LUBLIN-POLONIA

VOL. XLIV, 7
SECTIO A
1990
Instytut Matematyki UMCS, Lublin

D. PARTYKA

The Maximal Dilatation of Douady and Earle Extension of a Quasisymmetric Automorphism of the Unit Circle

> Rząd quasikonforemności rozszerzenia Douady - Earle'a quasisymetrycznego automorfizmu okręgu jednostkowego

Abstract

This paper aims at giving an explicit and asymptotically sharp estimate of the maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle.

0. Introduction. The main result of this paper is Theorem 3.1 which gives an explicit and asymptotically sharp estimate of the maximal dilatation K^{*} of Douady and Earle extension of an automorphism γ of the unit circle T which admits a K-quasiconformal extension to the whole unit disc Δ. Asymototically sharp estimate means that K^{*} tends to 1 as K tends to 1 . In this sense Theorem 3.1 improves results found by Douady and Earle, cf. [3;Corollary 2, Proposition 7]. They have proved using the theory of Teichmüller mappings, cf. [3;Corollary 2] that, given $\varepsilon>0$, there exists $\delta>0$ such that $K^{\bullet} \leq K^{3+e}$ if $K \leq 1+\delta$. Their explicit estimate, cf. [3 ;Proposition 7] is of the form $K^{\bullet} \leq 4 \cdot 10^{8} e^{35 K}$ so our estimate given in Theorem 3.1 is much better for $K<50$. Theorem 3.1 improves also the theorem from [10] for small $K \leq 1.01$. This paper is a natural continuation of the paper [7].

The considerations in this paper are based on the theory of quasisymmetic automorphisms of the unit circle \mathbf{T}, cf.[6] which fully characterize the boundery values of quasiconformal automorphisms of the unit disc Δ, cf.[5]. But the proof of Theorem 3.1 requires some new facts as far as quasisymmetic automorphisms of the unit circle \mathbf{T} are concerned. To this end we study some functionals of the type γ_{n}^{m} defined in the section 1 and we establish in Theorem 1.2 their asymptotically sharp estimates in the class Q_{T} of all quasisymmetic automorphisms of the unit circle T. In the section 2 we prove a very important distortion Theorem 2.3 for Douady and Earle extension E_{γ}. The estimates obtained here are also asymptotically sharp in the class Q_{T}, These two theorems and some facts from the paper [7] produce in the section 3, as a consequence, the above Theorem 3.1. It seems that Theorems 1.2, 2.3 and 3.1 may be usefool tools in such subjects as harmonic automorphisms of Δ and quesiconformal automorphisms f of Δ normalized by the condition $\int_{T} f(z)|d z|=0$. For example in the last section 4 we give some of their obvious corollaries.

1. We denote by $K(z, r)$ the disc of the radius r and the centre at z. The unit disc is denoted shortly by Δ. Following J.G.Krzyr we shall introduce the notion of a quasisymmetric automorphism of the unit circle \mathbf{T}.

Definition 1.1. An automorphism $\gamma: \mathbf{T} \rightarrow \mathbf{T}$ is said to be k-quasisymmetric, $k \geq 1$, iff the inequality

$$
k^{-1} \leq\left|\gamma\left(I_{1}\right)\right| /\left|\gamma\left(I_{2}\right)\right| \leq k
$$

holds for each pair of adjacent closed arcs $I_{1}, I_{2} \subset \mathbf{T}$ such that $0<\left|I_{1}\right|=\left|I_{2}\right| \leq \pi$, where $|\cdot|$ denotes the Lebesgue measure on T.

The family of all k-quasisymmetric automorphisms of T will be denoted by $Q_{\mathbf{T}}(k)$. For any automorphism $\gamma \in A_{\mathbf{T}}$, where $A_{\mathbf{T}}$ stands for all automorphisms of \mathbf{T}, we define

$$
\gamma_{m}^{n}:=\frac{1}{2 \pi} \int_{\mathbf{T}} z^{m}(\gamma(z))^{n}|d z|
$$

for any integers m, n. For every $a \in \Delta$ we denote by h_{a} a Möbius transformation of the closed disc $\bar{\Delta}$ given by the following formula

$$
h_{a}(z)=\frac{z-a}{1-\bar{a} z}, \quad z \in \bar{\Delta}
$$

The class \mathbf{M} of all Möbius transformations of $\bar{\Delta}$ evidently consists of all $e^{i \varphi} h_{a}$, where $\varphi \in \mathbf{R}$ and $a \in \Delta$.

Theorem 1.2. If an automorphism $\gamma \in Q_{\mathrm{T}}(k), 1 \leq k<\infty$, and $a \in \Delta$ then the following estimates hold:
(i) $\left|\left(h_{a} \circ \gamma\right)_{0}^{1}\right| \leq \cos \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right)$;
(ii) $\left|\left(h_{a} \circ \gamma\right)_{0}^{2}\right| \leq \cos \left(\frac{2 \pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)$;
(iii) $\left|\left(h_{a} \circ \gamma\right)_{1}^{1}\right| \leq \cos \left(\frac{\pi}{4}+\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)$;
(iv) $1 \geq\left|\left(h_{a} \circ \gamma\right)_{-1}^{1}\right|^{2}-\left|\left(h_{a} \circ \gamma\right)_{1}^{1}\right|^{2} \geq \max \left\{\frac{2 \sqrt{2}}{\pi}\left(\sin \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right)\right)^{2} \sin \left(\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)\right.$,

$$
\left.\left(1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)-2|a|\right)^{2}-\left(\cos \left(\frac{\pi}{4}+\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)\right)^{2}\right\}
$$

(v) $1 \geq\left|\left(h_{a} \circ \gamma\right)_{-1}^{1}\right| \geq$
$\max \left\{\left(\frac{2 \sqrt{2}}{\pi} \sin \left(\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)\right)^{1 / 2} \sin \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right), 1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)-2|a|\right\}$.
Proof. Let γ be an automorphism from $Q_{\mathrm{T}}(k), 1 \leq k<\infty$, and $a \in \Delta$. For every measureable subset $I \subset \mathbf{T}$ we have

$$
\begin{equation*}
\left|h_{a}(I)\right|=\int_{I}\left|h_{a}^{\prime}(z)\right||d z| \geq \frac{1-|a|}{1+|a|}|I| \tag{1.1}
\end{equation*}
$$

