?; @G

Now move on to consider the troublesome interval d) where also unsymmetric
extremal domains for |ay | exist. Here we must rely upon the results of 6], pp. 306-311.
According to this (7) remains to hold for the maximum so far as

9

where (b) is the root of

25/ In b| < |az| < &(b)

(10) alna—§+b=0.
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The maximal |a3| + A|az| is found from maximal G = G(o,), where g, is the root of
A
(11) alna+b—z=0.

The extremal domain is of symmetric 1:2-type. The largest A for which the above
remains to hold is the smallest A of next Section. This A appears to be

A = 25(b),
as will be seen in Section 5, e).

A 1‘ A = 25(b)

2e-1/2

Fig. 2.

5. Maximizing |a;| + )a;| by nonsymmetric extremal functions.
e) 0.5<b<e /2 25(b) < A< 2az(b)] = A(h)

According to [6], p. 310, the smallest |az| for which |as| is still maximized by
non--symmetric 1:2 mappings is

|(12| = E’(h).
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the root of (10). The maximal |a3| is

las] =1 = b% + 2(& — b)? — |ay|?.

Thus
las] + Aaz| € —2% + Az + 1 - B + 2(6 — b)? = Fy(x)
2
=1—b2+2(¢"7—b)2+'\z-—(:r:—%)2

A2
S1-0+26-6)"+

with the equality at
A
5(6) < Jaz =7 = 5.

This yields for A in e)
(12) A > 25(b), alna-§+b=0,
where equality is the limit case in d).

Next, ask for the upper bound of A for which the above 1:2 extremal type still
holds. According to Summary 2 we have in the limiting case

g 1
E(o) = V1 — 0% — o&fCt coso — §|02| 1—cos?v =0,

7 cosv= I:"—zi(alna—a-f-b),

a
cosSy = ——
|az|
1 a?
V1 -0 -0 @fccoso — =|aa|y/1 — —= =0,
o 2' 2|\/ |az[?
=

laz|? = [&2[* = &* + (2V/1 — &2 — 8EFEcos 7)2.

The largest |a;| = |az| yields the largest A = ) so that |a;| = —%

(13) A < A(b) = 20z] = 2/8? — (2V/1 - 32 — 5BTC cos 5)2.
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In Table 2 there are some numerical values for the limits (12) and (13). In Figure

4 is the region of unsymmetric 1:2 extremal cases for the interval

25(b) < A < A(b).

f) 05<b<e /2, x> A(b)

Tab. 2.

b & 25(b) 23 (5)| = A(b)
e=1/2 | 0.606'530'660 | 1.213'061°319 | 1.541'015'082
0.606 | 0.632°078'626 | 1.264'157°252 | 1.527'886'918
0.603 | 0.673'141°177 | 1.346°282°354 | 1.526'263'534
0.6 | 0.697'688043 |'1.395'376°086 | 1.533'825'677
0.59 0.753'547°402 | 1.507°094'804 | 1.577° 888°895
0.58 0.794°'568°895 | 1.589°137°790 | 1.628'279'621
0.57 |0.828'893142 | 1.657'786'284 | 1.679'512550
0.56 | 0.859'161'676 | 1.718'323'352 | 1.730°011'824
0.55 0.886'632'605 | 1.773'265210 | 1.779°166°964
0.54 0.912°022°416 | 1.824'044'832 | 1.826'721°'330
0.53 | 0.935785°255 | 1.871'570°510 | 1.872'582'862
0.52 | 0.958'230°497 | 1.916'460°994 | 1.916'732°519
0.51 |0.979°580'163 | 1.959'160°326 | 1.959'191°204
0.5 1 2 2

Until now we have been dealing with the extremal domains of the type 2:2 or 1:2
and their limit cases. On the strip f) left these rather simple types are no more valid.
The maximum will be reached by extremal functions of the type 1:1. The parametric
presentation of the boundary arc III is described in Summary 3. According to it the
boundary domain of the curved 1:1-type is determined by a point (a,w) € T (Figure
3). In order to understand how the extremal curved 1:1-type is shifted to a radial
slit-mapping, we may consider certain niveau-lines |a;| = constant and determine
the points (a,w) maximizing |as|. In Figure 3 there are examples of two main cases,
b<06andb>0.6 Ifb< 0.6, the extremal point (a,w) tends to the origin and if
b > 0.6 to the point (7/2,7/2). Consider the first case more closely.
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Fig. 3.

In the first case the point (a,w) tends to the origin along an arc (Figure 3) and
hence finally along the tangent of this arc. Hence we may put w = ka (0 < k < 1)
and will find the following developments by using the formulae of Summary 3:

lag| = 2(1 = b) + Mya? + Maa* + ...,
las| = |Rs| + N1a® + Naa®* +...;

laa| + Alaz| = |Ral + A+ 2(1 = b) + (N1 + AMy)e? + (N2 + AMz)a* +... .

The radial slit-mapping is the extremal one provided

Ny +AM; <0, N2+ MM, <0.

The equality requires for the limiting A and k:

(15) —A=—=—.
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The numbers A, N; and Ry are determined by the following expressions:

Ic2 ln k

M, = _{1% [3 - (4 + 2b)k — 5(1 — b)k? + (2 + 4b)k® — 3bk?)

