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Ring Homomorphisms on Algebras of Analytic Functions

Homomorfizm pierścieniowy algebr funkcji analitycznych

Abstract. Let H(G) and H(T) be algebras of analytic functions on regions G and T, 
respectively, in the complex plane. It is shown that a ring homomorphism from 7/(G) into H(T) 
is either linear or conjugate linear, provided the ring homomorphism takes the identity function into 
a nonconstant function. As a consequence, an alternative proof of Ber's theorem is given and this 
t heorem is extended to the several variables case.

Introduction. An operator M from a comutative algebra A into a comutative 
algebra B is called a ring homomorphism if for all x,y £ A, M(x + y) = M(x) + M(y) 
and M(xy) = M(x)M(y). A ring isomorphism is a ring homomorphism which is 
one-one and onto. Throughout this paper G and T denote regions, i.e., connected 
open sets in the complex plane. If G is a region then H(G) denotes the algebra 
of analytic functions on G equipped with the topology of uniform convergence on 
compact subsets of G, I(; denotes the identity function on G, and M denotes a non
zero ring homomorphism from H(G) into H(T). The rationals, reals, and complex 
numbers are denoted by Q, R, and C, respectively.

If Ad is a maximal ideal in H(G) then the quotient algebra H(G)/M is isomor
phic (as an algebra) to C if and only if Adis a closed maximal ideal. Henriksen [4] 
has shown that if the maximal ideal Ad in F is not closed, then E/M is isomorphic 
(as a ring) to C, where E is the ring of entire functions. This implies that there exist 
discontinuous homomorphisms from the ring of entire functions onto C.

Bers [2, 6] has shown that H(G) and H(V) are ring isomorphic if and only if 
G and T are either conformally or anticonformally equivalent. Further he has shown 
that every ring isomorphism from H(G) onto ff(F) is induced by either a conformal or 
an anticonformal map. Rudin [10] has similar results on rings of bounded analytic 
functions. Becker andZame [1] have shown that a ring homomorphism M from an 
F algebra into an analytic ring is linear (or conjugate linear) and continuous, if the 
range of M contains a nonunit, nonzero divisor. In [3], Burckel and Saeki have 
characterized additive maps between rings of holomorphic functions which satisfy a 
multiplier like condition. In this paper we show that if G and T are regions in C
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and a ring homomorphism M from H(G) into H(T) takes the identity function la to 
a non-constant function, then M is necessarily either linear or conjugate linear. A 
similar result has been proved by the author [8] for ring homomorphisms from H(G) 
into iself when G is a regular region. Essentially, to achieve this result we show that 
the homomorphism under consideration preserve constants or take constants to their 
conjugates. We give a new proof of Ber’s theorem (see Bers [2]) based on this result. 
Finally we extend Ber’s theorem to alebras of analytic functions in several complex 
variables.

If M is a ring homomorphism from H(G) into H(T) then the following assertions 
are equivalent:

1) M is continuous,
2) either Af(fc) = k for all k £ C or M(k) = k for all k 6 C,
3) M is either linear or conjugate linear,
4) there exists h £ /f(T) with /i(T) C G such that M(f) = f oh for all f £ H(G) or 

there exists h £ H(T) with h(T) C. G such that M(f) = f o h for all f £ H(G).

The implications 4) => 1) => 2) => 3) are trivial or easy to prove; 3) ==> 4) 
is the content of Lemma 1.

To show that a ring homomorphism M from H(G) into H(T) which takes the 
identity function to a non-constant function is necessarily linear or conjugate linear 
we use Nienhuys-Thiemann’s theorem [9] which states that given any two countable 
dense subsets A and B of R there exists an entire function which is real valued and 
increasing on the real line R such that /(A) = B. In Section 2 we give some lemmas 
and state the theorem of Nienhuys and Thiemann. In Section 3 we prove the following 
main result and finally Ber’s Theorem is proved in Section 4.

Theorem. Let G and T be regions in C and let M be a ring homomorphism 
from H(G) into H(T) such that M(Ic) is not a constant function where la is the 
identity function on G. Then M(i) = ±i. Further

a) if M(i) = i then M is linear;
b) if M(i) = —i then M is conjugate linear.

2. Lemmas. The following lemma is well known but we give the proof for the 
sake of completeness.

Lemma 1. Let M be a ring homomorphism from H(G) into H(T). If M is 
linear then there exists an h £ -ff(r) with h(T) C G such that M(f) = / o /i for all 
f e H(G).

Proof. Let M(Ia) = h and z0 £ T. We claim that h(zo) £ G. Suppose not, 
then la — h(zo) is invertible in H(G) and

Applying M on both sides and evaluating at Zg with the observation that M(h(zo)) =
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h(z0) we obtain

o = (M(iG)(z0) - fa)

= M(Ig - /t(zo))(^o)A/(jG _\(2o))(^o)

= M(l)(z0)
= 1

which is a contradiction. Since zo is arbitrary we have h(T) C G.