Thus, if $I \subset \mathbf{T}$ is any subarc of length $|I|=\pi$, then by Definition 1.1

$$
\begin{equation*}
\left|h_{a} \circ \gamma(I)\right| \geq \frac{1-|a|}{1+|a|}|\gamma(I)| \geq \frac{1-|a|}{1+|a|} \frac{2 \pi}{1+k} \tag{1.2}
\end{equation*}
$$

and similarly if $|I|=\frac{\pi}{2}$ then

$$
\begin{equation*}
\left|h_{a} \circ \gamma(I)\right| \geq \frac{1-|a|}{1+|a|} \frac{2 \pi}{(1+k)^{2}} \tag{1.3}
\end{equation*}
$$

For any points $z_{1}, z_{2} \in \mathbf{T}, z_{1} \neq z_{2}, I\left(z_{1}, z_{2}\right)$ stands for the closed subarc $\{z \in \mathbf{T}$: $\left.\arg z_{1} \leq \arg z \leq \arg z_{2}\right\}$ of T. Assume z is an arbitrary point of T. We can choose in view of (1.2) and (1.3) three subarcs I_{1}, I_{2}, I_{3} among four $h_{a} \circ \gamma\left(I\left(i^{i} z, i^{l+1} z\right)\right)$, $l=0,1,2,3$ such that the subarcs I_{1}, I_{2} and I_{2}, I_{3} are adjacent and

$$
\begin{aligned}
& \frac{1-|a|}{1+|a|} \frac{2 \pi}{1+k} \leq\left|I_{1} \cup I_{2}\right| \leq 2 \pi-\frac{1-|a|}{1+|a|} \frac{2 \pi}{1+k} \\
& \frac{1-|a|}{1+|a|} \frac{2 \pi}{(1+k)^{2}} \leq\left|I_{1}\right| \leq\left|I_{3}\right| \leq \pi-\frac{1-|a|}{1+|a|} \frac{2 \pi}{(1+k)^{2}}
\end{aligned}
$$

From this we obtain the following estimates

$$
\begin{aligned}
& \left|h_{a} \circ \gamma(z)+h_{a} \circ \gamma(-z)\right|=2 \cos \frac{\left|I_{1} \cup I_{2}\right|}{2} \leq 2 \cos \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right) \\
& \left|\sum_{m=0}^{3}\left(h_{a} \circ \gamma\left(i^{m} z\right)\right)^{2}\right| \leq 2|\cos | I_{1}| |+2|\cos | I_{3}| | \leq 4 \cos \left(\frac{2 \pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right) \\
& \left|\sum_{m=0}^{3} i^{m} z h_{a} \circ \gamma\left(i^{m} z\right)\right| \leq 2\left|\cos \left(\frac{\pi}{4}+\frac{\left|I_{1}\right|}{2}\right)\right|+2\left|\cos \left(\frac{\pi}{4}+\frac{\left|I_{3}\right|}{2}\right)\right| \leq 4 \cos \left(\frac{\pi}{4}+\frac{1-|a|}{1+|a|} \frac{\pi}{(1+k)^{2}}\right)
\end{aligned}
$$

From the above estimates we get

$$
\begin{aligned}
&\left|\left(h_{\mathrm{a}} \circ \gamma\right)_{0}^{1}\right| \leq \frac{1}{2 \pi} \int_{I(1,-1)}\left|h_{\mathrm{a}} \circ \gamma(z)+h_{\mathrm{a}} \circ \gamma(-z)\right||d z| \leq \cos \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right) \\
&\left|\left(h_{a} \circ \gamma\right)_{0}^{2}\right| \left.=\frac{1}{2 \pi} \sum_{m=0}^{3} \int_{I\left(\mathrm{i}^{m}, i^{m+1}\right)}\left(h_{a} \circ \gamma(z)\right)^{2}|d z| \right\rvert\, \\
& \leq \frac{1}{2 \pi} \int_{I(1, i)}\left|\sum_{m=0}^{3}\left(h_{a} \circ \gamma\left(i^{m} z\right)\right)^{2}\right||d z| \\
& \leq \cos \left(\frac{2 \pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left|\left(h_{a} \circ \gamma\right)_{1}^{1}\right| & =\frac{1}{2 \pi}\left|\sum_{m=0}^{3} \int_{I\left(i^{m}, i^{m+1}\right)} z h_{a} \circ \gamma(z)\right| d z| | \\
& \left.\leq \frac{1}{2 \pi} \int_{I(1, i)} \right\rvert\, \sum_{m=0}^{3}\left(i^{m} z h_{a} \circ \gamma\left(i^{m} z\right)| | d z \mid\right. \\
& \leq \cos \left(\frac{\pi}{4}+\frac{1-|a|}{1+|a|} \frac{\pi}{(1+k)^{2}}\right)
\end{aligned}
$$

This proves (i), (ii) and (iii). As shown by Douady and Earle in [3]
(1.4) $\left|\left(h_{a} \circ \gamma\right)_{-1}^{1}\right|^{2}-\left|\left(h_{a} \circ \gamma\right)_{1}^{1}\right|^{2}=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{\pi}\left(\sin u \int_{0}^{2 \pi} \sum_{m=1}^{4} \sin \beta_{m}(t, u) d t\right) d u$.
where for any $t \in \mathbf{R}$ and $u \in[0, \pi]$

$$
\begin{aligned}
& \beta_{1}(t, u)=\left|h_{a} \circ \gamma\left(I\left(e^{i t}, e^{i(t+u)}\right)\right)\right|, \\
& \beta_{2}(t, u)=\left|h_{a} \circ \gamma\left(I\left(e^{i(t+u)},-e^{i t}\right)\right)\right|, \\
& \beta_{3}(t, u)=\left|h_{a} \circ \gamma\left(I\left(-e^{i t},-e^{i(t+u)}\right)\right)\right|, \\
& \beta_{\mathbf{4}}(t, u)=\left|h_{a} \circ \gamma\left(I\left(-e^{i(t+u)}, e^{i t}\right)\right)\right| .
\end{aligned}
$$

