# LUBLIN-POLONIA 

SECTIO A

Instytut Matematyki<br>Politechnika Wroclawska

K. SAMOTIJ

## On Coefficients of Non-vanishing $H^{p}$ functions

O współczynnikach nieznikających funkcji klasy $H^{p}$


#### Abstract

We prove that there is an $\varepsilon>0$ such that for each positive integer $n$ the function $f(z)=z^{n}+h(z),|z|<1$, has at least one zero in the unit disk for each $h \in H^{1}$ with $\|h\|_{1}<\varepsilon$. From this theorem we deduce that for each $p, 1<p<+\infty$, there is a number $Q_{p}<1$ such that for any non-vanishing $H^{p}$ function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ with $\|f\|_{p} \leq 1$, we have $\left|a_{n}\right|<Q_{p}$, $n=1,2, \ldots$


1. Introduction and formulation of results. Let $\Delta$ be the unit disk in the complex plane, and let $\mathbf{T}$ be the unit circle. If $A$ is a Borel measurable subset of $\mathbf{T}$, by $|A|$ we denote its one-dimensional Lebesgue measure. As usual, $H^{p}$ is the space of analytic functions $f$ on $\Delta$ which satisfy the condition

$$
\|f\|_{p}=\sup _{0 \leq r<1}\left(\frac{1}{2 \pi} \int_{\mathrm{T}}|f(r \zeta)|^{p}|d \zeta|\right)^{1 / p}<+\infty, \quad 1 \leq p<+\infty
$$

and $H^{\infty}$ is the space of bounded analytic functions on $\Delta$ with the norm $\|f\|_{\infty}=$ $\sup _{|z|<1}|f(z)|$. Let $B_{p}$ be the unit ball in $H^{p}$, and let $N$ denote the class of all non-vanishing analytic functions on $\Delta$. Let us denote

$$
A_{p, n}=\sup _{f \in B_{p} \cap N}\left|a_{n}\right|, \quad \text { where } f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

Krzyì conjectured $[\mathrm{K}]$ that $A_{\infty, n}=\frac{2}{e}, n=1,2, \ldots$ So far, his conjecture was verified only for $n=1,2,3$ and 4 . Horovitz proved $[\mathrm{H}]$ that the sequence $A_{\infty, n}$, $n=1,2, \ldots$, is bounded away from 1. More precisely, he showed that $A_{\infty, n} \leq$ $1-\frac{1}{3 \pi}+\frac{4}{\pi} \sin \frac{1}{12}<1, n=1,2, \ldots$ Hummel, Scheinberg and Zalcman extended [HSZ] Krzyż's conjecture to $1<p<+\infty$. They conjectured that $A_{p, n}=\left(\frac{2}{e}\right)^{\frac{p-1}{p}}$ for $p$ in this range. For other related results cf $[\mathrm{B}]$ and $[\mathrm{S}]$. In the present paper we prove an analogue of Horovitz's result for Hummel-Scheinberg-Zalcman conjecture.

Theorem 1. Let $1<p<\infty$. Then $\sup _{n \geq 1} A_{p, n}<1$.

Since $A_{p, n} \geq A_{\infty, n}$, Theorem 1 implies Horovitz's result (but without his numerical bound). However, although the idea of our proof is quite different from the one of Horovitz's proof; Lemma 1, which is essential for our proof, was adapted from his paper [H, Lemma 1].

Theorem 1 is a consequence of uniform convexity of the $L^{p}$ norm, $1<p<+\infty$, and of the following result that may be also of some interest.

Theorem 2. There is an $\varepsilon>0$ such that the function $g(z)=z^{n}+h(z)$ has a zero in $\Delta$ whenever $n$ is a positive integer and $h$ is a function in $H^{1}$ with $\|h\|_{1}<\varepsilon$.

This theorem may be extended by replacing $z^{n}$ with any non-constant Blaschke product with all its zeros in a fixed compact subset of $\Delta$.

