LUBLIN-POLONIA

Department of Mathematics
1) olaware Siate College. Dover, Delaware

N. R. NANDAKUMAR

Ring Homomorphisms on Algebras of Analytic Functions

Homomorfizm pierścieniowy algebr funkcji analitycznych

Abstract

Let $H(G)$ and $H(\Gamma)$ be algebras of analytic functions on regions G and Γ, respectively, in the complex plane. It is shown that a ring homomorphisin from $H(G)$ into $H(\Gamma)$ is either linear or conjugate linear, provided the ring homomorphism takes the identity function into a nonconstant function. As a consequence, an alternative proof of Ber's theorem is given and this theorem is extended to the several variables case.

Introduction. An operator M from a comutative algebra A into a comutative algebra B is called a ring homomorphism if for all $x, y \in A, M(x+y)=M(x)+M(y)$ and $M(x y)=M(x) M(y)$. A ring isomorphism is a ring homomorphism which is one-one and onto. Throughout this paper G and Γ denote regions, i.e., connected open sets in the complex plane. If G is a region then $H(G)$ denotes the algebra of analytic functions on G equipped with the topology of uniform convergence on compact subsets of G, I_{G} denotes the identity function on G, and M denotes a nonzero ring homomorphism from $H(G)$ into $H(\Gamma)$. The rationals, reals, and complex numbers are denoted by Q, R, and C, respectively.

If \mathcal{M} is a maximal ideal in $H(G)$ then the quotient algebra $H(G) / \mathcal{M}$ is isomorphic (as an algebra) to C if and only if \mathcal{M} is a closed maximal ideal. Henriksen [4] has shown that if the maximal ideal \mathcal{M} in E is not closed, then E / \mathcal{M} is isomorphic (as a ring) to C, where E is the ring of entire functions. This implies that there exist discontinuous homomorphisms from the ring of entire functions onto C.

Bers $[2,6]$ has shown that $H(G)$ and $H(\Gamma)$ are ring isomorphic if and only if G and Γ are either conformally or anticonformally equivalent. Further he has shown that every ring isomorphism from $H(G)$ onto $H(\Gamma)$ is induced by either a conformal or an anticonformal map. Rudin [10] has similar results on rings of bounded analytic functions. Becker and Z ame [1] have shown that a ring homomorphism M from an F-algebra into an analytic ring is linear (or conjugate linear) and continuous, if the range of M contains a nonunit, nonzero divisor. In [3]. Burckel and Saeki have characterized additive maps between rings of holomorphic functions which satisfy a multiplier-like condition. In this paper we show that if G and Γ are regions in C
and a ring homomorphism M from $H(G)$ into $H(\Gamma)$ takes the identity function I_{G} to a non constant function, then M is necessarily either linear or conjugate linear. A similar result has been proved by the author [8] for ring homomorphisms from $H(G)$ into iself when G is a regular region. Essentially, to achieve this result we show that the homomorphism under consideration preserve constants or take constants to their conjugates. We give a new proof of Ber's theorem (see Bers [2]) based on this result. Finally we extend Ber's theorem to alebras of analytic functions in several complex variables.

If M is a ring homomorphism from $H(G)$ into $H(\Gamma)$ then the following assertions are equivalent:

1) M is continuous,
2) either $M(k)=k$ for all $k \in C$ or $M(k)=\bar{k}$ for all $k \in C$,
3) M is either linear or conjugate linear,
4) there exists $h \in H(\Gamma)$ with $h(\Gamma) \subset G$ such that $M(f)=f \circ h$ for all $f \in H(G)$ or there exists $h \in H(\Gamma)$ with $\overline{h(\Gamma)} \subset G$ such that $M(f)=\overline{f \circ \bar{h}}$ for all $f \in H(G)$.
The implications 4$) \Longrightarrow 1) \Longrightarrow 2$) $\Longrightarrow 3$) are trivial or easy to prove; 3) $\Longrightarrow 4$) is the content of Lemma 1.

To show that a ring homomorphism M from $H(G)$ into $H(\Gamma)$ which takes the identity function to a non-constant function is necessarily linear or conjugate linear we use Nienhuys-Thiemann's theorem [9] which states that given any two countable dense subsets A and B of R there exists an entire function which is real valued and increasing on the real line R such that $f(A)=B$. In Section 2 we give some lemmas and state the theorem of Nienhuys and Thiemann. In Section 3 we prove the following main result and finally Ber's Theorem is proved in Section 4.

