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Fredholm Eigenvalues and Complementary
Hardy Spaces

Wartosci wlasne Fredholma i komplementarne
przestrzenie Hardy’ego

Abstract. Suppose I is a chord-arc (or Lavrentiev) curve in the finite plane C and IIP(Dk).
p>1, k= 1,2 are complementary (generalized) Hardy spaces on the components Dy of C \ T,
(o0 € Dy). b 43

If(Bu)(z) = (27“.)_l fr((—z)_l w(¢) d{,w € H?(Dl ). then the eigenvalues of the ope-
rator B coincide with the eigenvalues of generalized Neumann-Poincaré operator C.r corresponding
to absolutely continuous eigenfunctions. The converse is also true.

Let A (D) denote the Hilbert space of functions f analytic in the domain D with the norm
1Al = (ffp I£(2)2dz dy)*/2.

If T is chord-arc then the operator L defined by the formulas (2.1)~(2.3) is bounded on A ( D) ),
H’{Dl} CA (Dl) and Lw = Bw for any w € Hz(Dl). Moreover, if a constant di in the
formula (2.2) is positive, then Ay = 1/d} is an eigenvalue of the operators Clr, B and L We have
dr =0 forall k € N if and only if T is a circle.

1. Introduction. Statement of results. Let I' be a rectifiable Jordan
curve in the finite plane C. Many important problems in conformal mapping and
the potential theory can be reduced to the solution of a linear integral equation of
Fredholm type: u(z) = f k(z,t)u(t)ds, = v(z) with the Neumann- Poincaré kernel

k(z,t) = —=(m)~! I log|z —t|, z,t € T. If T is in C* and «(t) denotes the curvature
2

of T at t € T then putting 27k(t,t) = x(t) we obtain a kernel continuously differen-
tiable w.r.t. the arc length s on I'. The eigenvalues of k, i.e. the real numbers A
such that the homogeneous integral equation u(z) = A fi. k(z,t)u(t)ds,, z,t € T, has
a non-trivial real-valued solution u are called Fredholm eigenvalues of T.

A satisfactory theory of Fredholm eigenvalues of T' in the C*® case has been
created by Schiffer [S1], [S2). However, confining oneself to curves with continuous
curvature excludes even polygonal lines from applications and actually various modi-
fications of the kernel k, e.g. admitting curves with corners, could be made, cf.
[G). Nevertheless, no unified approach involving a suitable operator acting on an
appropriate class of functions associated with the curve I' was proposed so far. Recent
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results of French mathematicians [D], [Z] enable us to extend Schiffer's approach on
a fairly general class of curves.
In sect.2 we introduce a bounded antilinear operator L acting on the class .A (D)

of functions f holomorphic in a quasidisk D, with the norm || f|| = (ffp Iflgda)l’z,
where do is the area element. We prove (Theorem 2.1) that ||L|| < x < 1 and show
that for D not being a disk the set of eigenvalues of L is not empty. In sect.3 we
introduce an operator B from L?(T') to the complementary Hardy spaces H?(D,),
k = 1,2, where D; are components of C \ I'. The operator B is bounded if and only
if T' is AD-regular. If T is an AD-regular quasicircle, i.e. if I' is a chord-arc curve,
cf. [Z], then we have H*(D,) C A(D;) and also Bw = Lw, w € H¥(D;). In sect.4
we find a relation between the generalized Neumann-Poincaré operator Cf and the
operator B for I' being a chord-arc curve. We arrive to the conclusion: If I' is a
chord-arc curve but not a circle the eigenvalues of C]', B, L coincide and the set of
eigenvalues is not empty.

Finally, we show (sect.5) that the eigenvalues in the sense of a definition given
in [K1], [Ku2] correspond to the eigenvalues of an operator P acting on L§ (I') with
I also being chord-arc.

2. The operator L and its eigenvalues. Let A (D) denote the Hilbert space
of functions f holomorphic in a domain D with the inner product (flg) = [f, fgdo,
where do is the area element.