Our method allows to get some numerical estimates from the above of the suprema in Theorem 1. We do not carry the calculations here, since the numbers which may be obtained this way are unattractively close to 1 .
2. Proof of the Theorem 2. Let $L^{1}(\mathbf{T})$ denote the space of those Borel measurable functions $f$ on $\mathbf{T}$ which are integrable with respect to the Lebesgue measure on $\mathbf{T}$, endowed with the norm $\|f\|_{L^{1}(T)}=\frac{1}{2 \pi} \int_{\mathbf{T}}|f(\zeta)||d \zeta|$. For $f \in L^{1}(\mathbf{T})$ let $\tilde{f}$ be the function conjugate to $f$, i.e. the function defined almost everywhere on T by the formula:

$$
\tilde{f}\left(e^{i t}\right)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 \pi} \int_{t+\varepsilon}^{2 \pi+t-\varepsilon} \cot \left(\frac{t-\theta}{2}\right) f\left(e^{i \theta}\right) d \theta .
$$

By Kolmogorov's theorem (cf e.g. [G, III.2.1]), there is a constant $C_{1}$ such that

$$
\begin{equation*}
|\{\zeta \in \mathbf{T}:|\tilde{f}(\zeta)| \geq x\}| \leq \frac{C_{1}\|f\|_{L^{1}(\mathbf{T})}}{x}, \quad x>0, f \in L^{1}(\mathbf{T}) \tag{1}
\end{equation*}
$$

It is well known (cf e.g. [G, Th. VI.1.5]) that the mapping $f \rightarrow \tilde{f}$ is a bounded linear operator from $L^{\infty}(\mathbf{T})$ to $B M O(\mathbf{T})$. Let $C_{2}$ be any constant greater than or equal to the norm of this operator, i.e. such that

$$
\begin{equation*}
\|\tilde{f}\|_{B M O(\mathbf{T})} \leq C_{2}\|f\|_{L^{\infty}(\mathbf{T})}, \tag{2}
\end{equation*}
$$

where $\|\widetilde{f}\|_{B M O(T)}=\sup \frac{1}{\mid T} \int_{I}\left|f-\int_{I} f\right|$, and the supremum is taken over all intervals $I$ in $\mathbf{T}$. We will also need a weak estimate for the non-tangential maximal function due to Hardy and Littlewood (cf e.g. [G, I.4]). A very weak version is needed here. Let $S_{\sigma}\left(e^{i t}\right)=\left\{z=\rho e^{i \theta}: 0 \leq \rho<1,|t-\theta|<\sigma(1-\rho)\right\}, \sigma>0, t \in[0,2 \pi]$. For a function $h$ on $\Delta$ let $N_{\sigma} h(\zeta)=\sup _{z \in S_{\sigma}(\zeta)}|h(z)|, \zeta \in \mathbf{T}, \sigma>0$. For each $\sigma>0$ there is a constant $C$ such that

$$
\begin{equation*}
\left|\left\{\zeta \in \mathbf{T}: N_{0} h(\zeta) \geq x\right\}\right| \leq \frac{C\|h\|_{1}}{x}, \quad x>0, h \in H^{1} \tag{3}
\end{equation*}
$$

Let $C_{3}$ be equal to the constant $C$ in the above which corresponds to $\sigma=33 \pi$.
We will also need two lemmas. The first is adapted from [H, Lemma 1]. Since we need it in a different form, we give a proof (which does not differ essentially from Horovitz's proof).

Lemma 1. Let $K$ be the finite union of closed intervals in $T$. Let $f$ be a non-positive integrable function on $\mathbf{T}$ which vanishes on $\mathbf{T} \backslash K$. Let $a$ be any positive real number. Denote

$$
K_{1}=\left\{\zeta \in \mathbf{T} \backslash K: \tilde{f}^{\prime}(\zeta) \geq \frac{3}{2} a\right\}
$$

and

$$
K_{2}=\left\{\zeta \in \mathbf{T} \backslash K: \tilde{f}^{\prime}(\zeta) \leq \frac{a}{2}\right\}
$$

Then the Lebesgue measure of at least one of the sets $K_{1}$ and $K_{2}$ is greater than $\frac{3}{4}-|K|$.