Theorem. Let G and Γ be regions in C and let M be a ring homomorphism from $H(G)$ into $H(\Gamma)$ such that $M\left(I_{G}\right)$ is not a constant function where I_{G} is the identity function on G. Then $M(i)= \pm i$. Further
a) if $M(i)=i$ then M is linear;
b) if $M(i)=-i$ then M is conjugate linear.
2. Lemmas. The following lemma is well known but we give the proof for the sake of completeness.

Lemma 1. Let M be a ring homomorphism from $H(G)$ into $H(\Gamma)$. If M is linear then there exists an $h \in H(\Gamma)$ with $h(\Gamma) \subset G$ such that $M(f)=f \circ h$ for all $f \in H(G)$.

Proof. Let $M\left(I_{G}\right)=h$ and $z_{0} \in \Gamma$. We claim that $h\left(z_{0}\right) \in G$. Suppose not, then $I_{G}-h\left(z_{0}\right)$ is invertible in $H(G)$ and

$$
\left(I_{G}-h\left(z_{0}\right)\right)\left(\frac{1}{I_{g}-h\left(z_{0}\right)}\right)=1 .
$$

Applying M on both sides and evaluating at z_{0} with the observation that $M\left(h\left(z_{0}\right)\right)=$
$h\left(z_{0}\right)$ we obtain

$$
\begin{aligned}
0 & =\left(M\left(I_{G}\right)\left(z_{0}\right)-h\left(z_{0}\right)\right) M\left(\frac{1}{I_{G}-h\left(z_{0}\right)}\right)\left(z_{0}\right) \\
& =M\left(I_{G}-h\left(z_{0}\right)\right)\left(z_{0}\right) M\left(\frac{1}{I_{G}-h\left(z_{0}\right)}\right)\left(z_{0}\right) \\
& =M(1)\left(z_{0}\right) \\
& =1
\end{aligned}
$$

which is a contradiction. Since z_{0} is arbitrary we have $h(\Gamma) \subset G$.
Since $h\left(z_{0}\right) \in G$, we have $\frac{f-f\left(h\left(z_{0}\right)\right)}{I_{G}-h\left(z_{0}\right)} \in H(G)$ for all $f \in H(G)$ and

$$
f-f\left(h\left(z_{0}\right)\right)=\left(I_{G}-h\left(z_{0}\right)\right)\left(\frac{f-f\left(h\left(z_{0}\right)\right)}{I_{G}-h\left(z_{0}\right)}\right) .
$$

Applying M on both sides and evaluating at z_{0} we obtain

$$
M(f)\left(z_{0}\right)=M\left(f\left(h\left(z_{0}\right)\right)\right)\left(z_{0}\right)=f\left(h\left(z_{0}\right)\right) \text { for all } f \in H(G) .
$$

Since z_{0} is arbitrary the result follows.
Lemma 2. Let G and Γ be two regions in C and M be a ring homomorphism from $H(G)$ into $H(\Gamma)$ with $M(i)=i$. If $M\left(I_{G}\right)=h$ is not a constant function then $h(\Gamma) \cap G$ is not empty.

Proof. Since M is nontrivial ring homomorphism it is easy to show that $M(\alpha)=$ α for all $\alpha \in Q$. Since $M(i)=i$ we have $M(\alpha+i \beta)=\alpha+i \beta$ for $\alpha, \beta \in Q$. Since h is a nonconstant analytic function it is an open map, so there exists a $z_{0} \in \Gamma$ such that $h\left(z_{0}\right) \in Q+i Q$. Just as in the above lemma it is easy to show that $h\left(z_{0}\right) \in G$. Hence $h(\Gamma) \cap G$ is not empty.

Let $k \in Q$. Denote by H_{k} the set of all entire functions which map $Q+i k$ into Q except possibly for one point of $Q+i k$ and also denote by $E M$ the class of entire functions whose restriction to R is a real monotonically increasing function. The proof of Lemma 3 follows the proof of the following theorem [9].

Theorem (Nienhuys, Thiemann). Let S and T be countable everywhere dense subsets of R. Suppose that p is a continuous positive real function such that $\lim _{\ell \rightarrow \infty} t^{-n} p(t)=\infty$ for all $n \in N$ and suppose $f_{0} \in E M$. Then there exists a function $f \in E M$ such that
i) f is strictly increasing on R and $f(S)=T$,
ii) $\left|f(z)-f\left(z_{0}\right)\right| \leq p(|z|)$ for all $z \in C$.

Lemma 3. Let $k \in Q, \beta \in R$ and $\alpha \in Q+i k$. Then there exists an entire function $f \in H_{k}$ such that $f(\alpha)=\beta$ and $f(Q+i k)=\{\beta\} \cup Q$.