By (1.2) we have

$$
\frac{1-|a|}{1+|a|} \frac{2 \pi}{1+k} \leq \beta_{m}(t+u)+\beta_{m+1}(t+u) \leq 2 \pi-\frac{1-|a|}{1+|a|} \frac{2 \pi}{1+k}, \quad m=1,2
$$

from which

$$
\begin{align*}
& \sum_{n=1}^{4} \sin \beta_{n}(t, u) \tag{1.5}\\
& =4 \sin \frac{\beta_{1}(t, u)+\beta_{2}(t, u)}{2} \sin \frac{\beta_{2}(t, u)+\beta_{3}(t, u)}{2} \sin \frac{\beta_{1}(t, u)+\beta_{3}(t, u)}{2} \\
& \geq 4\left(\sin \frac{1-|a|}{1+|a|} \frac{\pi}{1+k}\right)^{2} \sin \frac{\beta_{1}(t, u)+\beta_{3}(t, u)}{2} \geq 0
\end{align*}
$$

It follows from Definition 1.1 and (1.1) that for any $t \in \mathbf{R}$ and $\frac{\pi}{4} \leq u \leq \frac{3}{4} \pi$ the following inequalities hold

$$
\begin{aligned}
& \beta_{1}(t, u)+\beta_{3}(t, u) \geq \beta_{1}\left(t, \frac{\pi}{4}\right)+\beta_{3}\left(t, \frac{\pi}{4}\right) \\
& \geq \frac{1-|a|}{1+|a|}\left(\left|\gamma\left(I\left(e^{i t}, e^{i(t+\pi / 4)}\right)\right)\right|+\left|\gamma\left(I\left(-e^{i t},-e^{i(t+\pi / 4)}\right)\right)\right|\right) \\
& \geq \frac{1-|a|}{1+|a|} \frac{1}{1+k}\left(\left|\gamma\left(I\left(e^{i t}, e^{i(t+\pi / 2)}\right)\right)\right|+\left|\gamma\left(I\left(-e^{i t},-e^{i(t+\pi / 2)}\right)\right)\right|\right) \geq \frac{1-|a|}{1+|a|} \frac{2 \pi}{(1+k)^{2}}
\end{aligned}
$$

and similarly

$$
\beta_{2}(t, u)+\beta_{4}(t, u) \geq \frac{1-|a|}{1+|a|} \frac{2 \pi}{(1+k:)^{2}} .
$$

Hence and by (1.4), (1.5) we get for every $1 \leq k<\infty$ the estimate
(1.6) $\left|\left(h_{a} \circ \gamma\right)_{-1}^{1}\right|^{2}-\left|\left(h_{a} \circ \gamma\right)_{1}^{1}\right|^{2}=\frac{2 \sqrt{2}}{\pi}\left(\sin \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right)\right)^{2} \sin \left(\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)$.

Now we improve this estimate for small k. There exists an increasing automorphism f of \mathbf{R} and a real constant φ such that $e^{i \varphi} \gamma\left(e^{i x}\right)=e^{i f(x)}$ and $\int_{0}^{2 \pi}(f(x)-x) d x=0$.

Since $f(x+2 \pi)=f(x)+2 \pi, x \in \mathbf{R}, e^{i \varphi} \gamma \in Q_{\mathbf{T}}(k)$, we obtain in view of Corollary 2.7 from [6] and Jensen inequality for concave functions that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbf{T}}\left|e^{i \varphi} \gamma(z)-z\right||d z| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} 2 \sin \frac{|f(t)-t|}{2} d t \leq 2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right) \tag{1.7}
\end{equation*}
$$

On the other hand, we have $\left|h_{a}(z)-z\right| \leq 2|a|$ for every $z \in \mathbf{T}$, so we get in view of (1.7) the following inequality

$$
\begin{align*}
& 1-\left|\left(h_{a} \circ \gamma\right)_{-1}^{1}\right| \leq \frac{1}{2 \pi} \int_{\mathrm{T}}|z \bar{z}||d z|-\frac{1}{2 \pi} \int_{\mathrm{T}}\left|e^{i \varphi} \bar{z} h_{a} \circ \gamma(z)\right||d z| \tag{1.8}\\
& \leq \frac{1}{2 \pi} \int_{\mathrm{T}}\left|e^{i \varphi} \gamma(z)-z\right||d z|+\frac{1}{2 \pi} \int_{\mathrm{T}}\left|e^{i \varphi} h_{a} \circ \gamma(z)-e^{i \varphi} \gamma(z)\right||d z| \\
& \leq 2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)+2|a| .
\end{align*}
$$

This together with (1.6) gives (v) and with respect to (iii) we obtain additionally (iv) and this ends the proof.
2. The real functional ρ defined for any automorphisms $\gamma, \sigma \in A_{\mathbf{T}}$ by $\rho(\gamma, \sigma)=$ $\sup \{|\gamma(z)-\sigma(z)|: z \in \mathbf{T}\}$ is olbviously a metric on $\boldsymbol{A}_{\mathbf{T}}$.

For any antomorphism $\gamma \in A_{\mathbf{T}}$, as shown by Choquet, cf. [2], the mapping H_{γ} defined by the Poisson integral

$$
\Delta \ni w \mapsto H_{\gamma}(w)=\frac{1}{2 \pi} \int_{\mathbf{T}} \gamma(u) \operatorname{Re} \frac{u+w}{u-w}|d u| \in \Delta
$$

is an automorphism of Δ. Hence for any fixed $z \in \Delta$ the equation

$$
\begin{equation*}
H_{h_{z} \circ \gamma}(w)=0 \tag{2.1}
\end{equation*}
$$

has the unique solution $w \in \Delta$, so the equation (2.1) defines implicitly the function $w=F_{\gamma}(z)$. It is quite easy to show that F_{γ} is a real-analytic diffeomorphic self mapping of Δ which has a continuous extension to the automorphism γ^{-1} of \mathbf{T} and for any Möbius transformations $\eta_{1}, \eta_{2} \in \mathbf{M}$

$$
\begin{equation*}
F_{\eta_{1} \circ \gamma \circ \eta_{2}}=\eta_{2}^{-1} \circ F_{\gamma} \circ \eta_{1}^{-1} \tag{2.2}
\end{equation*}
$$

For details see [7]. As a matter of fact F_{γ}^{-1} coincides with the mapping $E_{\gamma}=E(\gamma)$ found by Douady and Earle in [3;Theorem 1], but the construction of F_{γ} is much simpler as compared with that of $E(\gamma)$. The mapping E_{γ} is an automorphisn of Δ which has a continuous extension to the automorphism of $\mathbf{\gamma} \mathbf{I}$ and in view of (2.2) it is conformally invariant, i.e.

$$
\begin{equation*}
E_{\eta_{1} \circ \gamma \circ \eta_{2}}=\eta_{1} \circ E_{\gamma} \circ \eta_{2} \tag{2.3}
\end{equation*}
$$

for any Möbius transformations $\eta_{1}, \eta_{2} \in \mathbf{M}$

Lemma 2.1 The functionals $E_{\gamma}(0)$ and $F_{\gamma}(0)$ are continuous in the space ($A_{\mathbf{T}}, \rho$).