Proof of Lemma 1. The Lemma is trivial if $f=0$ a.e., so assume that this is not the case. In this proof, for the sake of notational convenience, we identify T with $[0,2 \pi)$. On $T \backslash K$ we have

$$
\tilde{f}^{\prime}(t)=d(t) \stackrel{d f}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2} \csc ^{2} \frac{t-\theta}{2}(-f(\theta)) d \theta
$$

Therefore $\tilde{f}^{\prime}$ is positive and convex on each of the connected components of $\mathbf{T} \backslash K$. Denote the connected components of $K_{1} \cup K$ by $L_{1}, \ldots, L_{\theta}$, and by $\alpha_{j}$ and $\beta_{j}$ the left and the right (respectively) endpoints of $L_{j}$. To keep the notation unambiguous assume additionally that $0 \notin K_{1} \cup K$. We assume also that $\beta_{j}-\alpha_{j} \leq \frac{3}{4}$, since otherwise there is nothing to prove. Then we have

$$
\begin{aligned}
\frac{3 a}{2} & \geq d\left(\beta_{j}\right) \geq \frac{1}{2 \pi} \int_{L_{j}} \frac{1}{2} \csc ^{2} \frac{\beta_{j}-\theta}{2}(-f(\theta)) d \theta \\
& \geq \frac{1}{2} \csc ^{2} \frac{\beta_{j}-\alpha_{j}}{2}\left(\frac{-1}{2 \pi} \int_{L_{j}} f\right), \quad j=1,2, \ldots, s
\end{aligned}
$$

This gives

$$
\frac{1}{\sqrt{3 a}}\left(\frac{-1}{2 \pi} \int_{L_{j}} f\right)^{1 / 2} \leq \sin \left(\frac{\left|L_{j}\right|}{2}\right) \leq \frac{\left|L_{j}\right|}{2}, \quad j=1,2, \ldots, s
$$

We add these inequalities and obtain

$$
\begin{equation*}
\left|K_{1} \cup K\right|=\sum_{j}\left|L_{j}\right| \geq \frac{2}{\sqrt{3 a}} \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f\right)^{1 / 2} \tag{4}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\int_{\mathrm{T} \backslash\left(K_{1} \cup K\right)} \tilde{f}^{\prime} & =\int_{\mathrm{T} \backslash\left(K_{1} \cup K\right)}\left[\frac{1}{2 \pi} \int_{K} \frac{1}{2} \csc ^{2} \frac{\theta-t}{2}(-f(\theta)) d \theta\right] d t \\
& \leq \int_{\mathrm{T} \backslash\left(K_{1} \cup K\right)} \sum_{j}\left[\frac{1}{2 \pi} \int_{L_{j}} \frac{1}{2} \csc ^{2} \frac{\theta-t}{2}(-f(\theta)) d \theta\right] d t \\
& \leq \sum_{j} \frac{1}{2 \pi} \int_{L_{j}}\left[\int_{\mathrm{T} \backslash L_{j}} \frac{1}{2} \csc ^{2} \frac{\theta-t}{2} d t\right](-f(\theta)) d \theta \\
& =\sum_{j} \frac{1}{2 \pi} \int_{L_{j}}\left[\operatorname{ctg} \frac{\beta_{j}-\theta}{2}-\operatorname{ctg} \frac{\alpha_{j}-\theta}{2}\right](-f(\theta)) d \theta
\end{aligned}
$$

Applying Schwarz's inequality to the last integral we obtnin

$$
\begin{align*}
\begin{aligned}
& \int_{\mathbf{T} \backslash\left(K_{1} \cup K\right)} \tilde{f}^{\prime} \leq \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2} \\
& \cdot\left[\frac{1}{2 \pi} \int_{L_{j}}\left(\operatorname{ctg} \frac{\beta_{j}-\theta}{2}-\operatorname{ctg} \frac{\alpha_{j}-\theta}{2}\right)^{2}(-f(\theta)) d \theta\right]^{1 / 2} \\
& \leq \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2}\left[\left(\frac{1}{2 \pi} \int_{L_{j}}\left(\operatorname{ctg}^{2} \frac{\beta_{j}-\theta}{2}(-f(\theta)) d \theta\right)^{1 / 2}\right.\right. \\
&+\left(\frac{1}{2 \pi} \int_{L_{j}}\left(\operatorname{ctg}^{2} \frac{\alpha_{j}-\theta}{2}(-f(\theta)) d \theta\right)^{1 / 2}\right] \\
& \leq \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2}\left[\left(\frac{1}{2 \pi} \int_{L_{j}}\left(\csc ^{2} \frac{\beta_{j}-\theta}{2}(-f(\theta)) d \theta\right)^{1 / 2}\right.\right. \\
& \quad+\left(\frac{1}{2 \pi} \int_{L_{j}}\left(\csc ^{2} \frac{\alpha_{j}-\theta}{2}(-f(\theta)) d \theta\right)^{1 / 2}\right] \\
& \leq \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2}\left[\left(2 d\left(\beta_{j}\right)\right)^{1 / 2}+\left(2 d\left(\alpha_{j}\right)\right)^{1 / 2}\right] \\
& \leq \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2}\left[2\left(2 \frac{2}{3} a\right)^{1 / 2}\right] \\
&= 2 \sqrt{3 a} \sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2}
\end{aligned} \tag{5}
\end{align*}
$$