We have the following

Theorem 2.1. Suppose D is a quasidisk and ¢ maps D conformally onto the
unit disk A. Then the function

_ 11 '(2)'(2) 1
(2.1) o) = 2 [ = (z—t)’] , zteD,

is analytic in D x D, does not depend on a particular choice of ¢ and vanishes
identically if and only if D is a disk. If D is not a disk, there ezist a constant
k € (0;1) and a sequence (d,), 0 < d, < k (n € N) such that

(2:2) l(z,0) = Y dupn()pn(t), zt€D,

n=]

where {pn(2)} is a complete orthonormal system in A(D) and not all d,, vanish.
Moreover,

(2.3) (Lw)(z) := //;, I(z,t)w(t) do,

is a bounded antilinear operator on A(D) and

(2.4) ILl<x<1.
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Proof. We have
(2.5) lim I(z,t) = (67)"'{¢, 2},

where {y,2} denotes the Schwarzian derivative. Hence the analyticity of I(z,t)
in D x D, as well as l(z,t) # 0 for D not being a disk, immediately follow. If
h(z) = e?(p(z) — a)(1 — ap(2))~!, B € R, a € A, then h'(2)h'(t)(h(z) — h(t))"* =
¢'(2)p'(t)(p(2) — ¢(t))~2, 80 I(z,t) does not depend on a special choice of .

We may assume without loss of generality that D = f(A) with f belonging to
the familiar class S. Then the Grunsky coefficients b,,,, are defined by the equality

G(w,w) = —log!—(%{)(—w) = i bpnw™w" ;. wweA.

Hence

5 & L))
D, mnbmaw @ —oF ~ (@) - F@)

wdw -

and the equalities w = ¢(z), w = p(t), f(w) = z, f(w) =t imply

et
m,n=]

(26) (2t)= Y T5 bmap™ (20 ()" (DO'(1) -

If we introduce modified Grunsky coefficients cmn = v/Mnbmn then (2.6) takes the
form

- °]

(2.7) (z,t)= 3 cmaPm(2)Pal(t)

m,n=1

where

(28) Pn(2) = \/gsp"'l(z)gp'(z) o Rl =012,

It is easily verified that {pn(z)} is a complete orthonormal (=CON) system in A (D).
In fact, if w = ¢(z), then the relation F(w) = f(2)/¢'(z2) establishes an isometry
between A (A) and A (D). Now, {y/n/r w"~'} is a CON-system in A (A) and
consequently {pn(z)} is a CON-system in A (D). For D being a quasidisk the Grunsky
inequality in a sharper form due to Kiihnau [Kil], [Kii3], also cf. [P], takes place,
i.e. there exists x € (0;1) such that

co oo
|E E CmnTmTn

m=1n=1

Sl 2= (710220 rTaren ) = () €7 .

Since c,, is symmetric, an equivalent inequality for the associated bilinear form is true:

(2.9) |§: i Cmnxmynl < "”r" flll v == (yn) € 2.

m=1n=1
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Suppose now that ¢ = Y ;o axpi(z), h = Y po, Bepr(2) belong to A (D) which
implies that (an),(Ba) € [*. Then we have by (2.7) and (2.9):

”,/_/Dx D I(z,t)g() h(t) do da,l — 'mi::l ..Z:, Cmn@mPn
< &ll(ea)ll 1B = «ligll 1AL} -

This implies that the symmetric antilinear operator (2.3) is bounded in A (D) and its
norm satisfies (2.4). Suppose now that D is not a disk and 80 0 < x < 1.
Consider the function

N N
(2.10) IN(z,t) = Y Y cmnPm(2)pa(t) = [Pr(2)]TCNIPN(2)] ,

m=1n=]
where ; L
p(z)
[Pn(2)] = : y CN = [cmnligmngN
PN (2),
and the superscript T denotes the transpose. We shall prove that
(2.11) h}im In(z,t) =lz,1) .
—o0

Putting for short z, = pa(z), yn = pn(t) we have to prove that

Nﬂ N-\ m\ m‘\
(2.12) Nll_l'.ltl’o ,;.5_:1 n%; ChaSr ks = "‘X;l ;5:1 CrmaiTayja

In view of (2.9) we have for ,y € I?

