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On Coefficients of Non-vanishing Hp functions

O współczynnikach nieznikających funkcji klasy Hp

Abstract. We prove that there is an £ > 0 such that for each positive integer n the function 
f(z) = Zn + /l(z), |z| < 1, has at least one zero in the unit disk for each h € H1 with ||/l||i < £• 
From this theorem we deduce that for each p, 1 < p < +OO, there is a number Qp < 1 such that 
for any non-vanishing Hp function f(z) = anz" ll/llp < 1. we have |a„| < Qp,
n = 1,2,...

1. Introduction and formulation of results. Let A be the unit disk in the 
complex plane, and let T be the unit circle. If A is a Borel measurable subset of T, 
by |A| we denote its one-dimensional Lebesgue measure. As usual, Hp is the space 
of analytic functions f on A which satisfy the condition

l/K)Wl),/'’<+00’ 1-P<+°°’

and H°° is the space of bounded analytic functions on A with the norm ||/||oo == 

sup|x|<i |/(z)|. Let Bp be the unit ball in Hp, and let N denote the class of all 
non-vanishing analytic functions on A. Let us denote

oo

Ap,n = sup |a„| , where f(z) = ^2 •
fEB,nN *=0

Krzyz conjectured [K] that A^.n = j, n = 1,2,... So far, his conjecture was 
verified only for n = 1,2,3 and 4. Horovitz proved [H] that the sequence A^ ^, 
n = 1,2,..., is bounded away from 1. More precisely, he showed that Aoo.n < 
l_JL + isin -L < l(n = 1,2,...Hummel ,Scheinberg andZalcman extended

[HSZ] Krzyz’s conjecture to 1 < p < +oo. They conjectured that APi„ = (J) p for 
p in this range. For other related results cf [B] and [S]. In the present paper we prove 
an analogue of Horovitz’s result, for Hummel-Scheinberg-Zalcman conjecture.

Theorem 1. Let 1 < p < oo. Then supn>, Ap,„ < 1.
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Since Ap,n > Aoo,„, Theorem 1 implies Horovitz’s result (but without his numer
ical bound). However, although the idea of our proof is quite different from the one 
of Horovitz’s proof; Lemma 1, which is essential for our proof, was adapted from his 
paper [H, Lemma 1].

Theorem 1 is a consequence of uniform convexity of the Lv norm, 1 < p < +oo, 
and of the following result that may be also of some interest.

Theorem 2. There is an e > 0 such that the function g(z) = zn + h(z) has a 
zero in A whenever n is a positive integer and h is a function in Hx with ||/i||i < £■

This theorem may be extended by replacing z" with any non- constant Blaschke 
product with all its zeros in a fixed compact subset of A.

Our method allows to get some numerical estimates from the above of the 
suprema in Theorem 1. We do not carry the calculations here, since the numbers 
which may be obtained this way are unattractively close to 1.

2. Proof of the Theorem 2. Let £J(T) denote the space of those Borel mea
surable functions f on T which are integrable with respect to the Lebesgue measure 
on T, endowed with the norm ||/||¿i(T) — Jt 1/(01 MCI- For / G ¿’(T) let f be 
the function conjugate to f, i.e. the function defined almost everywhere on T by the 
formula:

i 2tt+( — £ ± __ n

cot(—

By Kolmogorov’s theorem (cf e.g. [G, III.2.1]), there is a constant Ci such that

(1) |{<G T: 1/(01 >X}| < , x>0,/eL1(T).

It is well known (cf e.g. [G, Th. VI.1.5]) that the mapping f -+ f is a bounded linear 
operator from £°°(T) to BM0(T). Let C? be any constant greater than or equal to 
the norm of this operator, i.e. such that

(2) ||/||bMO(T) < G||/||i,~(T) .

where ||/||bmo(T) = SUP jTf // t/~ // /I, an^ supremum is taken over all intervals 
I in T. We will also need a weak estimate for the nontangential maximal function 
due to Hardy and Littlewood (cf e.g. [G, 1.4]). A very weak version is needed here. 
Let Sa(eit) = {z = pe'8 : 0 < p < 1 , |f - 0| < <r(l - p)} , a > 0 , t G [0,2tt]. Fora 
function h on A let Nah((f) = supi6S<r(0 |/i(z)|, £ € T, a > 0. For each a > 0 there 
is a constant C such that

(3) |KeT:ATa/i«)>x}|<®  ̂, x > 0 , h € H' .