If $\left|K_{1} \cup K\right|>\frac{3}{4}$ then the assertion of the lemma holds. Assume that $\left|K_{1} \cup K\right| \leq \frac{3}{4}$. By (4), we have

$$
\sum_{j}\left(\frac{-1}{2 \pi} \int_{L_{j}} f(\theta) d \theta\right)^{1 / 2} \leq \frac{3 \sqrt{3 a}}{8}
$$

Hence, by (5), $\int_{\mathrm{T} \backslash\left(K_{1} \cup K\right)} \tilde{f}^{\prime} \leq 9 a / 4$, and, consequently,

$$
\left|\left\{\zeta \in \mathbf{T} \backslash\left(K_{1} \cup K\right): \tilde{f}^{\prime}(\zeta)>\frac{a}{2}\right\}\right| \leq \frac{2}{a} \int_{\mathbf{T} \backslash\left(K_{1} \cup K\right)} \tilde{f}^{\prime} \leq \frac{9}{2}
$$

So, we have

$$
\left|K_{2}\right|=2 \pi-\left|K_{1} \cup K\right|-\left|\left\{\zeta \in \mathbf{T} \backslash\left(K_{1} \cup K\right): \tilde{f}^{\prime}(\zeta)>\frac{a}{2}\right\}\right| \geq 2 \pi-\frac{3}{4}-\frac{9}{2}>\frac{3}{4}
$$

The second lemma is so easy that we skip the proof.
Lemma 2. Let $J$ be a finite non-degenerate interval, let $a>0$, and let $f$ be a differentiable function on $J$ such that either $f^{\prime} \geq \frac{3 a}{2}$ or $f^{\prime} \leq \frac{a}{2}$. Let $g$ be a function on $J$ with $g^{\prime}=a$. Then

$$
\frac{1}{|J|} \int_{J}\left|f(\zeta)-g(\zeta)-\frac{1}{|J|} \int_{J}(f-g)\right||d \zeta| \geq \frac{a|J|}{8} .
$$

Now we can return to the proof of Theorem 2. Let a number $x \in(0,1 / 2)$ be such that

$$
\begin{equation*}
\sin ^{-1} 2 x+x-C_{2} \log (1-2 x) \leq \frac{1}{4} \tag{6}
\end{equation*}
$$

Fix this $x$ and set $\varepsilon=\frac{x}{4\left(C_{3}+4 C_{1}\right)}$. Let a positive integer $n$ and a function $h \in H^{1}$, with $\|h\|_{1}<\varepsilon$, be arbitrary. We have to prove that the function $g(z)=z^{n}+h(z)$ has at least one zero in $\Delta$. Suppose that this is not the case, i.e. that $g$ does not vanish in $\Delta$. Set $\rho=1-\frac{1}{2 n}$, and let $g_{1}(z)=\rho^{-n} g(\rho z)=z^{n}+\rho^{-n} h(\rho z)=z^{n}+h_{1}(z)$, and $A=\left\{\zeta \in \mathbf{T}: N_{\sigma} h(\zeta)<x\right\}$, where $\sigma=33 \pi$. Let $A_{1}=\left\{\zeta \in \mathbf{T}: \rho \zeta \in \bigcup_{\eta \in A} S_{\sigma}(\eta)\right\}$, with the same $\sigma$. Clearly $A_{1} \supseteq A$ and .

$$
\begin{equation*}
\left|h_{1}(\zeta)\right|<\rho^{-n} x \leq 2 x, \quad \text { for } \zeta \in A_{1} . \tag{7}
\end{equation*}
$$