S Y cmnzata| S#I0.0, .0 znin zwanse - ol
n=1m=N+1
i 2\ M2
=yl X lemP) T <0 as N = 4oo.
m=N+1

Similarly

oo N oo 1/2
l Z z CmnTm¥n| < K"I"( Z lynlj) -0
n=N+1m=1 nz=N+1
as N — +oo and this proves (2.12) and also (2.11).
Now, in view of a theorem due to Schur [Sch], [P], we have for a symmetric
matrix Cn the decomposition Cy = UEDNUN, where Uy is unitary and Dy =
[din,d2n, ..., dNN] is diagonal with 0 < diny < x. Hence (2.10) takes the form

(2.13) In(z,t) = [UNPn(2)]TDNn[UnPn(t)] .
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Unitary transformation Uy, as applied to Py(z), results in a vector ®y(z) with
coordinates

ean(z) = anipi(2) + arapa(2) + -+ + axnpn(z) .
We have ||pin)l = 1 for k =1,2,...,N, (pen|pin) = 0 for k # | and (2.13) can be

written as

N

(2.14) IN(z,t) = Y denean(2)pan(t), 0<din < x.
k=1

We first observe that {Iy(z,t) : N € N} is a normal family in D x D. In fact, for
every compact subset F' of D x D there exists a positive number 6 such that for any
(z,t) € F and §,, = dist(w, C \ D) we have min{é,,6,} > 6. Putting pan(2) = pp(z)
for k > N + 1 we obtain a CON-system {¢«n(z)} for any fixed N. We have

2 o : — 2\ 2
linzt)f” < QE"AZ"M’*N) hzllWN{‘”z ; lean(t)? < (3—52)

for any (z,t) € F and our assertion follows by Stieltjes-Osgood theorem. Hence
{In} contains a subsequence {ly;} converging uniformly on F to I(z,t). By the

usual diagonal process we obtain a subsequence of {N,}, say {1\7,-}, such that the
limits limj oo d, 5 = di, limj—co Py, = Pk exist. Obviously, for k # | we have
(pnlpin) = 0 and hence (pi|p1) = O for any pair k, I; k # I. Moreover, 0 < dkﬁ,— <k
and this implies 0 < dy < . Since I(z,t) # 0, we have di||p|| > 0 on a non-empty
set of iBtegers and then 0 < ||pe]| < 1. If ||w,|L< 1, put & = o/ |l@sll, de = dillpxll-
Then dy gy = dipy with ||| = 1 and 0 < di < x. This verifies the decomposition
(2.2) and ends the proof of our theorem.

Corollary 2.2. If f € A(D) then f(2) = Yone) @n@n(z) with YVoney lan)? =
I£1I? and

(2.17) (Lf)(z2) = dnbnpa(2) .
n=1

Hence

(2.18) ILFI? =) daleal?

and for di > 0 we have Loy = dipy with [pi|| = 1. Consequently, Ay = 1/dy 13 an
esgenvalue of L and so the spectrum of L is not empty.

Corollary 2.3. As observed by K. Samotij (oral communication) L 1s generally
not of Hilbert-Schmidt type. E.g. if D is the map of A under f(uw) = (w +1)7,
0<a<?2 a#l, then ([, l(z,8)|*do, day = +oc. Obmously D is a quasidisk and
dD\ {0} s an open analytsc arc.
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In view of (2.2) we have I({,t)= 37, dnn({)¢n(t) and hence 320 | d|wa(¢)|*=

n=1"n

(¢, NP < n’/(vr6(') so that I((,-) € A(D) for any fixed ( € D. Thus by (2.17)

o0

(2.19) (LU ))() = ffn U(z,)(C, ) doy = ¥ d2pal0) ¢u(2) -

In particular, for ( = z € D we obtain

(2.20) / /D Wz, )P doy = Y d2lpn(2)? < K?/(x87) .

n=1

Corollary 2.4. Theorem 2.1 remains true if the quasidisk D* contains oo as
an interior point and ¥ maps D* conformally onto A* = {w : |w| > 1}, so that
¥(00) = oco. Again F(w) = f(z)/y'(z) establishes an isometry between A (D*) and
A(A®). :

3. Schiffer’s identity for chord—arc curves. In this section we show that
the identity (3.6) obtained by Schiffer holds under much weaker assumptions. This
generalization was possible in view of some remarkable results due to G. David [D]
and M. Zinsmelster [Z].

