LUBLIN-POLONIA

Department of Mathematics
Indian Institute of Technology, Kharagpur

V. K. JAIN

A Sufficient Condition for Zeros (of a Polynomial) to be in the Interior of Unit Circle

Warunek dostateczny aby zera wielomianów
leżaly w kole jednostkowym

Abstract. The main result of the paper is the following theorem: if $p(z)$ is a polynomial of

 degree n, with real coefficients, having all zeros with non-positive real part and$$
p(r)<p(R)\left(\frac{1+r}{1+R}\right)^{n-k}\left(\frac{r}{R}\right)^{k}
$$

for some $r, R, 0<r<R \leq 1$, then $p(z)$ has at least $(k+1)$ zeros in $|z|<1$.
Let $p(z)=\sum_{l=0}^{n} a_{l} z^{\prime}$ be a polynomial of degree n and let $M(p, r)=\max _{|z|=r}|p(z)|$. The following results concerning the size of $M(p, r)$ are well known.

Theorem \mathbf{A} [2]. If $p(z)=\sum_{l=0}^{n} a_{l} z^{l}$ is a polynomial of degree \bar{n}, then

$$
\begin{equation*}
\frac{M(p, r)}{r^{n}} \geq \frac{M(p, R)}{R^{n}}, \quad o<r<R \tag{1.1}
\end{equation*}
$$

with equality only for $p(z)=\lambda z^{n}$.
Theorem B [1]. If $p(z)=\sum_{l=0}^{n} a_{l} z^{\prime}$ is a polynomial of degree n, having no zeros in $|z|<1$, then for $0 \leq r \leq R \leq 1$,

$$
\begin{equation*}
\frac{M(p, r)}{(1+r)^{n}} \geq \frac{M(p, R)}{(1+R)^{n}} \tag{1.2}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $P(z)=\left(\frac{1+z}{1+R}\right)^{n}$.
In this note we consider certain restrictions on the estimate $M(p, r)$ and obtain the information about the zeros of the polynomial $p(z)$. More precisely, we prove

Theorem. Let $p(z)$ be a polynomial of degree n, with real coefficients, having all zeros with non-positive real part. If, for some $r, R(0<r<R \leq 1)$,

$$
\begin{equation*}
p(r)<p(R)\left(\frac{1+r}{1+R}\right)^{n-k}\left(\frac{r}{R}\right)^{k} \tag{1.3}
\end{equation*}
$$

k, a non-negative integer, then $p(z)$ has at least $(k+1)$ zeros in $|z|<1$. The result is best possible and the extremal polynomial is

$$
p(z)=(z+1)^{n-k-1} z^{k+1}
$$

Proof of the Theorem. Suppose $p(z)$ has m zeros in $|z|<1$ and $m \leq k$. Let $p(z)=\left(z-z_{1}\right) \ldots\left(z-z_{m}\right)\left(z-z_{m+1}\right) \ldots\left(z-z_{n}\right)$ and assume $\left|z_{j}\right|<1(j=1,2, \ldots, m)$. Put

$$
\begin{aligned}
& g(z)=\left(z-z_{1}\right) \ldots\left(z-z_{m}\right) \\
& h(z)=\left(z-z_{m+1}\right) \ldots\left(z-z_{n}\right)
\end{aligned}
$$

The polynomials $p(z), g(z)$ and $h(z)$ have positive coefficients. Hence, for all r, R ($0<r<R \leq 1$),

$$
\begin{equation*}
g(r) \geq g(R)\left(\frac{r}{R}\right)^{m} \tag{2.1}
\end{equation*}
$$

by Theorem A, and

$$
\begin{equation*}
h(r) \geq h(R)\left(\frac{1+r}{1+R}\right)^{n-m} \tag{2.2}
\end{equation*}
$$

by Theorem B.
On combining (2.1) and (2.2), we get

$$
\begin{aligned}
p(r) & =g(r) h(r) \geq g(R) h(R)\left(\frac{1+r}{1+R}\right)^{n-m} \cdot\left(\frac{r}{R}\right)^{m} \\
& =p(R)\left(\frac{1+r}{1+R}\right)^{n}\left(\frac{r}{1+r} \cdot \frac{1+R}{R}\right)^{m} \\
& \geq p(R)\left(\frac{1+r}{1+R}\right)^{n}\left(\frac{r}{1+r} \cdot \frac{1+R}{R}\right)^{k}
\end{aligned}
$$

a contradiction, establishing the Theorem.
For $k=n-1$ and $R=1$, we get
Corollary 1. If $p(z)$ is a polynomial of degree n, with real coefficients, having all zeros with non-positive real part and if for some $r, 0<r<1$,

$$
p(r)<p(1)\left(\frac{1+r}{2}\right) r^{n-1}
$$

then $p(z)$ has all its zeros in $|z|<1$.

We may upply corollary I to the polynomial $z^{n} p(1 / z)$ to get the following
Corollary 2. If $p(z)$ is a polynomial with real coeffcients having all zeros with non-positive real part and if for some $R>1$

$$
p(R)<p(1) \frac{1+R}{2}
$$

then $p(z)$ has no zeros in $|z|<1$.

references

[1] Govil, N. K., On the maximum modulus of polynomials, J. Math. Anal. Appl. 112 (1985), 253-258.
[2] Polya, G., Szegö, Problems and Theorems in Analysis, Vol. 1, p.158, Problem III 269. Berlin 1972.

STRESZCZENIE

Glównym wynikiem tej pracy jest nasṭpujace twierdzenie: jesili $p(z)$ jest wielomiancın o wspölczynnikach rzecz.ywistych, którego wszystkie zera lezą w domkniẹciu lewej puilplaszczyzny oraz.

$$
p(r)<p(R)\left(\frac{1+r}{1+R}\right)^{n-k}\left(\frac{r}{R}\right)^{k}
$$

dla pewnych $r, R, 0<r<R \leq 1$, to $p(z)$ ma co najmniej $(k+1)$ zer w kole $|z|<1$