Proof. Suppose that the Lemma is not true. Then there exist automorphisms $\gamma, \gamma_{n} \in A_{T}, n \in N$, such that $\lim _{n \rightarrow \infty} \rho\left(\gamma_{n}, \gamma\right)=0$ and $\lim _{n \rightarrow \infty} F_{\gamma_{n}}(0)=a$ where $a \in \Delta$ and $a \neq F_{\gamma}(0)$. From this setting $a_{n}=F_{\gamma_{n}}(0), n \in \mathbf{N}$, we get

$$
0=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{\mathrm{T}} \gamma_{n}(z) \operatorname{Re} \frac{z+a_{n}}{z-a_{n}}|d z|=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{\mathrm{T}} \gamma(z) \operatorname{Re} \frac{z+a}{z-a}|d z|
$$

Hence $F_{\gamma}(0)=a$ and this leads to a contradiction. Thus we obtained continuity of the functional $F_{\gamma}(0)$ in the space $\left(A_{T}, \rho\right)$. In a similar way we prove continuity of the functional $E_{\gamma}(0)$ in the space $\left(A_{T}, \rho\right)$.

Lemma 2.2. For any $k \geq 1$ the sets $\left\{E_{\gamma}(0) \in \mathbf{C}: \gamma \in Q_{\mathrm{T}}(k)\right\}$ and $\left\{F_{\gamma}(0) \in\right.$ $\left.\mathbf{C}: \gamma \in Q_{\mathbf{T}}(k)\right\}$ are closed discs with centres at 0 .

Proof. Let $A=\left\{E_{\gamma}(0) \in \mathbf{C}: \gamma \in Q_{\mathbf{T}}(k)\right\}$, where k and $\gamma \in Q_{\mathbf{T}}(k)$ are fixed. There exists an increasing automorphism f of \mathbf{R} such that $\gamma\left(e^{i x}\right)=e^{i f(x)}$ for $x \in \mathbf{R}$. Obviously $f(x+2 \pi)=f(x)+2 \pi$ for all $x \in \mathbf{R}$. Let $f_{t}(x)=(2 \pi t)^{-1} \int_{x-\pi t}^{x+\pi t} f(s) d s$ for all $x \in \mathbf{R}$ as $0<t \leq 1$ and $f_{0}=f$. Every function $f_{t}, 0 \leq t \leq 1$, is an increasing automorphism of \mathbf{R} and $f_{t}(x+2 \pi)=f_{t}(x)+2 \pi$ for all $x \in \mathbf{R}$. So we define an arc $\gamma(t)$ in $A_{\mathbf{T}}, 0 \leq t \leq 1$, as follows: $\gamma(t)\left(e^{i x}\right)=e^{i f_{t}(x)}, x \in \mathbf{R}$. Since $f_{1}(x)=x+f_{1}(0)$ for all $x \in \mathbf{R}$, where $f_{1}(0)=(2 \pi)^{-1} \int_{-\pi}^{\pi} f(s) d s$, the automorphism $\gamma(1)$ is a rotation so $\gamma(1) \in Q_{\mathrm{T}}(1)$ and $E_{\gamma(1)}(0)=0$. Then by Lemma 2.1 the mapping $[0,1] \ni t \mapsto E_{\gamma(t)}(0) \in \Delta$ is an arc joining the points 0 and $E_{\gamma(1)}(0)$. But it can be shown in a similar way as in [9] that every automorphism $\gamma(t) \in Q_{\mathrm{T}}(k), 0 \leq t \leq 1$, so $\left\{E_{\gamma(t)}(0): 0 \leq t \leq 1\right\} \subset A$. Hence and from conformal invariance of E_{γ} we get $K\left(0,\left|E_{\gamma(1)}(0)\right|\right) \subset A$. This way A is a closed disc with the centre at 0 because of Lemma 2.1 and compactness of $Q_{\mathbf{T}}(k)$ in the space $\left(A_{\mathbf{T}}, \rho\right)$. In a similar way we prove that $\left\{F_{\gamma}(0) \in \mathbf{C}: \gamma \in Q_{\mathbf{T}}(k)\right\}$ is a closed disc with the centre at 0 . This end the proof.

Theorem 2.3. For any automorphism $\gamma \in Q_{\mathrm{T}}(k), 1 \leq k<\infty$, the following inequality holds :
$\max \left\{\left|E_{\gamma}(0)\right|,\left|F_{\gamma}(0)\right|\right\} \leq \frac{1}{2}+\frac{\sqrt{3}}{2} \cot \left(\frac{\pi}{3}+\frac{\pi}{2\left(k^{2}+k+1\right)}\right)=\frac{\sin \left(\frac{\pi}{3}-\frac{\pi}{2\left(k^{2}+k+1\right)}\right)}{\sin \left(\frac{\pi}{3}+\frac{\pi}{2\left(k^{2}+k+1\right)}\right)}$
For small k a more precise estimate holds
(2.5) $\max \left\{\left|E_{\gamma}(0)\right|,\left|F_{\gamma}(0)\right|\right\} \leq p(k)$

$$
=\frac{1}{2}\left(1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)-\sqrt{\left(1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)\right)^{2}-8 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)}\right)
$$

as $1 \leq k \leq k_{0}$ where $k_{0}\left(1.2455<k_{0}<1.2456\right)$ is a solution of the equation (2.7).