David was able to give a complete characterization of locally rectifiable curves
T and exponents p for which Cauchy singular integral is a bounded operator on the
space LP(T') of complex-valued functions h on T that satisfy [;. [h(z)|?|dz| < +oo.

A locally rectifiable curve T' is called regular in the sense of Ahlfors-David, or
AD-regular, if there exists a positive constant M such that for any disk A(a; R) the
arc-length measure |I'N A(a; R)| < MR. The Cauchy singular integral operator C*
is defined as

(3.1) (CTh)(z) = Ch(z) = ~ p, [ Hz)d2
T r z—2p
= L im LOL

nt e—0 \rE Z2—2

where ', is a subarc of T of length 2¢ bisected by zq.

According to David the operator h — CTh, h € LP(T), is bounded on a locally
rectifiable curve I' for some p > 1, if and only if " is AD-regular. Then it is also
bounded for all p > 1.

If T is an AD-regular Jordan curve we may consider, following David, comple-
mentary (generalized) Hardy spaces H?(D;) (k = 1,2 ; p > 1) on complementary
domains D,,D, 3 oo of T', assuming for ¢ € HP(D;) the normalization g(occ) = 0.
These classes coincide with the familiar classes EP(Dy) for AD-regular I in the finite
plane, cf. [D], [Du]. Any f € H?(D,) has non-tangential limiting values a.e. on T
and f;|f(2)IP|dz| < +oo. Since the functions f,g € HP(Ds) can be recovered from
their boundary values by the Cauchy integral formula, we may consider H?(Dy) as
subspaces of LP(T).

As shown by David, D; and D, are domains of Smimov type, i.e. HP(D,),
HP?(D;) are LP(T')-closures of polynomials, or polynomials in z~', resp. A locally
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rectifiable closed curve I in the extended plane C is called a chord-arc (or Lavrentiev)
curve, iff there exists a positive constant K such that for any pair I';, I'; of complemen-
tary subarcs of I' with common end-points z;, z; we have min{|T,|, |T2|} < K|z;=2,|,
where |T'y| denotes the length of I'y, k = 1,2. Note that a chord-arc curve is neces-
sarily Jordan. Zinsmeister characterized chord-arc curves as AD-regular quasicircles,
(2).

In what follows we shall consider an operator B which is bounded on H?(D;) and
connect it with the operator L acting on A(Dy). To this end we need the following

Lemma 3.1. Su_ppo.sc [' is a chord-arc curve of length v and Dy,D3 3 oo
are the components of C\T. For f € H*(D;) put ||f||";“ = 47! % If(O)I?|d¢| and
W% = Ib, If(2)]? dzdy. Then

(3.2) flla < Wflne

If g € H*(D,) and g(z) = O(z72) as z — oo then an analogous inequality for g is
also true.

Proof. Obviously f has a primitive F in D; and we can take F(z)= Lhw} f(w) dw,
where (20, z) is an arc in D, with end-points 29, 2. Since T is chord-arc, any point
of ' can be approached non-tangentially from D) (and also from D,, cf. [J-K]), so
we can take zp = ( € I'. Then F(z) = fﬂ&.,l f(w)dw and making z tend to ( € T
non-tangentially we obtain F({) = f'r((n&) f(w)dw. We may also take y(, () to be
a subarc of v and this implies absolute continuity of F on . If F(z) = u(z) + iv(2)
then f = u, — iu, and

. : 2 /2y
(3.3) IF(Q)] < J{ ol iuy|ds < A (u2 +u?)"/? ds

< [ﬁ(ui+ui)ds£l‘d‘9]l/2 =Mfln (é[‘.

and hence

(3.4) (I < Alfllus  CET.

For the inner product a + b in R? we have a * b = Re(ab) and with this notation
% = .ﬂlci(rger(grad u(z) *i¢'(s)) = Re(uy —iuy)ic'(s)

a.e. on I' and hence
(3.5) %| < |ug —iuy| = |f(¢)] ae. onT.