If $A_{1}=\mathbf{T}$, then $g_{1}$ has $n$ zeros in $\Delta$ by Rouché's theorem, since $\left|h_{1}\right| \leq 2 x<1$ on $\mathbf{T}$ then. So $A_{1}$ is a proper subset of $\mathbf{T}$, and it is the finite union of disjoint open intervals. Let us denote them by $I_{1}, I_{2}, \ldots, I_{s}$. The length of each of these intervals is, by the definitions of $S_{\sigma}$ and $A_{1}$, greater than or equal to $\sigma / n$. Since $g_{1}$ is analytic on $\bar{\Delta}$ and does not vanish there, we can define $l=\log g_{1}$ on $\bar{\Delta}$ (where we take any analytic branch of the logarithm). On $T$ we have: $\operatorname{lm} l=\log \left|g_{1}\right|+C$, where $C$ is some real constant. By (7), on each $I_{j}$ there is a $C^{1}$ function $a_{j}$ with $a_{j}^{\prime}=n$ such that

$$
\begin{equation*}
\left\|\operatorname{Im} l-a_{j}\right\|_{L^{\infty}\left(I_{j}\right)} \leq \sin ^{-1} 2 x . \tag{8}
\end{equation*}
$$

On the other hand we may write

$$
\log \left|g_{1}\right|=f_{1}+f_{2}+f_{3} \quad \text { on } \mathbf{T}
$$

where

$$
\begin{aligned}
& f_{1}(\zeta)= \begin{cases}\log \left|g_{1}(\zeta)\right| & , \text { if } \zeta \in \mathbf{T} \backslash A_{1} \text { and } \log \left|g_{1}(\zeta)\right|<1 \\
0 & , \text { otherwise, }\end{cases} \\
& f_{2}(\zeta)= \begin{cases}\log \left|g_{1}(\zeta)\right| & , \text { if } \zeta \in \mathbf{T} \backslash A_{1} \text { and } \log \left|g_{1}(\zeta)\right|>1 \\
0 & , \text { otherwise, }\end{cases}
\end{aligned}
$$

and

$$
f_{3}(\zeta)= \begin{cases}0 & , \text { if } \zeta \in \mathbf{T} \backslash A_{1} \\ \log \left|g_{1}(\zeta)\right| & , \text { if } \zeta \in A_{1} .\end{cases}
$$

By (2) applied to $f=f_{3}$ and by (7), we have

$$
\begin{equation*}
\left\|\tilde{f}_{3}\right\|_{B M O(\mathbf{T})} \leq C_{2}\left\|f_{3}\right\|_{L^{\infty}(\mathbf{T})} \leq C_{2}(-\log (1-2 x)) \tag{9}
\end{equation*}
$$

The function $f_{2}$ is nonnegative and we have

$$
f_{2}(\zeta) \leq \log ^{+}\left|\zeta^{n}+h_{1}(\zeta)\right| \leq\left|h_{1}(\zeta)\right| \leq 2|h(\rho \zeta)| .
$$

Hence $\left\|f_{2}\right\|_{L^{\prime}(T)} \leq 2\|h\|_{1}<2 \varepsilon$. So, by (1), we obtain

$$
\begin{equation*}
\left|\left\{\zeta \in \mathbf{T}:\left|\tilde{f}_{2}(\zeta)\right| \geq x\right\}\right| \leq \frac{C_{1}\left\|f_{2}\right\|_{L^{\prime}(\mathbf{T})}}{x} \leq \frac{2 C_{1} \varepsilon}{x} \tag{10}
\end{equation*}
$$

Since $\tilde{f}_{2}$ is non-decreasing and continuous on each $I_{j}$, the set $I_{j}^{\prime}=\left\{\zeta \in I_{j}:\left|\tilde{f}_{2}(\zeta)\right|<\right.$ $x\}$ is an (possibly empty) open subinterval of $I_{j}$. Let $J_{k}, k=1,2, \ldots, r$ be the family of those $I_{j}^{\prime}$ 's which are of the length greater than or equal to $\frac{\sigma}{2 n}$. Since $\left|I_{j}\right| \geq \sigma / n$, we have $\left|I_{j}^{\prime}\right| /\left|I_{j}\right|<1 / 2$ for each interval $I_{j}^{\prime}$ which is not in the family $\left(J_{k}\right)$. So if we denote $A_{2}=\bigcup_{k} J_{k}$ then, by (10), we have $\left|A_{1} \backslash A_{2}\right| \leq 2 \mid\left\{\zeta \in \mathbf{T}:\left|\tilde{f}_{2}(\zeta)\right| \geq\right.$ $x\} \left\lvert\, \leq \frac{4 C_{1} \varepsilon}{x}\right.$. Hence, by (3) and by the definition of the set $A$, it follows that $\left|\mathbf{T} \backslash A_{2}\right| \leq\left|\mathbf{T} \backslash A_{1}\right|+\left|A_{1} \backslash A_{2}\right| \leq|\mathbf{T} \backslash A|+\left|A_{1} \backslash A_{2}\right| \leq \frac{C_{3} \varepsilon}{x}+\frac{4 C_{1} \varepsilon}{x}=\left(C_{3}+4 C_{1}\right) \cdot \frac{\varepsilon}{x}$. Therefore the choice of $\varepsilon$ guarantees that $\left|\mathbf{T} \backslash A_{2}\right| \leq 1 / 4$. Not.e that