Proof. Let $\gamma \in A_{\mathbf{T}}(k), 1 \leq k<\infty$, be an arbitrary automorphism. Without loss of generality we may assume that $E_{\gamma}(0)=a$, where $0 \leq a<1$. This can be achieved by a suitable rotation, in view of (2.3). By the Darboux property there exists an open arc $I \subset \mathbf{T}$ of length $|I|=\frac{2}{3} \pi$ such that the arc $h_{a} \circ \gamma(I)$ is symmetric with respect to the real axis and contains the point 1 . By (2.3) we have $E_{h_{a} \circ \gamma}(0)=$ $h_{a} \circ E_{\gamma}(0)=0$ so $\int_{\mathrm{T}} h_{a} \circ \gamma(z)|d z|=0$ and by virtue of Lemma 2.1 from [7] we get $\left|h_{\mathrm{a}} \circ \gamma(I)\right| \leq \frac{4}{3} \pi$. Hence for $a>\frac{1}{2}$

$$
\begin{equation*}
|\gamma(I)|=\left|h_{-a}\left(h_{a} \circ \gamma(I)\right)\right| \leq 2 \arg \left(\frac{e^{2 \pi i / 3}+a}{1+a e^{2 \pi i / 3}}\right)=-\frac{4}{3} \pi+4 \arctan \frac{\sqrt{3}}{2 a-1} \tag{2.6}
\end{equation*}
$$

On the other hand, it follows from Definition 1.1 that $|\gamma(I)| \geq 2 \pi\left(k^{2}+k+1\right)^{-1}$. This and (2.6) lead to the estimate of $\left|E_{\gamma}(0)\right|=a$ given by the r.h.s. of the formula (2.4). This estimate is not sharp because $p(k)$ tends to $\frac{1}{2}$ as $K \rightarrow 1$. In what follows we are going to replace the r.h.s. in (2.4) for small k so as to obtain an asymptotically sharp estimate. Similarly as in the proof of Lemma 1.2 we conclude that there exist an increasing automorphism f of \mathbf{R} and a real constant φ such that $e^{i \varphi} \gamma\left(e^{i x}\right)=e^{i f(x)}, f(x+2 \pi)=f(x)+2 \pi$ for $x \in \mathbf{R}$ and $(2 \pi)^{-1} \int_{0}^{2 \pi}(f(x)-x) d x=0$. Obviously $\eta(z)=e^{i \varphi} \gamma(z), z \in \mathbf{T}$, is a k-quasisymmetric automorphism of T. Hence, by Corollary 2.7 from [6] and by Jensen inequality for concave functions we obtain

$$
\frac{1}{2 \pi} \int_{\mathrm{T}}|\eta(z)-z||d z| \leq \frac{1}{\pi} \int_{0}^{2 \pi}\left|\sin \frac{f(t)-t^{\prime}}{2}\right| d t \leq 2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)
$$

so setting $E_{\eta}(0)=a$

$$
\begin{aligned}
& \left|E_{\gamma}(0)\right|=\left|E_{\eta}(0)\right|=|a|=\frac{1}{2 \pi}\left|\int_{\mathrm{T}} h_{a}(z)\right| d z\left|-\int_{\mathrm{T}} h_{a} \circ \eta(z)\right| d z| | \\
& =\frac{1}{2 \pi}\left|\int_{\mathrm{T}} \frac{\left(1-|a|^{2}\right)(\eta(z)-z)}{(1-\bar{a} z)(1-\bar{a} \eta(z))}\right| d z| | \leq 2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right) \frac{1+|a|}{1-|a|}
\end{aligned}
$$

Now, we solve this inequality with respect to $|a|$ and apply Lemma 2.2. As a result we obtain $\left|E_{\gamma}(0)\right|=\left|E_{\eta}(0)\right|=|a| \leq p(k)$ for $1 \leq k \leq k_{0}$ where the formula $p(k)$ is given by (2.5) and k_{0} is a solution of the equation

$$
\begin{equation*}
2 \sin \left(\frac{\pi}{4} \frac{k_{0}-1}{k_{0}+1}\right)=3-\sqrt{8} \tag{2.7}
\end{equation*}
$$

i.e. $k \leq k_{0}$ and $1.2455<k_{0}<1.2456$. In a similar way we estimate the functional $\left|F_{\gamma}(0)\right|$ which ends the proof.

After an easy calculation we derive from this theorem the following
Corollary 2.4. For any automorphism $\gamma \in Q_{\mathbf{T}}(k), 1 \leq k<\infty$, the following inequality holds:

$$
\min \left\{\frac{1-\left|E_{\gamma}(0)\right|}{1+\left|E_{\gamma}(0)\right|}, \frac{1-\left|F_{\gamma}(0)\right|}{1+\left|F_{\gamma}(0)\right|}\right\} \geq \frac{1}{\sqrt{3}} \cot \frac{\pi}{2\left(k^{2}+k+1\right)} .
$$

For small k a more precise estimate holds:

$$
\begin{aligned}
\min & \left\{\frac{1-\left|E_{\gamma}(0)\right|}{1+\left|E_{\gamma}(0)\right|}, \frac{1-\left|F_{\gamma}(0)\right|}{1+\left|F_{\gamma}(0)\right|}\right\} \geq q(k) \\
& =\frac{1}{2}\left(1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)+\sqrt{\left(1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)\right)^{2}-8 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)}\right)
\end{aligned}
$$

as $1 \leq k \leq k_{0}$.
3. In this section we estimate the maximal dilatation of the mappings E_{γ} and F_{γ} provided γ is a quasisymmetric automorphism of \mathbf{T}.

Theorem 3.1. If an automorphism γ of T admits a K-quasiconformal extension on $\Delta, 1 \leq K<\infty$, then F_{γ} and E_{γ} are $K^{\bullet}=F(K)$-quasiconformal mappings and

$$
F(K)= \begin{cases}\frac{1}{2 \pi \sqrt{6}}\left(\frac{e^{\pi(K-1 / K)}+1}{2}\right)^{8} 8^{5 K} & \text { as } K>K_{0} \\ E\left(e^{\pi(K-1 / K)}\right) & \text { as } 1 \leq K \leq K_{0}\end{cases}
$$

where $K_{0}\left(1.0316<K_{0}<1.0317\right)$ is a solution of the equation (3.14) but

$$
E(k)= \begin{cases}\frac{32}{\pi}\left(\frac{k+1}{2}\right)^{8}(q(k))^{-5}-2 & \text { as } k_{1} \leq k<k_{0} \\ 1+\frac{12 \pi \tilde{q}(k)}{8(q(k)-p(k))-6 \pi \tilde{q}(k)-\pi^{2} \tilde{q}^{2}(k)} & \text { as } 1 \leq k \leq k_{1}\end{cases}
$$

where $\tilde{q}(k)=1-4 q(k)(1+k)^{-2}$ and $k_{1}\left(1.1090<k_{1}<1.1091\right)$ is a solution of the equation (3.13).