Since h(z0) G G, we have S °P 6 H(G) for all f G H(G) andIG - h(z0)

Applying M on both sides and evaluating at zo we obtain

Af(/)(z0) = M(/(h(z0)))(*o) = fWz0)) for all f 6 H(G) .

Since zo is arbitrary the result follows.

Lemma 2. Let G and T be two regions in C and M be a ring homomorphism 
from H(G) into H(F) with M(i) = i. If M(IG) — h is not a constant function then 
h(T) Cl G is not empty.

Proof. Since M is nontrivial ring homomorphism it is easy to show that Al(a) = 
a for all a £ Q. Since Al(t) = t we have M(a + i/d) = a + i(3 for a, /3 G Q. Since h is 
a nonconstant analytic function it is an open map, so there exists a z0 G T such that 
h(z0) € Q + iQ- Just as in the above lemma it is easy to show that h(zo) G G. Hence 
h(r) Cl G is not empty.

Let k G Q. Denote by Hk the set of all entire functions which map Q + ik into 
Q except possibly for one point of Q + it and also denote by EM the class of entire 
functions whose restriction to R is a real monotonically increasing function. The 
proof of Lemma 3 follows the proof of the following theorem [9].

Theorem (Nienhuys, Thiemann). Let S and T be countable everywhere 
dense subsets of R. Suppose that p a continuous positive real function such that 
limi-oo t-np{<) = oo for aline N and suppose f0 € EM. Then there exists a 
function f G EM such that

i) f is strictly increasing on R and f(S) = T,
H) l/(*) - /(*o)| < p(M) for allzeC.

Lemma 3. Let k G Q, Id G R and a G Q + ik. Then there exists an entire 
function f G Hk »rich that f(a) = fl and f(Q + ik) = {/?} U Q-

Proof. In Nienhuys and Thiemann’s Theorem [9] take S = Q and T — {/i} UQ. 
Let xj, X2,... be an enumeration of Q with xj = a — ik. Then as in the proof of that
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theorem there exists an entire function g such that g(xi) = ft and g(Q) = {/?} U Q. 
Let h(z) = z — ik. Then f = g o h is the desired function.

3. Proof of the main theorem. It is easy to see that M is linear over the 
field of rational numbers and hence we have —1 = Af(—1) = Af(i2) = Af(t')2, which 
implies Af(i) = t or M(i) = —i. We prove here only Part a) of the theorem; the proof 
of Part b) follows similarly. So in what follows we are assuming Af(i) = i.

Since h — M(Iq) is a nonconstant analytic function on T, Ai(T) is a nonempty 
open set in C and by Lemma 2, h(r) P G is not empty. Hence there exists k G Q 
such that S = (R + ik) Cl h(r) fl G contains a non-void interval parallel to the real 
axis. Let f G H(G) and h(zo) G (Q + ik) P G. Then applying M on both sides and 
evaluating at z0 in the following

we obtain
M(f-f(h(zo)))(zo) = 0

for all z0 in T such that h(z0) G (Q + ik) P G. Thus for all / G H(G) we have

(1) Af(/)(z0) = M(f(h(z0)))(z0) , for all z0 such that h(z0) G (Q + ik) P G .

Since a function / in if* takes Q+ik into the rationals except for one point of Q+i, we 
obtain Ai(/(h(zo))) = /(/i(zo)) whenever /i(zo) 6 (Q + tfc)PG except possibly for one 
point and f G if*. Since f,h and M(f) are analytic and since f(h(z0)) = M(f)(z0) 
holds for all zo in the infinite set fo_1(G P (Q + ik)) we obtain

(2) Af(/) = f o h , for all / G if* .

For a given G R and a given h(zo) in Q + ik, by Lemma 3 there exists an entire f 
in Hi such that /(/i(z0)) = /?. Substituting this in (1) on the one hand we obtain

M(/)(z0) = W)(z0)

and evaluating (2) at Zo on the other hand we find

A/(/)(z0) = (/oh)(z0)=/(h(z„))=^.

Thus we obtain from the above two relations that

Af(/J)(z0) = /3 for all z0 G+ tfc) P T .

Since Af(/3) is analytic we have M(0) = fi. Thus we have Af(() = Ç for all ( G R and 
thus for all ( G C. This implies M is linear.
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4. Ber’s Theorem.

Theorem. Let H(G) and H(T) be algebras of analytic functions on G and T, 
respectively. Let n be a ring isomorphism from H(G) onto H(T). Then there exists 
ip G such, that either ip is either conformal or anticonformal from T onto G and

a) *■(/) = f °T> f°r al1 f S 77(), or
b) ’r(Z) = f o ip, for all f G H(G).