Let C3 be equal to the constant C in the above which corresponds to a = 33ir.
We will also need two lemmas. The first is adapted from [H, Lemma 1]. Since

we need it in a different form, we give a proof (which does not differ essentially from 
Horovitz’s proof).
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Lemma 1. Let K be the finite union of closed intervals in T. Let f be a 
non-positive integrable function on T which vanishes onTL\K. \Let a be any positive 
real number. Denote

*, ={(eT\* ,

and ~
K2 = {(eT\K :/'(()<-} .

Then the Lebesgue measure of at least one of the sets K\ and Kt w greater than 
1-1*1.

Proof of Lemma 1. The Lemma is trivial if f = 0 a.e., so assume that this is 
not the case. In this proof, for the sake of notational convenience, we identify T with 
[0,27r). On T \ K we have

f '(0 = <*(*) = jf” j csc2t-^(-fW)dff .

Therefore f ' is positive and convex on each of the connected components of T \ K. 
Denote the connected components of Ki U K by L¡,... ,L,, and by aj and fij the 
left and the right (respectively) endpoints of Lj. To keep the notation unambiguous 
assume additionally that 0 K\ U K. We assume also that (3 j — otj < j , since 
otherwise there is nothing to prove. Then we have

We add these inequalities and obtain

(4) 1^. 2 //)’'’•

On the other hand we have
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Applying Schwarz’s inequality to the last integral we obtain

(5)

1/2

(-/(*))<#) 1/2

+ Qj - g

I /(«)^)1/2[(2^>))1/2 + (2d(aJ)),/2]
> JL>

If |/fi U K| > | then the assertion of the lemma holds. Assume that |Ki U K| < |. 
By (4), we have

Hence, by (5), /T\(KlUK) f ' - 9«/4, an^> consequently,

|{<6T\(K,UK):/TO>2}|<?yTWi /'<r

So, we have

|A'2| = 2ir - |K, UK| - |{< G T\(K, UK): /'(<) > ¡}| > ~ ~ > £

The second lemma is so easy that we skip the proof.

Lemma 2. Let J be a finite non-degenerate interval, let a > 0, and let f be a
differentiable function on J .iuch that either f > y- or f < |. Let g be a function
on J with g' = a. Then
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Now we can return to the proof of Theorem 2. Let a number x G (0,1/2) be such
that

(6) sin-1 2x + x — C2 log(l — 2x) < - .

Fix this x and set e = jfca+ic,') • a positive integer n and a function h G H1, 
with ||Zi||i < e, be arbitrary. We have to prove that the function g(z) = zn + h(z) has 
at least one zero in A. Suppose that this is not the case, i.e. that g does not vanish 
in A. Set p = 1 — , and iet gx(z) = p~ng(pz) = zn + p~nh(pz) = zn + hi(z), and
A = {( G T : N„h(Q < x), where a - 33%. Let A1 = {< G T : G U,e?i 'M’/)}, 
with the same a. Clearly Ai O A and •

(7) |MOI < p~nx < 2x , for ( G Ai .

If Ai = T, then gi has n zeros in A by Rouche’s theorem, since |/ii| < 2x < 1 on 
T then. So Ai is a proper subset of T, and it is the finite union of disjoint open 
intervals. Let us denote them by Iy,Ii,... ,1,. The length of each of these intervals 
is, by the definitions of S„ and Aj, greater than or equal to a/n. Since g\ is analytic 
on A and does not vanish there, we can define Z = log 31 on A (where we take any 
analytic branch of the logarithm). On T we have: Im I = log |ji | 4- C, where C is 
some real constant. By (7), on each Ij there is a C1 function a,j with a' = n such 
that

(8) || Im/-a>||£,»(/.,< sin-1 2x .

On the other hand we may write

fi A fa A fs on T ,log Iff 1 1 =

where
A(0= jf log Iff 1 (<)| 

to
, if <G T\ Ai and log|ffi(<)| < 1 
, otherwise,

/2(0 = ]f log Iff 1 (01 

to
, if <G T\ A, and log|jh«)| > 1 
, otherwise,

and

3 tiog|3i(OI , if(e^i-

By (2) applied to f = f3 and by (7), we have

H/31| itMO(T) < C*2H/31|(T) < Gi-logil ~2x)) .(9)
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The function f? is nonnegative and we have

A«) < iog+1<" + MOI < IMOI < 2|/»(pOI •

Hence H/lllt'CT) < 2||/i||i < 2e. So, by (1), we obtain

(10) [{<€ T : |/2«)| > x}| < Cl|l/?IIA.I(T) < 2Ci£
' 'xx

Since is non-decreasing and continuous on each /,, the set /J = {( G Ij : |jf2(£)| < 
x} is an (possibly empty) open subinterval of Ij. Let /*, k = 1,2,... ,r be the family 
of those /J’s which are of the length greater than or equal to Since |/> | > a/n, 
we have |/J|/|/;| < 1/2 for each interval /' which is not in the family (A). So if
we denote 42 = (Jt A then, by (10), we have |4i \ 42| < 2|{( G T : |A(£)| > 
x}| < . Hence, by (3) and by the definition of the set A, it follows that
|T\42|<|T\41| + |41\42|<|T\4| + |4,\42|<^ + ^ = (C3+4C,) f . 
Therefore the choice of e guarantees that |T \ 42| < 1/4. Note that

(11) I/jK)I<*» <€42.