$$
\begin{equation*}
\left|\tilde{f}_{2}(\zeta)\right|<x, \quad \zeta \in A_{2} . \tag{11}
\end{equation*}
$$

Let us apply Lemma 1 to $f=f_{1}, K=\mathbf{T} \backslash A_{2}$ and $a=n$. This lemuna, together with the fact that $|K|=\left|\mathbf{T} \backslash A_{2}\right| \leq \frac{1}{4}$, implies that at least one of the two sets: $\left\{\zeta \in A_{2}: \tilde{f}_{1}^{\prime}>\frac{3 n}{2}\right\}$ and $\left\{\zeta \in A_{2}: \tilde{f}_{1}^{\prime}<\frac{n}{2}\right\}$ is of the Lebesgue measure greater than $1 / 2$. Denote by $D$ any of these two sets which is of the Lebesgue mensure greater than $1 / 2$. Then there is at least one $J_{k}$ with

$$
\frac{\left|D \cap J_{k}\right|}{\left|J_{k}\right|} \geq \frac{|D|}{\left|A_{2}\right|}>\frac{\frac{1}{2}}{2 \pi}=\frac{1}{4 \pi} .
$$

Fix this $k$ and note that, since $\tilde{f}_{1}^{\prime}$ is convex on $J_{k}$, the set $D \cap J_{k}$ has either one or two connected components. Denote by $J^{\bullet}$ this component, in the first case, and one of the two with the Lebesgue measure not less than the Lebesgue measure of the other, in the second case. Then $J^{*}$ is an interval contained in $D \cap J_{k}$ with $\left|J^{\bullet}\right| \geq\left|D \cap J_{k}\right| / 2>\left|J_{k}\right| / 8 \pi \geq \frac{\sigma}{16 \pi n}=\frac{33}{16 n}$. Let $I_{i_{0}}$ be this $I_{j}$ which contains $J^{*}$. Then. by (11), (9), (8) and (6), we have
(12) $\left\|\tilde{f}_{1}-a_{\text {jo }}\right\|_{\text {вало( } 1 \cdot 0)}=\left\|\operatorname{Im} l-\tilde{f}_{2}-\tilde{f}_{3}-a_{j}\right\|_{\text {нмO(J•) }}$

$$
\begin{aligned}
& \leq\left\|\tilde{f}_{2}\right\|_{L_{\infty}(J \cdot)}+\left\|\tilde{f}_{3}\right\|_{B M O(J \cdot)}+\left\|\operatorname{Im} l-a_{j_{0}}\right\|_{B M O(J \cdot)} \\
& \leq\left\|\tilde{f}_{2}\right\|_{L^{\infty}\left(A_{2}\right)}+\left\|\tilde{f}_{3}\right\|_{B M O(T)}+\left\|\operatorname{Im} l-a_{j_{0}}\right\|_{I \cdots\left(l_{j_{0}}\right)} \\
& \leq x+C_{2}(-\log (1-2 x))+\sin ^{-1} 2 x \leq \frac{1}{4} .
\end{aligned}
$$

But since on $J^{\bullet}$ the derivative of $\tilde{f}_{1}$ is either less than $n / 2$ or greater than $3 n / 2$, while $\pi_{j_{0}}^{\prime}=\|$, an application of Lesmma 2 with $J=J^{*}, a=n, f=\tilde{f}_{1}$, and $g=a_{j_{n}}$ gives

$$
\left\|\tilde{f}_{1}-\right\|_{j_{n}} \|_{B M()(1 \cdot)} \geq \frac{n\left|J^{*}\right|}{8} \geq \frac{33}{128}>\frac{1}{4} .
$$

This brings a contradiction with (12) and completes the proof of the theorem.
3. Proof of Theorem 1. Theorem 1 follows from Theorem 2 by uniform convexity of $L^{P}$ norm. The most convenient for our purpose definition of uniform convexity of a norm is the following:
(13) Let $(X,\|\cdot\|)$ be a normed linear space. The norm $\|\cdot\|$ is said to be uniformly convex on $X$ if for every $\varepsilon>0$ there is a $\delta>0$ such that for every $x, y \in X$ with $\|x\|=1,\|y\| \geq \varepsilon$ and $\|x+s y\| \geq 1,-1 \leq s \leq 1$, we have $\|x+y\| \geq 1+\delta$.