Proof. Assume that γ admits a K-quasiconformal extension φ on the disc Δ and let $\varphi(0)=-a \in \Delta$. In view of (2.2) it is sufficient to estimate the complex dilatation of F_{γ} at the point 0 in the case when $F_{\gamma}(0)=E_{\gamma}(0)=0$. Then differentiating at the point 0 both sides of the equation (2.1) with respect to z and \bar{z} we obtain

$$
\begin{equation*}
\partial F_{\gamma}(0)=\frac{\overline{\gamma_{-1}^{1}}+\overline{\gamma_{0}^{2}} \gamma_{1}^{1}}{\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}} \quad, \quad \bar{\partial} F_{\gamma}(0)=\frac{-\overline{\gamma_{-1}^{1}} \gamma_{0}^{2}-\gamma_{1}^{1}}{\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}} . \tag{3.1}
\end{equation*}
$$

from which

$$
\begin{equation*}
1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2}=\frac{\left(1-\left|\gamma_{0}^{2}\right|^{2}\right)\left(\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}\right)}{\left|\overline{\gamma_{-1}^{1}}+\overline{\gamma_{0}^{2}} \gamma_{1}^{1}\right|^{2}} \tag{3.2}
\end{equation*}
$$

By Lemma 2.2 from [7] we get

$$
|a|=|\varphi(0)| \leq \frac{1}{2}+\frac{\sqrt{3}}{2} \cot \left(\frac{\pi}{3}+\arccos \Phi_{K}\left(\frac{\sqrt{3}}{2}\right)\right)=\frac{\sin \left(\frac{\pi}{3}-\arccos \Phi_{K}\left(\frac{\sqrt{3}}{2}\right)\right)}{\sin \left(\frac{\pi}{3}+\arccos \Phi_{K}\left(\frac{\sqrt{3}}{2}\right)\right)} .
$$

where $\Phi_{k}=\mu^{-1}\left(\frac{1}{k} \mu\right)$ and $\mu(r), 0<r<1$, is the module of the ring domain $\Delta \backslash[0, r], c f .[11]$. Hence and by the equality

$$
\begin{equation*}
\Phi_{K}^{2}(r)+\Phi_{1 / K}^{2}\left(\sqrt{1-r^{2}}\right)=1 \tag{3.3}
\end{equation*}
$$

for $K>0$ and $0 \leq r \leq 1$, as shown in [1], we derive
(3.4) $\frac{1-|a|}{1+|a|} \geq \frac{1}{\sqrt{3}} \tan \left(\arccos \boldsymbol{x}_{K}\left(\frac{\sqrt{3}}{2}\right)\right)=\frac{1}{\sqrt{3}} \frac{\sqrt{1-\Phi_{K}^{2}\left(\frac{\sqrt{3}}{2}\right)}}{\Phi_{K}\left(\frac{\sqrt{3}}{2}\right)}=\frac{1}{\sqrt{3}} \frac{\Phi_{1 / K}\left(\frac{1}{2}\right)}{\Phi_{K}\left(\frac{\sqrt{3}}{2}\right)}$.

Since $h_{a}^{-1} \circ \varphi$ is a K-quasiconformal automorphism of Δ which keeps the point 0 fixed we obtain by virtue of $[5$, Theorem 1] that

$$
\begin{equation*}
\eta=h_{a}^{-1} \circ \gamma \in Q_{\mathbf{T}}(k) \tag{3.5}
\end{equation*}
$$

where $k=\lambda(K)$ and $\lambda(K)=\left[\mu^{-1}\left(\frac{\pi K}{2}\right)\right]^{-2}-1$ is the distortion function, cf. [1], [11]. It follows from (3.2) that

$$
1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2} \geq \frac{1-\left|\gamma_{0}^{2}\right|}{1+\left|\gamma_{0}^{2}\right|}\left(\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}\right)
$$

so applying Theorem 1.2 to the automorphism $h_{a} \circ \eta$ we achieve in view of (3.5) the following estimate

$$
\begin{align*}
& 1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2} \tag{3.6}\\
& \geq \frac{2 \sqrt{2}}{\pi}\left(\tan \left(\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right)\right)^{2}\left(\sin \left(\frac{\pi}{1+k} \frac{1-|a|}{1+|a|}\right)\right)^{2} \sin \left(\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right) .
\end{align*}
$$

This together with (3.4) leads to

$$
1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2} \geq \frac{2 \cdot 3^{3} \pi \sqrt{2}}{(k+1)^{8}}\left(\frac{1-|a|}{1+|a|}\right)^{5}
$$

from which

$$
\frac{\left|\partial F_{\gamma}(0)\right|+\left|\bar{\partial} F_{\gamma}(0)\right|}{\left|\partial F_{\gamma}(0)\right|-\left|\bar{\partial} F_{\gamma}(0)\right|}<2\left(2\left(1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2}\right)^{-1}-1\right)<\frac{2^{9}}{\pi \sqrt{6}}\left(\frac{k+1}{2}\right)^{8} \frac{\Phi_{K}^{5}\left(\frac{\sqrt{3}}{2}\right)}{\Phi_{1 / K}^{5}\left(\frac{1}{2}\right)}
$$

But $\Phi_{1 / K}(r) \geq 4^{1-K} r^{K}$ for every $K \geq 1,0 \leq r \leq 1$, cf. [1], [4] and

$$
\begin{equation*}
k=\lambda(K) \leq e^{\pi(K-1 / K)} \tag{3.7}
\end{equation*}
$$

for $K \geq 1$, cf.[1] so we obtain in view of (3.3) the following estimate

$$
\begin{equation*}
K^{*}<\frac{2^{9}}{\pi \sqrt{6}}\left(\frac{\lambda(K)+1}{2}\right)^{8}\left(\Phi_{1 / k}^{-2}\left(\frac{1}{2}\right)-1\right)^{5 / 2}<\frac{1}{2 \pi \sqrt{6}}\left(\frac{e^{\pi(k-1 / k)}+1}{2}\right)^{8} 8^{5 k} \tag{3.8}
\end{equation*}
$$

Now we improve this estimate for small K. By Theorem 2.3 and (2.3) we get

$$
\begin{equation*}
|a|=\left|h_{a}^{-1}\left(E_{\gamma}(0)\right)\right|=\left|E_{h_{a}^{-1} \circ \gamma}(0)\right|=\left|E_{\eta}(0)\right| \leq p(k) . \tag{3.9}
\end{equation*}
$$