Let us apply Lemma 1 to / = fa, K = T \ 42 and a = n. This lemma, together 
with the fact that |A'| = |T \ 42| < j , implies that at least one of the two sets: 
{(G42 :/i 1 > yj and {( G 42 : ft ' < y} is of the Lebesgue measure greater than 
1/2. Denote by D any of these two sets which is of the Lebesgue measure greater 
than 1/2. Then there is at least one Jt with

|x>n |D| | ... l
|A | " |42| 2tt 4n •

Fix this k and note that, since f\ ' is convex on J*, the set D PI J* has either one 
or two connected components. Denote by J* this component, in the first case, and 
one of the two with the Lebesgue measure not less than the Lebesgue measure of 
the other, in the second case. Then J* is an interval contained in D PI J* with 
|J*| > |D PI J*|/2 > |/*|/87r > . Let /,„ be this Ij which contains J*.
Then, by (11), (9), (8) and (6), we have

(12) ||/i - a>,|,»Aro(.»•) = || Im I - fo - fj - ajIIhmo( j-)

< l|/i||t“(J«) + HAHBMO(J-) + II l,n 1 - a>oll».WO(J*.
< HAIIt~(?tj) + IIAIIbMO(T) + II I,n 1 - a>ollA~(i<o)
< x + C2(— log(l - 2x)) + sin“’ 2x < ^ .

But since on J* the derivative of ft is either less than n/2 or greater than 3n/2, while 
fi’o = n, an application of Lemma 2 with J = J*, a = »», f = /t, and g — aj„ gives

II/. "jo II«AtO( ;•)
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This brings a contradiction with (12) and completes the proof of the theorem.

3. Proof of Theorem 1. Theorem 1 follows from Theorem 2 by uniform 
convexity of Lp norm. The most convenient for our purpose definition of uniform 
convexity of a norm is the following:

(13) Let (X, || • ||) be a normed linear space. The norm || ■ || is said to be uniformly 
convex on X if for every e > 0 there is a 6 > 0 such that for every x,y g X with 
||x|| = 1, ||{/|| > e and ||x + sy|| > 1, -1 < s < 1, we have ||x + p|| > 1 + 6.

It is well known (cf e.g. [LT, Ch.l, Sec. e,f] or [D, Ch.VII, Sec. 2(13)] that 
for p g (l,+oo) the norm of any Lp space is uniformly convex (it is trivial for L2). 
Hence, the norm on Hp is uniformly convex for p g (1, +oo).

It is clear that Theorem 1 may be reformulated as follows

(14) Fbr each p g (1, +oo) there is a 6 > 0 such that if n is any positive integer and
if f(z) = zn + akzk is a nonvanishing Hp function, then ||/||p >1 + 6.

But (14) follows by (13) (with X = Hp) and by Theorem 2. Indeed. Fix p g 
(l,+oo). Take e from Theorem 2 and the 6 which corresponds to this e via (13) 
for Hp norm. Let n > 1 and suppose that p(z) = zn + °kzk = zn + h(z)
is a nonvanishing Hp function. By Theorem 2 and by Holder’s inequality, we have 
c < ||h||i < ||h||p. Since for each real s the Hp norm of the function zn + s/i(z) is 
greater than or equal to 1, we have, by (13), ||/||p = ||«n + ^(^)||p >1 + 6.

4. Acknowledgement. The author thanks Jan Szynal for introducing him to 
the problem discussed in this paper.
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STRESZCZENIE

W pracy wykazano, że istnieje £ > 0 takie, że dla każdej liczby całkowitej dodatniej n funkcja 
/(z) = z" + fc(z), |z| < 1, ma co najmniej jedno zero w kole jednostkowym dla dowolnej funkcji 
h G takiej, że ||/l||i < €• Wynika stąd, że dla każdego p, 1 < p < +OO, istnieje liczba 
Qp < 1 taka, że dla dowolnej niezerującej się funkcji f(z) — anZn, takiej, że ll/llp < 1
zachodzi nierówność |a„| < Qv, n = 1,2,... .
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