It is well known (cf e.g. [LT, Ch.1, Sec. e,f] or [D, Ch.VII, Sec. 2(13)] that for $p \in(1,+\infty)$ the norm of any $L^{p}$ space is uniformly convex (it is trivial for $L^{2}$ ). Hence, the norm on $H^{p}$ is uniformly convex for $p \in(1,+\infty)$.

It is clear that Theorem 1 may be reformulated as follows
(14) For each $p \in(1,+\infty)$ there is a $\delta>0$ such that if $n$ is any positive integer and if $f(z)=z^{n}+\sum_{k \neq n} a_{k} z^{k}$ is a nonvanishing $H^{p}$ function, then $\|f\|_{p} \geq 1+\delta$.

But (14) follows by (13) (with $X=H^{p}$ ) and by Theorem 2. Indeed. Fix $p \in$ $(1,+\infty)$. Take $\varepsilon$ from Theorem 2 and the $\delta$ which corresponds to this $\varepsilon$ via (13) for $H^{p}$ norm. Let $n \geq 1$ and suppose that $g(z)=z^{n}+\sum_{k \neq n} a_{k} z^{k}=z^{n}+h(z)$ is a nonvanishing $H^{p}$ function. By Theorem 2 and by Hölder's inequality, we have $\varepsilon \leq\|h\|_{1} \leq\|h\|_{p}$. Since for each real $s$ the $H^{p}$ norm of the function $z^{n}+\operatorname{sh}(z)$ is greater than or equal to 1 , we have, by (13), $\|f\|_{p}=\left\|z^{n}+h(z)\right\|_{p} \geq 1+\delta$.
4. Acknowledgement. The author thanks Jan Szynal for introducing him to the problem discussed in this paper.

## REFERENCES

[B] Brown, J. E., On a coefficient problem for nonvanishing $H^{p}$ functions, Complex Variables 4 (1985), 253-285.
[D] Day, M. M. , Normed Linear Spaces, Springer-Verlag, Berlin, 1973.
[G] Garnett, J. B. , Bounded Analytic Functions, Academic Press, New York, 1981.
[H] Horovitz, Ch. , Coeficients of nonvanishing functions in $H^{\infty}$. Israel J. Math. 30 (1978) no 3, 285-291.
[HSZ] Hummel, J. A., Scheinberg, S., Zalcman, L., A coefficient problem for bounded non-vanishing functions, J. Analyse Math. 31 (1977), 169-190.
[K] Kreyis, J. G., Coefficient problems for bounded nonvanishing functions, Ann. Polon. Math. 20 (1968), 914.
[LT] Lindenstrause, J., Tzafriri, L., Classical Banach Spaces II, Function Spaces, SpringerVerlag, Berlin, 1979.
[S] Suffridge, T. J. Extremal Problems for Nonvanishing $H^{p}$ Functions, Computational Methods and Function Theory, Proceedings, Valparaiso 1989, Ruscheweyh et al. (nds.), LNM 1435, pp. 177-190, Springer-Verlag, Berlin, 1990.

## STRESZCZENIE

W pracy wykazano, że istnieje $\varepsilon>0$ takie, że dla każdej liczby calkowitej dodatniej $n$ funkcja $f(z)=z^{n}+h(z),|z|<1$, ma co najmniej jedno zero w kole jednostkowym dla dowolnej funkcji $h \in H^{1}$ takiej, że $\|h\|_{1}<\varepsilon$. Wynika atąd, ie dla każdego $p_{1} 1<p<+\infty$, iatnieje liczba $Q_{p}<1$ taka, że dla dowolnej niezerującej aį̣ funkcji $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, takiej, że $\|f\|_{p} \leq 1$ zachodzi nierówność $\left|a_{n}\right|<Q_{p}, n=1,2, \ldots$.
(received June 19, 1991)