It follows from this, the inequality (3.6) and Corollary 2.4 that

$$
1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2} \geq \frac{2^{5} \pi}{(k+1)^{8}}\left(\frac{1-|a|}{1+|a|}\right)^{5} \geq \frac{2^{5} \pi}{(k+1)^{8}}(q(k))^{5} .
$$

from which, similarly as before, we obtain

$$
\begin{equation*}
K^{*} \leq \frac{32}{\pi}\left(\frac{k+1}{2}\right)^{8}(q(k))^{-3}-2 \tag{3.10}
\end{equation*}
$$

for $1 \leq k \leq k_{0}$. On the other hand, it follows from (3.9), Theorem 1.2 and Corollary 2.4 that

$$
\left|\gamma_{1}^{1}\right| \leq \cos \left(\frac{\pi}{4}+\frac{\pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right) \leq \frac{\pi}{4}\left(1-\frac{4 q(k)}{(1+k)^{2}}\right)=\frac{\pi}{4} \widetilde{q}(k)
$$

3.11) $\left|\gamma_{0}^{2}\right| \leq \cos \left(\frac{2 \pi}{(1+k)^{2}} \frac{1-|a|}{1+|a|}\right) \leq \frac{\pi}{2}\left(1-\frac{4 q(k)}{(1+k)^{2}}\right)=\frac{\pi}{2} \widetilde{q}(k)$

$$
\begin{equation*}
\left|\gamma_{-1}^{1}\right| \geq 1-2 \sin \left(\frac{\pi}{4} \frac{k-1}{k+1}\right)-2 p(k) \geq \sqrt{\left(1-\frac{\pi}{2} \frac{k-1}{k+1}\right)^{2}-2 \pi \frac{k-1}{k+1}}=q(k)-p(k) \tag{3.11}
\end{equation*}
$$

if $1 \leq k \leq k_{0}$. The equalities (3.1) lead for $1 \leq k \leq k_{0}$ to

$$
\begin{aligned}
& \frac{\left|\partial F_{\gamma}(0)\right|+\left|\bar{\partial} F_{\gamma}(0)\right|}{\left|\partial F_{\gamma}(0)\right|-\left|\bar{\partial} F_{\gamma}(0)\right|} \leq \frac{\left|\gamma_{-1}^{1}\right|-\left|\gamma_{0}^{2}\right|\left|\gamma_{1}^{1}\right|+\left|\gamma_{-1}^{1}\right|\left|\gamma_{0}^{2}\right|+\left|\gamma_{1}^{1}\right|}{\left|\gamma_{-1}^{1}\right|-\left|\gamma_{0}^{2}\right|\left|\gamma_{1}^{1}\right|-\left|\gamma_{-1}^{1}\right|\left|\gamma_{0}^{2}\right|-\left|\gamma_{1}^{1}\right|} \\
& \leq 1+2 \frac{\left|\gamma_{-1}^{1}\right|\left|\gamma_{0}^{2}\right|+\left|\gamma_{1}^{1}\right|}{\left|\gamma_{-1}^{1}\right|-\left|\gamma_{0}^{2}\right|\left|\gamma_{1}^{1}\right|-\left|\gamma_{-1}^{1}\right|\left|\gamma_{0}^{2}\right|-\left|\gamma_{1}^{1}\right|} \leq 1+2 \frac{\left|\gamma_{0}^{2}\right|+\left|\gamma_{1}^{1}\right|}{\left|\gamma_{-1}^{1}\right|-\left|\gamma_{0}^{2}\right|\left|\gamma_{1}^{1}\right|-\left|\gamma_{0}^{2}\right|-\left|\gamma_{1}^{1}\right|}
\end{aligned}
$$

Hence and by (3.11) we obtain for $1 \leq k \leq k_{0}$ the following estimate

$$
\begin{equation*}
K^{*} \leq 1+\frac{12 \pi \tilde{q}(k)}{8(q(k)-p(k))-6 \pi \widetilde{q}(k)-\pi^{2} \tilde{q}^{2}(k)} . \tag{3.12}
\end{equation*}
$$

Comparing the estimates (3.10) and (3.12) we find the estimate $K^{*} \leq E(k)$ for $1 \leq k \leq k_{0}$ where k_{1} is a solution of the equation

$$
\begin{equation*}
\frac{32}{\pi}\left(\frac{k+1}{2}\right)^{8}(q(k))^{5}-2=1+\frac{12 \pi \tilde{q}(k)}{8(q(k)-p(k))-6 \pi \tilde{q}(k)-\pi^{2} \tilde{q}^{2}(k)} \tag{3.13}
\end{equation*}
$$

This, (3.7) and (3.8) lead finally to the estimate $K^{*} \leq F\left(K^{*}\right)$ where K_{0} is a solution of the equation

$$
\begin{equation*}
\pi\left(K_{0}-1 / K_{0}\right)=\log k_{0} . \tag{3.14}
\end{equation*}
$$

Since $E_{\gamma}=F_{\gamma}^{-1}$ we realize that $F(K)$ is also an estimate of the maximal dilatation of E_{γ} and this ends the proof.

As an immediate consequence of the above theorem we obtain
Corollary 3.2. If an automorphism γ of \mathbf{T} is k-quasisymmetric, $1 \leq k<\infty$, then F_{γ} and E_{γ} are K^{*}-quasiconformal mappings where

$$
K^{*} \leq F\left(\min \left\{k^{3 / 2}, 2 k-1\right\}\right)
$$

Proof. A modification of the proof of J.G.Krzyż Theorem from [5] by applying M. Lehtinen's result from [8] implies that the automorphism γ posesses a K quasiconformal extension on Δ where $K \leq \min \left\{k^{3 / 2}, 2 k-1\right\}$. So Theorem 3.1 implies immediately Corollary 3.2 and this ends the proof.
4. In this section we give some further applications of Theorem 2.3, particularly for harmonic extensions to the disc Δ of a quasisymmetric automorphism of the unit circle T.