If we apply the Green formula to the level lines of D we obtain after passing to the

limit
Ou
e 2 Ndo = - —ds
191 = ff (w2 +urdo = [z

1/2
< fllne ﬂ%l"" < vl { JCALHES / 1-ds} " =7l
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in view of (3.3), (3.4) and this proves (3.1).

The case of g € H%(D,), g(z) = O(2~2), can be treated similarly by consldermg
instead of D; a ring domain with boundary I' U {z : |z] = R} and letting R tend to
infinity.

We now introduce for an AD-regular curve I in the finite plane the operator

v L (RO& _ 1 wQCGr
(3:8) L Sl i M iy 2m'ﬁ (-2
where w € H?(Dy), k = 1,2. Since w({)¢'(s)? € L*(T') and z ¢ T, the formula (3.6)
defines actually four bounded antilinear operators By with the domain H?(D}) and
the range H2(Dy); k,1 = 1,2. However, in what follows we assume B = B;;. Then
we have the following result (obtained by Schiffer [S2] for I in C? and f having a
continuous extension on D)

Theorem 3.2. If T is a chord-arc curve in the finite plane then for any
w € H*(D,) we have

1 rw(@dl

(3.7) 2mi _lr (-2

/ iz, t)w(t)do,, z€D, .

Proof. Since D, is a domain of Smimov type, cf. [D], it is sufficient, in view
of (3.2), to prove (3.7) for polynomials. Let D,, 0 < r < 1, denote the preinage of
A, = {z : |z] < r} under ¢ and let T, = GA, be the level line of D. If ¢, maps
D, onto A conformally then obviously ¢, = r~!¢ and hence the function I, being
an analogue of ! for the domain D, (cf.(2.1)) satisfies I, = l. Therefore, as shown by
Schiffer [S2), (3.7) holds for D = D,, T =T, and w being a polynomial and we have

f,()_—j’ "’(Odc // i(z,t)w(t)do,, z€D, .

r.

If ® = p~! then for a fixed z € D,

1 " w(®(re®))re @' (re'?) do
fr(z) = Ton A ®(re'?) - 2 -

1 rw(Qd_ .
m _Ir ‘—C— f;(z) asr 1
On the other hand
= z . — I(z, doy, asr — 17
fo(2) / L' I(z,t)w(t)do / /D ‘ (2, )w(t) 1

and this ends the proof.
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As an immediate consequence we obtain

Corollary 3.3. If 3D, 1s chord-arc then the eigenvalues of operators B and L
acting on H*(D,) and A(D;), resp., coincide.

Proof. Suppose that w = ALw holds for some real A\, w € A(D,), |lw||l4a > 0.
Then for w(z) = ¥.._, an@n(z) we have by Corollary 2.2 :
ALw(z) = A ¥ o, dn@npn(z) = w(z) and this holds if and only if there exists k € N
such that di > 0, A = Ay = 1/d;. Then we can take oy € R, a; # 0, and a, = 0
for n # k. Suppose now that w = ABw holds for some w € H?(D,), ||w||z2 > 0 and
A € R. Then by Theorem 3.2 w = ALw. However, Lemma 3.1 implies w € A (D))
with ||w||4 > 0 and this is the case already considered.

4. Generalized Neumann-Poincaré operator C] and its eigenvalues.
As pointed out in sect.3, the operator CT defined by (3.1) is bounded on LP(T') for
p > 1 and I being AD-regular. If L{ (T') = {h € LP(T') : h is real-valued }, then we
can split CT acting on L§ (T') into its real and imaginary parts: CTh = C[ h +iCJ h.
This way we obtain bounded linear operators Ci on LR(T), k = 1,2, and CT shows
to be identical with the classical Neumann-Poincaré operator for I' being C3, cf. [K2].
Thus A € R satisfying w = ACT w with 0 # w € LR (T') are a natural generalization
of Fredholm eigenvalues for AD-regular I,

We shall now state a theorem establishing a relation between the eigenvalues of
the operators Cl and B in the case p = 2.