Proof. In Nienhuys and Thiemann's Theorem [9] take $S=Q$ and $T=\{\beta\} \cup Q$. Let x_{1}, x_{2}, \ldots be an enumeration of Q with $x_{1}=\alpha-i k$. Then as in the proof of that
theorem there exists an entire function g such that $g\left(x_{1}\right)=\beta$ and $g(Q)=\{\beta\} \cup Q$. Let $h(z)=z-i k$. Then $f=g \circ h$ is the desired function.
3. Proof of the main theorem. It is easy to see that M is linear over the field of rational numbers and hence we have $-1=M(-1)=M\left(i^{2}\right)=M(i)^{2}$, which implies $M(i)=i$ or $M(i)=-i$. We prove here only Part a) of the theorem; the proof of Part b) follows similarly. So in what follows we are assuming $M(i)=i$.

Since $h=M\left(I_{G}\right)$ is a nonconstant analytic function on $\Gamma, h(\Gamma)$ is a nonempty open set in C and by Lemma 2, $h(\Gamma) \cap G$ is not empty. Hence there exists $k \in Q$ such that $S=(R+i k) \cap h(\Gamma) \cap G$ contains a non-void interval parallel to the real axis. Let $f \in H(G)$ and $h\left(z_{0}\right) \in(Q+i k) \cap G$. Then upplying M on both sides and evaluating at z_{0} in the following

$$
f-f\left(h\left(z_{0}\right)\right)=\left(I_{G}-h\left(z_{0}\right)\right)\left(\frac{f-f\left(h\left(z_{0}\right)\right)}{I_{G}-h\left(z_{0}\right)}\right)
$$

we obtain

$$
M\left(f-f\left(h\left(z_{0}\right)\right)\right)\left(z_{0}\right)=0
$$

for all z_{0} in Γ such that $h\left(z_{0}\right) \in(Q+i k) \cap G$. Thus for all $f \in H(G)$ we have

$$
\begin{equation*}
M(f)\left(z_{0}\right)=M\left(f\left(h\left(z_{0}\right)\right)\right)\left(z_{0}\right), \text { for all } z_{0} \text { such that } h\left(z_{0}\right) \in(Q+i k) \cap G \tag{1}
\end{equation*}
$$

Since a function f in H_{k} takes $Q+i k$ into the rationals except for one point of $Q+i$, we obtain $M\left(f\left(h\left(z_{0}\right)\right)\right)=f\left(h\left(z_{0}\right)\right)$ whenever $h\left(z_{0}\right) \in(Q+i k) \cap G$ except possibly for one point and $f \in H_{k}$. Since f, h and $M(f)$ are analytic and since $f\left(h\left(z_{0}\right)\right)=M(f)\left(z_{0}\right)$ holds for all z_{0} in the infinite set $h^{-1}(G \cap(Q+i k))$ we obtain

$$
\begin{equation*}
M(f)=f \circ h, \quad \text { for all } f \in H_{k} \tag{2}
\end{equation*}
$$

For a given $\beta \in R$ and a given $h\left(z_{0}\right)$ in $Q+i k$, by Lemma 3 there exists an entire f in H_{k} such that $f\left(h\left(z_{0}\right)\right)=\beta$. Substituting this in (1) on the one hand we obtain

$$
M(f)\left(z_{0}\right)=M(\beta)\left(z_{0}\right)
$$

and evaluating (2) at z_{0} on the other hand we find

$$
M(f)\left(z_{0}\right)=(f \circ h)\left(z_{0}\right)=f\left(h\left(z_{0}\right)\right)=\beta .
$$

Thus we obtain from the above two relations that

$$
M(\beta)\left(z_{0}\right)=\beta \quad \text { for all } z_{0} \in h^{-1}(Q+i k) \cap \Gamma
$$

Since $M(\beta)$ is analytic we have $M(\beta)=\beta$. Thus we have $M(\zeta)=\zeta$ for all $\zeta \in R$ and thus for all $\zeta \in C$. This implies M is linear.

4. Ber's Theorem.

Theorem. Let $H(G)$ and $H(\Gamma)$ be algebras of analytic functions on G and Γ, respectively. Let π be a ring isomorphism from $H(G)$ onto $H(\Gamma)$. Then there exists $\varphi \in H(\Gamma)$ such that either φ is either conformal or anticonformal from Γ onto G and a) $\pi(f)=f \circ \varphi$, for all $f \in H()$, or
b) $\pi(f)=\overline{f \circ \bar{\varphi}}$, for all $f \in H(G)$.