Theorem 4.1. If an automorphism γ of \mathbf{T} admits a K^{-}-quasiconformal extension on Δ and $\int_{\mathbf{T}} \gamma(z)|d z|=0$ then $\gamma \in Q_{\mathbf{T}}\left(k^{*}\right)$ where

$$
k^{*} \leq 3\left(\cot \frac{\pi}{2\left(\lambda(K)^{2}+\lambda\left(K^{*}\right)+1\right)}\right)^{2} \lambda(K)
$$

For K satisfying $1 \leq K<K_{1},\left(1.0166<K_{1}<1.0167\right)$ the following more precise and asymptotically sharp estimate holds

$$
k^{*} \leq 2\left(1-\frac{\pi}{2} \frac{\lambda(K)-1}{\lambda(K)+1}+\sqrt{\left(1-\frac{\pi}{2} \frac{\lambda(K)-1}{\lambda(K)+1}\right)^{2}-2 \pi \frac{\lambda(K)-1}{\lambda(K)+1}}\right)^{2} \lambda(K)
$$

with K_{1} being a solution of the equation $\lambda(K)=k_{0}$.
Proof. Suppose that φ is a K-quasiconformal extension of the automorphism γ to the disc Δ and let $\varphi(0)=a \in \Delta$. Then $h_{a} \circ \varphi$ is K-quasiconformal automorphism of Δ which keeps the point 0 fixed. Thus by [5, Theorem 1] we obtain

$$
\begin{equation*}
h_{a} \circ \gamma \in Q_{\mathrm{T}}\left(k^{\prime}\right) \tag{4.1}
\end{equation*}
$$

where $k^{\prime}=\lambda\left(K^{\prime}\right)$. By Theorem 2.3 and (2.3) we get

$$
\left|E_{h_{a} \circ \gamma}(0)\right|=\left|h_{a}\left(E_{\gamma}(0)\right)\right|=|a| \leq p\left(k^{\prime}\right)
$$

Hence and by (4.1) we achieve for any pair of adjacent closed arcs $I_{1}, I_{2} \subset \mathbf{T}$ such that $0<\left|I_{1}\right|=\left|I_{2}\right| \leq \pi$

$$
\frac{\left|\gamma\left(I_{1}\right)\right|}{\left|\gamma\left(I_{2}\right)\right|}=\frac{\left|h_{a}^{-1}\left(h_{a} \circ \gamma\left(I_{1}\right)\right)\right|}{\left|h_{a}^{-1}\left(h_{a} \circ \gamma\left(I_{2}\right)\right)\right|} \leq\left(\frac{1+|a|}{1-|a|}\right)^{2} \frac{\left|h_{a} \circ \gamma\left(I_{1}\right)\right|}{\left|h_{a} \circ \gamma\left(I_{2}\right)\right|} \leq\left(\frac{1+p\left(k^{\prime}\right)}{1-p\left(k^{\prime}\right)}\right)^{2} k^{\prime}=k^{\bullet} .
$$

The ubove inequality and (2.4), (2.5) prove the theorem.
As mentioned in the section 2 every automorphism γ of the unit circle \mathbf{T} possesses in view of Choquet theorem [2] a homeomorphic extension H_{γ} to the whole disc Δ. Obviously H_{γ} is a harmonic mapping as given by Poisson formula and it is the unique harmonic extension of the automorphism γ because of the uniqueness of the solution of Dirichlet problem.

Theorem 4.2. If an automorphism $\gamma \in Q_{\mathbf{T}}(k), 1 \leq k<\infty$, then

$$
H_{\gamma}(0) \leq \cos \frac{\pi}{1+k}
$$

and

$$
H_{\gamma}^{-1}(0) \leq r(k)= \begin{cases}\frac{1}{2}+\frac{\sqrt{3}}{2} \cot \left(\frac{\pi}{3}+\frac{\pi}{2\left(k^{2}+k+1\right)}\right) & \text { as } k_{0} \leq k \\ p(k) & \text { as } 1 \leq k<k_{0}\end{cases}
$$

where p is the function from Theorem 2.9.
Proof. From the Theorem 1.2 (i) we have $H_{\gamma}(0)=\left|\gamma_{0}^{1}\right| \leq \cos \frac{\pi}{1+k}$. On the other hand in view of the definition of the mapping F_{γ} and Theorem $2.3 H_{\gamma}^{-1}(0)=$ $F_{\gamma}(0) \leq p(k)$ so the proof is finished.

Moreover, from the above theorem, by (4.1) and (3.6) we immediately obtain the following

Corollary 4.3. If an automorphism γ of the unit circle \mathbf{T} admits a K-quass. conformal extension to the whole disc Δ which keeps the point 0 fixed then

$$
H_{\gamma}(0) \leq \cos \frac{\pi}{1+\lambda(k)} \leq \cos \frac{\pi}{1+e^{\pi(k-1 / k)}}
$$

and

$$
H_{\gamma}^{-1}(0) \leq r(\lambda(k)) \leq r\left(e^{\pi(K-1 / K)}\right)
$$

where r is the function from Theorem 4.2.

REFERENCES

[1] Anderson, G. D. Vamanamurthy, M. K. , Vuorinen, M., Distortion functions for plane quasiconformal mappings, Israel J. Math. 62 (1988), no.1, 1-16
[2] Choquet, G., Sur un type de transformation analytique généralisant la réprésentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156-165.
[3] Douady. A, Farle, C. J. Conformally natural extension of homeomorphisme of the cincle, Acla Malh. 157 (1986), no. 1-2, 23-48
[4] Hübner, (). Remarks on a paper by Lawrynowicz on quasiconformal mappings, Bull. Acad. Polon Sci. 18 (1970), 183-18t
[5] Krzyí, J G. Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12(1987). 19-24
[6] Krzyi. J. (i., Harmonic analysis and boundary correspondence under quasiconformal mappings, ibid 14 (1989), 225242
[7] Lecko, A, Partyka. 1). An alternative proof of a result due to Douady and Earle, Ann Univ. Maria Curie-Sklodowska. Sect A. 42 (1988), 59-68
[8] Lehtinen, M. Remarks on the maximal dilatation of the Beurling-Ahlfors extension, Ann Acad Sci Fenn. Ser A 1. Math 9 (1984), 133-139.
[9] Partyka, D. A sewing thenrem for complementary Jordan domains, Ann. Univ. Maria Curie-Sklodowska, Sect. A 11 (1947), 99-103
[10] Partyka, I). A distortion theorem for quasiconformal automorphesms of the unt disc, Ann Pol. Math, (to appear)
[11] Lehto, O. Virtanen, K 1. Quasiconformal mappings in the plane, Springer, Berlin-Heidelberg-New York 1973

STRESZCZENIE

Celem pracy jest podanie asymptotycznie ostrego oszacuwania rzędu quasikonforemnosici roz szerzenia Douady-Earle’a quasisymelrycznego automorfizmu okregu jednostkowego
(received June 14, 1991)