Theorem 4.1. Let ' be chord-arc and D the bounded component of C\T. If
X € R satisfies

(4.1) p(Q)=NCIp)¢), (€T

and p # const is absolutely continuous on I' with dp/ds € L} (T) then the function
f = u +iv generated by Ap:

A d
(42) f(2)=5;r;/r£((—c_)7<. :€D,
has the derivative w € H*(D) that satisfies
._’\_- E_(_C_)—d_c- \ y 4 E D ;

271 r -2

(4.3) w(z) =

Conversely, if w € H*(D), w # const, and (4.3) holds for some A € R, then w
has a primitive f which is generated by Ap(C) according to (4.2) and X, p satisfy (4.1).
Moreover, p is absolutely continuous on T' and dp/ds € (D).

Proof. It follows from (4.2) that f has non-tangential limiting value.s ae. onT
given by Plemelj's formula: f(¢) = 1 [A\o + CTOp) =1 2o+ MCTp +iCY p)] and
hence, due to (4.1)

(4.4) HOSWe FO %(1 +A)p(0) métonT .
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On the other hand, f(z) = A(2mi)~" [ p(¢)d¢log({ — z) and this implies

(45) u(e)=Re S5 = 50 [ MO, ar¢ )

EPVTIITS TR P N
_ZIﬁp(Oan(logK—ﬂds—21rﬁ~l+ A Ong |(—z|

Thus

» d
(4.6) % ﬁ u(()a log Ki e = 1;\ u(z) .

The Green formula for D\ A(z;r) gives for r — 0

1 a 1 1 du
(4.7) E;ﬂu(c)gn—clog == ~ 18 77 e ]ds u(z)

and hence, in view of (4.6)

A 1 Bu
! u(z) = —ds .
el )= J73) } 8 =71 one

Now, (4.8) can be written as

w(5) = gy flon(é =)+ lonC -2 5 do

and the formula 2@ = u; — tu, = f'(z) =: w(z) implies

az

1
(4.9) w(z) = - )‘)f = am s,
6u

We have % = lim,—¢{grad v *i('(s)} = —Im(v, —iv,)('(s) = 5= € L{(T) and
<

gsince D is a Neumann domain (cf. [Z]), we have v, —iv, = —iw € H’(D), and also
w € H*(D). Therefore

(4.10) ;—,: = -Imw({)('(s) ae onT,

and hence 3
a_" ds = —[w(o d¢) - w(()d(]

so that (4.9) takes the form

A rwQ& ¢ w(Qdl

w(z) =

2xi(1 — \) l'[r -z (-z)
A G dC A
2m(1-x)jr e e e



Fredholm Eigenvalues and Complementary Hardy Spaces 33

and this implies (4.3). .
Suppose now that (4.3) holds for some w € H¥*(D), w #const and A € R. Then

we determine 5’{[— from (4.10) and also u(z) from (4.8).

Then (4.7) and (4.8) imply

1 A g e
(4.11) 5(1+ Nu(z) = é—r/ru(C)a—nclog et

Consider now, similarly as before the function F(z) generated by Au(¢). Then we
have, as in (4.5)

—Re A U A Qi g T
(4.12) Re F(z) = Re ;— Mt 27r/r"(oan,< log K_zlds.

As z — ( € T non-tangentially, we obtain from (4.11) and (4.12)

114 Au(0) = 5 [Mul0) + (€T )0

and this implies (4.1) with p(¢) = u({) a.e. on I. Since I' is chord-arc, the function
fc: w(t)dt, ¢ € T, is holomorphic in D, continuous in D and absolutely continuous

on I and so is u(¢). Moreover, w € H%(D) implies du/ds € L*(T").

Corollary 4.2. IfT is chord-are, then the eigenvalues of the operator C| asso-
ciated with absolutely continuous eigenfunctions cosncide with eigenvalues of B acting
on H*(D) and also with eigenvalues of L acting on A(D).

Corollary 4.3. If the chord-arc curve I 13 not a circle then the set of eigenvalues
of Clr associated with non-constant absolutely continuous esgenfunctions is not empty.