4 l’l“__“: [2+(1 — )k + (1~ )7 - 268 — 26K%) 4 T (3 4 2(1 — b)k — 3bK?)
1 K’k )
0 X :
-0 a0 )

N, = Ba@1 + R
ML= T T e

Ry
N, = 1071 + Ry Q, + RiR;
}t‘] ]
4(1 - b)*k? 3 4(1 — b)(1 — bk)k 2
:__ ! SOTRAR = TS 4 - b)*k,
Qi gy (nk-ln*k) + i3 (1-b)
Q= 'ml B [3b — (2 + 5b+ 262 )k + (—4 + 4b — 682 )k? + (8 + 20b — 667 )k?

+ (2 + 5b— 16b?)k* + (—3b + 6b%)k°]

— bk

3 l

{{21 nk—1)[24 (1 - b)k + (1 — )k — 2bk’]

2(lnk —1)klnk
1—%

Bow ﬂll_:’.fil_*_ [(0(1 S —f’—)luﬂ (1- m].

[3+2(1-b)k - 3bk2]};

R, = ﬁ[_2+4b+(6—6b—2b’)k+(6— 12b + 667 )k? + (2 — 6b + 2b% )k

2 kink

3(1-k)? [ 3b+(b+2bz)k{-(12— 13h + 4b° k2+( 9b+6b7 k3],

+(—4b + 60 )k* ]+ -

Ry = (1 = h)(3 = 5b).
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In Table 3 are examples of solutions of the system (15). The solutions disappear
on certain b-interval, the endpoints of which are connected with double roots of (15).
However, as will be seen, all the solutions of (15) are not necessarily connected with
the boundary curve in question, on which we write A = i(b).

Tab. 3.

b k A(b)

0.51 0.000°000°000°034 | 2.040°000°000°041
0.52 0.000°010°005 2.080°010°313
0.53 0.000°912'958 2.120°504 746
0.532'259°525 { 0.002°800°001 2.128'848489
0.556'861'138 | 0.017'873'790 2.281'895'555
0.56 0.036°032 445 2.318'413'422
0.57 0.101°'969°439 2.479'066°567
0.58 0.228'182°498 2.815°194 744
0.59 0.478'278'419 3.861'230'351

At b = 0.6 the system (16) yields no solution. Actually at this point the curved
1:1-mapping remains to hold when A — 400, i.e. the boundary curve A = A(b) has a
straight line b = 0.6 as a vertical asymptot.

There exists another possibility for shifting from curved 1:1-extremal to the radial
slit-case: The maximum dies out inside the triangle T leaving to the line segment OP
the maximizing role. The b-interval where this happens appears to be, determined
by PC-accuracy,

(16) 0.522 < b < 0.575.

Sharpening the endpoints by one decimal requires five more decimals in computations.
In Table 4 there are examples of the boundary A = A(b), on which two simultaneous

extremal domains exist, one is of curved 1:1-type obtained at the point (&,[3), and
the second is the radial slit- mapping (Figure 4).

Tab. 4.
b | A=Ab) | A=) |a &
0.53 | 2.120°505 | 2.120°761 | 0.002°126 | 0.000°001
0.54 | - 2.166°601 | 0.001°037 | 0.000'004
055 | — 2.226'967 | 0.000'819 | 0.000°012
0.56 | 2.318'413 | 2.318'853 | 0.000°628 | 0.000°027
0.57 | 2.479'067 | 2.479'075 | 0.000°533 | 0.000°055
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There remains the strip 0.6 < b < e™1/2, A > A(b) Now passing to the limit
of radial slit-mappings means that the maximal point (a,w) converges to the point
P = (m/2,7/2) tangentially, i.e. along the straight line

The system (15) appears to be invariant for the alteration
n s
a =&— 5, w =w - 5,

the numbers M; and N; are actually covariant i.e. only their signs are changed in this
mapping. This implies that the numbers k > b~' and A are obtained again from (15).
Moreover, if

0.606'499'102 = b, < b < e~'/? = 0.606 530659

then k = b~! and the expression of the quantity A = A(b) is simplified in this interval
to the form

A= A(b) =41 —b){l L (L+2mb21-b) +(1 +b)lnb]}l

(3 = 5b)[In? b — (1 - b)2/b]

In Table 5 there are examples of A(b) in 0.6 < b < b,.

Tab. 5.

b A= A(b)

0.601 19.628'799'892
0.602 8.964 265801
0.603 5.410'841505
0.604 3.635'192'986
0.605 2.570'652 838
0.606 1.861'664'495
b, = 0.606'499'102 1.589'670°589
0.606'5 1.589°219'481
e~1/2 = 0.606'530'659 | 1.573'877'364 = 4(1 — e~!/2)
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A = 25(b)
A =4(1-b)
y
1
A = 4b(1 +1nb)

0

3
0.50 0.55 0.60 !

e~1/2

Fig. 4.
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STRESZCZENIE
W pracy tej badano szczegSlowo obszar zmiennosci (a2, @3 ) wspélczynnikéw funkeji klasy S(b)
ograniczonych funkcji jednolistnych. Umozliwia to oszacowanie |@as| w terminach |azl. Zamiast
rozpatrywac klasyczne wyrazenie |a3 + /\02| mozna oszacowac od gory wyrazenie |a3 | + A|agl. Ta
drobna modyfikacja pozwala uzyskaé¢ skomplikowane oszacowania dla pewnych przedzialéow zmien-
noséci parametru b przy pomocy komputera. Jednakze pewne efekty zwigzane z zachowaniem sig
stycznych nie pozwalaja na okreslenie z dostateczng dokladnoscig koncow tych przedzialow.
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