Proof. Since 7r(i) = ±j, we will only consider the case 7r(i) = t; the case 
7r(t) t= —i, follows similarly. Let k(Ig) = <P- We claim that this ip is the required 
function. It is enough to show that ip is a nonconstant function and is one-one from 
T onto G.

ip is not a constant function. Since isomorphisms take constant functions to 
constant functions, so do inverse isomorphisms. Hence 7t(7g) = p is not a constant 
function.

ip is onto. Since ip is a nonconstant function, by our theorem 7r is linear and thus 
by Lemma 1 we have i^(T) C G. Suppose ip is not onto, then there exists zo G G\<^(r). 
Then ip — z0 G 77(r) is invertible and %-1(<^ — zo) = ir-1(<p) — ”'_1(2:o) ~ ¡G ~ zo 
is not invertible. But non-zero homomorphisms take invertible elements to invertible 
elements. Contradiction.

ip is one-one. Let 7r_1(/r) = i/>. Since tt_1 is an isomorphism and V* is not a 
conctant, by our theorem we have

= / o 0 , for all f G 77(f) .

Thus we have
Ig = ’T-1 MAs)) = ,r_1 (<?) = P 0 t

and
7r = 7r(7r-1(/r)) = = d>°P ,

which imply ip is one-one.

5. Bers’ Theorem in Cn. In this section we extend Bers’ Theorem to several 
complex variables. We use Michael’s theorem (see [7]) regarding multiplicative linear 
functionals on multiplicatively convex algebras. We primarily use the notation as 
given in Krantz [5]. We denote by Cn the Cartesian product of n copies of the 
complex numbers. An element in Cn is denoted by z — (zi,Z2,... ,z„). If G is a 
domain in Cn, then 77(G) denotes the algebra of analytic functions on G. Let if in 
77(G) denote the jth coordinate function on G, i.e., lf(z) = Zj for all z G G.

We denote by M, a ring homommorphism from 77(G) into Tf(r), where G and 
T are regions in C". Since Af(i') = ±i, we prove Bers’ theorem for the case A7(i) = i 
and the other case follows similarly. For simplicity we assume n = 2; for general n 
the proof is similar.

Theorem. Let G and. T be domains of h.olomorphy in C2. Let M be a ring 
homomorphism from H(G) into 77(f) with M(i) = i. Then
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a) if AZ takes at least one of the coordinate functions into a non constant function, 
then there exists a function tp = (931,932) from T into G where 931,932 € H(T) 
such that

M(f) = fo,p, for all f £ H(T)

i.e.,

M(f)(u) = f o ip(uj) = /(9>( (03), 932(03)) , for all f G ZZ(T) and for all 01 G T ;

b) further, if M ¿3 on isomorphism, ip = (p^ip?) is a biholomorphic function from 
r onto G.

Proof, a) Let if1 and I? denote the coordinate functions on G. Since AZ(t') = i 
and M takes at least one of the coordinate functions into a nonconstant function, as 
in the one variable case, it is easy to show that M is linear. Let AZ(Ztf’) = 93,-, t = 1,2. 
We claim that <p = (931,933) maps T into G. To show this, let 03° G T and let us 
consider the multiplicative linear functional m on H(G) defined by

m(/) = AZ(/)(o>°) .

Since m is a multiplicative linear functional on H(G) and G is a domain of holomorphy, 
by Michael’s theorem [7] there exists a point z° = (z®, z®) in G such that

m(/) = /(z°) = AZ(/)(o3°) , for all f G H(G).

In particular, we have

93,(0;®) = AZ(ZG)(o3®) = m(Z?) = Zf(z°) for i = 1,2.

This implies
93 C G .

Farther

M(/)(o;®) = /(z°) = /(z®,z2°) = /(^ao;®),932(03®)) = 7(90(03®)) = (/093X03®) . 

Thus we have
M(f) = f o 93 , for all f G ZZ(T) .

b) Since AZ is an isommorphism from H(G) onto ZZ(T) the inverse map AZ-' is 
also an isomorphism from ZZ(T) onto H(G). Therefore, in a similar way there exist 
0,- = i = 1,2, such that 0(G) - (0i,02)(G!) C T and AZ_1(/) = f o 0 for
all f G ZZ(T). But

Zf = AZ"*(AZ(Zf)) = AZ-’(93.) = 93,- o 0 for i = 1,2,

which implies
(Z,°,Zf) = (93, 00,932 01/3) =93 O0 .

Thus 93 o 0 is the identity function on G and hence 93 and 0 are biholomorphic
functions.
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A function <p = (v? 1, • • • , V’n) is said to be conjugate biholomorphic from G onto 
f if ip = (i^i,..., is biholomorphic from G onto T. Now we state Ber’s theorem 
in several variables.

Theorem. Let G and T be domains of holomorphy in Cn. Then the algebras 
H(G) and H(T) are ring isomorphic if and only if there exists a function from G 
onto r which is either biholomorphic or conjugate biholomorphic.
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STRESZCZENIE

Załóżmy, że H(G), H(T) są algebrami funkcji analitycznych w obszarach G, I płaszczyzny 
zespolonej.

Wykazuje się, że homomorfizm pierścieniowy algebry H(G) w algebrę H(T) jest bądź liniowy, 
bądź też antyliniowy, przy założeniu, że homomorfizm ten przeprowadza identyczność w funkcję różną 
od stałej.

Jako wniosek otrzymano nowy dowód twierdzenia Bersa oraz jego uogólnienie na funkcje wielu 
zmiennych.
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