If we replace in the formula (2.2) the CON-system {¢.(2)} by another CON-
system ¥, (z)}, where pn(z) = iya(2) then the equality (2.2) takes the form

I(z,t) = i("dn)'/’n(z)d’n(t) y 0<dn<k<1.

n=1
This implies

Corollary 4.4. If ) 1s an eigenvalue of CT for chord-arc T' corresponding to o
non-constant absolutely continuous eigenfunction p with dp/ds € L{ (T), s0 15 —A.

5. Neumann domains and Fredholm eigenvalues. The present author
proposed a definition of Fredholm eigenvalues of a Jordan curve I' that does not
involve an operator, cf. [K1]. An equivalent but formally different notion can be also
found in an carlier paper by Kiithnau [Kii2, Theorem 5]. This definition can be
restated as follows.

Suppose T is a rectifiable Jordan curve and D,,D; 3 oc are components of
C\T. Two non constant functions £, ¢ holomorphic in D, and D;. resp., are said to

Riblioteka
UMCS

t-:hlin
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be conjugate holomorphic eigenfunctions w.r.t. T', if their non-tangential boundary
values exist a.e. on I' and there exists a real number ) such that

(5.1) fIO =0+ Mu(Q)+iv(() , g()=Q1=Nu(()+iv((), CeT.

The numbers A so defined have most of the properties of Fredholm eigenvalues of T'
in the C3-case as established by Schiffer.

Recent results due to Zinsmeister [Z] enable us to determine a suitable class
of curves and a bounded operator whose eigenvalues intervene in the equations (5.1).

The most natural assumption on f and g which secures the recovering of functions
fromn their boundary values is that they range over the complementary Hardy spaces
H?(D,), HP(D,), resp., for some p > 1. This means that I' should be AD-regular.
Another natural assumption is that any v € L{ (') determines up to a real constant
isomorphically the function f € HP(D,) such that Im f({) = v(¢) a.e. on I and this
means that D; is a Neumann domain. The important notion of a Neumann do-
main and its characterizations (analytic and geometric) are due to Zinsmeister
[Z). On the other hand, v € L§(T) should also determine ¢ € HP(D;) isomorphi-
cally so that D, has to be a Neumann domain, too. It was shown by Zinsmeis-
ter that, if D, and D, are Neumann domains then I is a chord-arc curve. Put
Ly = L§(T") = LK (T)/{const}. We may also assume, if convenient, that L] denotes
the set of representatives of equivalence classes, e.g. {h € LR (T) : [ h(¢)|d(| = 0}.
The following lemma is an immediate consequence of Zinsmeister’s characterization
of chord-arc curves.

Lemma 5.1, [K2]. Suppose T is an AD-regular Jordan curve. Then the follow-

ing are equivalent:

(i) T is a chord-arc curve;

(ii) F1 are regular values of the operator C] acting on L(T') for some p > 1;
(iii) CT is an isomorphism of L§(T) for some p > 1.

It follows easily from (ii) that for all p > 1 the operator (I + C[) generates an
isomorphism of L§ (T') which leaves constant functions unchanged; here I denotes the
identity operator.

Suppose that I' is a chord-arc curve and f = ¢ + v € HP(Dy), g = ¢y +iv €
HP(D;) for some p > 1. Given an arbitrary ¢ € Ly(T') we may find a unique
y € L& (T) such that 2p = (I + CT)y, i.e. y = 2(I + C1)"p. Then v = 1CTy and
Y= %(—y-}-C{‘y) = —(I-CP)(I+CJ) ' =: Py. The operator P is closely related
to the equations (5.1) which is evident from the following

Theorem 5.2. IfT is a chord-arc curve in the finite plane then the operator
(5.2) P=—-(I-chH+ch)?
defines an isomorphism of L (T) (p > 1, arbitrary) onto {u(¢)=Reg(() : ¢ € HP(D;)}
If
(5.3) p=1+201-0"

is a reqular (singular) value, or eigenvalue of P then ) is an analogous value for the
operator CT .
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Proof. We have

(5.4) I-pP=[I+Cl +pu(I-CHI+C)!
=(1+pI-ACr)I+CT)" .