Proof. Since $\pi(i)= \pm i$, we will only consider the case $\pi(i)=i$; the case $\pi(i)=-i$, follows similarly. Let $\pi\left(I_{G}\right)=\varphi$. We claim that this φ is the required function. It is enough to show that φ is a nonconstant function and is one one from Γ onto G.
φ is not a constant function. Since isomorphisms take constant functions to constant functions, so do inverse isomorphisms. Hence $\pi\left(I_{G}\right)=\varphi$ is not a constant function.
φ is onto. Since φ is a nonconstant function, by our theorem π is linear and thus by Lemma 1 we have $\varphi(\Gamma) \subseteq G$. Suppose φ is not onto, then there exists $z_{0} \in G \backslash \varphi(\Gamma)$. Then $\varphi-z_{0} \in H(\Gamma)$ is invertible and $\pi^{-1}\left(\varphi-z_{0}\right)=\pi^{-1}(\varphi)-\pi^{-1}\left(z_{0}\right)=I_{G}-z_{0}$ is not invertible. But non-zero homomorphisms take invertible elements to invertible elements. Contradiction.
φ is one-one. Let $\pi^{-1}\left(I_{\Gamma}\right)=\psi$. Since π^{-1} is an isomorphism and ψ is not a conctant, by our theorem we have

$$
\pi^{-1}(f)=f \circ \psi, \quad \text { for all } f \in H(\Gamma)
$$

Thus we have

$$
I_{G}=\pi^{-1}\left(\pi\left(I_{G}\right)\right)=\pi^{-1}(\varphi)=\varphi \circ \psi
$$

and

$$
I_{\Gamma}=\pi\left(\pi^{-1}\left(I_{\Gamma}\right)\right)=\pi(\psi)=\psi \circ \varphi
$$

which imply φ is one-one.
5. Bers' Theorem in C^{n}. In this section we extend Bers' Theorem to several complex variables. We use Michael's theorem (see [7]) regarding multiplicative linear functionals on multiplicatively convex algebras. We primarily use the notation as given in Krantz [5]. We denote by C^{n} the Cartesian product of n copies of the complex numbers. An element in C^{n} is denoted by $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. If G is a domain in C^{n}, then $H(G)$ denotes the algebra of analytic functions on G. Let I_{j}^{G} in $H(G)$ denote the $j^{\text {th }}$ coordinate function on G, i.e., $I_{j}^{G}(z)=z_{j}$ for all $z \in G$.

We denote by M, a ring homommorphism from $H(G)$ into $H(\Gamma)$, where G and Γ are regions in C^{n}. Since $M(i)= \pm i$, we prove Bers' theorem for the case $M(i)=i$ and the other case follows similarly. For simplicity we assume $n=2$; for general n the proof is similar.

Theorem. Let G and Γ be domains of holomorphy in C^{2}. Let M be a ring homomorphism from $H(G)$ into $H(\Gamma)$ with $M(i)=i$. Then
a) if M takes at least one of the coordinate functions into a non constant function, then there exists a function $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ from Γ into G where $\varphi_{1}, \varphi_{2} \in H(\Gamma)$ such that

$$
M(f)=f \circ \varphi, \quad \text { for all } f \in H(\Gamma)
$$

i.e.,
$M(f)(\omega)=f \circ \varphi(\omega)=f\left(\varphi_{1}(\omega), \varphi_{2}(\omega)\right), \quad$ for all $f \in H(\Gamma)$ and for all $\omega \in \Gamma$;
b) further, if M is an isomorphism, $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ is a biholomorphic function from Γ onto G.

Proof. a) Let I_{1}^{G} and I_{2}^{G} denote the coordinate functions on G. Since $M(i)=i$ and M takes at least one of the coordinate functions into a nonconstant function, as in the one variable case, it is easy to show that M is linear. Let $M\left(I_{i}^{G}\right)=\varphi_{i}, i=1,2$. We claim that $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ maps Γ into G. To show this, let $\omega^{0} \in \Gamma$ and let us consider the multiplicative linear functional m on $H(G)$ defined by

$$
m(f)=M(f)\left(\omega^{0}\right)
$$

Since m is a multiplicative linear functional on $H(G)$ and G is a domain of holomorphy, by Michael's theorem [7] there exists a point $z^{0}=\left(z_{1}^{0}, z_{2}^{0}\right)$ in G such that

$$
m(f)=f\left(z^{0}\right)=M(f)\left(\omega^{0}\right), \quad \text { for all } f \in H(G)
$$

In particular, we have

$$
\varphi_{i}\left(\omega^{0}\right)=M\left(I_{i}^{G}\right)\left(\omega^{0}\right)=m\left(I_{i}^{G}\right)=I_{i}^{G}\left(z^{0}\right) \quad \text { for } i=1,2 .
$$

This implies

$$
\varphi \subseteq G
$$

Further

$$
M(f)\left(\omega^{0}\right)=f\left(z^{0}\right)=f\left(z_{1}^{0}, z_{2}^{0}\right)=f\left(\varphi_{1}\left(\omega^{0}\right), \varphi_{2}\left(\omega^{0}\right)\right)=f\left(\varphi\left(\omega^{0}\right)\right)=(f \circ \varphi)\left(\omega^{0}\right)
$$

Thus we have

$$
M(f)=f \circ \varphi, \quad \text { for all } f \in H(\Gamma)
$$

b) Since M is an isommorphism from $H(G)$ onto $H(\Gamma)$ the inverse map M^{-1} is also an isomorphism from $H(\Gamma)$ onto $H(G)$. Therefore, in a similar way there exist $\psi_{i}=M^{-1}\left(I_{i}^{\Gamma}\right), i=1,2$, such that $\psi(G)=\left(\psi_{1}, \psi_{2}\right)(G) \subseteq \Gamma$ and $M^{-1}(f)=f \circ \psi$ for all $f \in H(\Gamma)$. But

$$
I_{i}^{G}=M^{-1}\left(M\left(I_{i}^{G}\right)\right)=M^{-1}\left(\varphi_{i}\right)=\varphi_{i} \circ \psi \quad \text { for } i=1,2
$$

which implies

$$
\left(I_{1}^{G}, I_{2}^{G}\right)=\left(\varphi_{1} \circ \psi, \varphi_{2} \circ \psi\right)=\varphi \circ \psi .
$$

Thus $\varphi \circ \psi$ is the identity function on G and hence φ and ψ are biholomorphic functions.

A function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is said to be conjugate biholomorphic from G onto $\bar{\Gamma}$ if $\bar{\varphi}=\left(\bar{\varphi}_{1}, \ldots, \bar{\varphi}_{n}\right)$ is biholomorphic from G onto Γ. Now we state Ber's theorem in several variables.

Theorem. Let G and Γ be domains of holomorphy in C^{n}. Then the algebras $H(G)$ and $H(\Gamma)$ are ring isomorphic if and only if there exists a function φ from G onto Γ which is either biholomorphic or conjugate biholomorphic.
6. Acknowledgements. The author is grateful to Professor Lee A. Rubel for his helpful comments.

REFERENCES

[1] Becker, J. A., Zame, W. R., Homomorphisms into Analytic Rings, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 30 (1977), 7-10.
[2] Bers, L. , Rings of analytic functions, Bull. Amer. Math. Soc., 54 (1948), 311-315.
[3) Burckel, R. B. , Saeki, S., Additive mappings on rings of holomorphic functions, Proc. Amer. Math. Soc., 89 (1983), 79-85.
[4] Henriksen, M. On the ideal structure of the ring of entire functions, Pacific J. Math., 2 (1952), 179-184.
[5] Krantz, S. G., Function Theory of Several Complex Variables, John Wiley and Sons, New York 1982.
[6] Luecking, D. H., Rubel, L. A., Complex Analysis. A Functional Analysis Approach. Springer-Verlag, New York 1984
[7] Michael, E. , Locally multiplicatively-convex algebras, AMS Memoirs, No. 11, (1952).
[8] Nandakumar, N. R., Ring homomorphisms on $H(G)$, Internat. J. Math. Math.Sci., 13 (1990), 393-396.
[9] Nienhuys, J. W., Thiemann, J. G. F., On the existence of entire functions mapping countable dense subsets on each other, Proc. Kon. Ned. Akad. van Wetensch, A 79 (1976), 331-334.
[10] Rudin, W., Some theorems on bounded analytic functions, Trans. Amer. Math. Soc 78 (1955), 333-342.

STRESZCZENIE

Zalóżmy, że $H(G), H(\Gamma)$ są algebrami funkcji analitycznych wobszarach G, I' plaszczyzny zeapolonej.

Wykazuje sị, że homomorfizm pierácieniow'y algebry $H(G)$ w algebrẹ $H(\Gamma)$ jest bądź liniowy, bądż też antyliniowy, przy zalożeniu, że homomorfizm ten przeprowadza identycznoóć w funkcjẹ różną od stalej.

Jako wniosek otraymano nowy dowód twierdzenia Bersa oraz jego uogólnienie na funkcje wielu 2miennych.