Since (I +CJ)~', I+ C{ are bounded on L (T'), I — uP has a bounded inverse if and
only if I — ACT has one. Hence the sets of regular values correspond under (5.3). The
same is obviously true for singular values. The equality (I — uP)u = 01is equivalent to
(I=ACT)v =0 for u = (I + Cf )v and this implies the correspondence of eigenvalues.

Suppose now that (5.1) holds with ||u|| > 0. Then we have (1 —A)u = P(1+ \)u,
or u = pPu, where u satisfies (5.3).

In the case p = 2 and the operator C] acting on L3(T') = {u € L}(T) :
Jr u(Q)ld¢| = 0} the inequality ICTll < 1 means that T' is chord-arc and —P is a
positive operator, cf. [K2|. It is an open question, whether T being chord-arc implies
ICF )l < 1 on LA(T).

REFERENCES

[D] David, G., Opérateurs integrauz singuliers sur certaines courbes du plan compleze, Ann.
Sci. Ecole Norm. Sup. 17 (1957), 157-189.
[Du] Duren, P. L., Theory of H? Spaces, Academic Press, New York and London 1970.
[G] Gaier , D. , Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin-
Gottingen-Heidelberg 1964.
[J-K] Jerison,D.S., Kenig, C. E., Hardy spaces, A, and singular integrals on chord-arc
domains, Math. Scand. 50 (1982), 221-247.
[K1] Krzyz,J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46
(1985), 157-163.
(K2 Krzyz, J. G. Generalized Neumann-Poincaré operator and chord-arc curves, Ann. Univ.
M. Curie Sklodowska Sect.A Math. 43 (1989), 69-78.
[Kil] Kihnau, R., Verzerrungssatze und Koeffizientenbedingungen vom Grunskyschen Typ fiir
quasikonforme Abbildungen, Math. Nachr., 48 (1971), 77-105.
[Ki2) Kihnau, R., Eine Integralgleichung in der Theirie der quasikonformen Abbildungen, Math.
Nachr. 76 (1977), 139-152.
[Ki3] Kihnau, R., Quasikonforme Fortsetzbarkest, Fredholmache Eigenwerte und Grunskysche
Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391.
[P] Pommerenke, Chr. , Univalent Functions, Vandenhoeck & Ruprecht, Gottingen 1975.
[S1] Schiffer , M. , The Fredholm eigenvalues of plane domains, Pacific J. Math. 7 (1957),
1187-1225.
(S2] Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981).
149--164.
[Sch] Schur 1., Ein Satz siber quadratische Formen mit komplezen Koeffizienten, Amer. J. Math
67 (1945), 472-480.
[Z] Zinsmeister, M., Domaines de Lavrentiev, Publ. Math. d’Orsay, Paris 1985.



36 J. G. Krzyz

STRESZCZENIE

Niech I' bedzie krzywa luk-cigciwa (czyli krzywg Lawrentiewa) w plaszczyinie otwartej C i
niech HP(D}), p > 1, k = 1,2 beda komplementarnymi przestrzeniami Hardy’ego w skladowych
Dy 2bioru C\ T, (00 € D3). o

Jedli (Bw)(2) = (2mi)~! [.((—2)"'w({) d(, w € H*(D,), z € Dy, to wartosci wiasne
operatora B sg identyczne z wartosciami wlasnymi uogélnionego operatora Neumana-Poincarégo
C{ odpowiadajgacymi funkcjom wlasnym absolutnie cigglym. Réwniez twierdzenie odwrotne jest
prawdziwe.

Niech A (D) oznacza przestrzen Hilberta funkcji f analitycznych w obszarze D z norma

Il = (ff S22 dzdy)'"”.

Jedli I' jest krzywa luk—cigciwa, to operator L okreslony wzorami (2.1)-(2.3) jest ograniczony
w A(Dl ), Hz(Dl) & A(D]) oraz Lw = Bw dlaw € H’(D]). Ponadto, jedli stala dy we
wzorze (2.2) jest dodatnia, to Ay = l/dk jest wartoécig wlasna operatoréw C}‘, B, L. Réwnoéé
dy = 0 dla kazdego k € N ma miejsce wtedy i tylko wtedy, gdy I' jest okregiem.
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