LUBLIN-POLONIA

Instytut Matematyki UMCS, Lublin

J. GODULA, M. NOWAK

On Integral Means of the Convolution

Średuie calkowe dla splotów

Abstract

Let $f * g$ dennte the convolution of two functions holomorphic in the unit polydise. U^{n}. We prove the following theorem: If $1 \leq \mu \leq s \leq q$ and $f \in H^{p}, g \in H^{q}$ then

$$
\|f * g\|_{s} \leq\|f\|_{p} \cdot\|g\|_{s}
$$

Besides, if $e(z)=\sum_{\alpha} z^{\alpha}$ then $\tilde{H}^{p}=\left\{\tilde{f}(z)+t e(z), f \in H^{p}, t \in \mathbb{C}\right\}$ is a commutative Banach algebra with the unit element e and H^{p} is its maximal ideal

Let U be the open unit disc in the complex plane C and lat T be its boundary. The unit polydisc U^{n} and the torus T^{n} are the product of n copies of U and T. respectively. We assume throughout that μ is a positive (σ-finite) neasure, normalized so that $\mu\left(T^{n}\right)=1$.

For $0<p<\infty$ let H^{p} be the class of all complex-valued functions f holomorphic in U^{n} for which

$$
\|f\|_{p}=\sup _{0<r<1} M_{p}(r, f)<\infty,
$$

where

$$
M_{p}(r, f)=\left(\int_{T^{n}}|f(r z)|^{p} d \mu(z)\right)^{1 / p}
$$

Since $|f|^{\boldsymbol{p}}$ is n-subharmonic, the supremum can be replaced by the limit as $r \rightarrow$ $1^{-} ; H^{\infty}$ is the space of all functions f bounded and holomorphic in $U^{n} ;\|f\|_{\infty}=$ $\sup _{z \in U n}|f(z)|$.
$\quad{ }^{\prime} \in U^{n}$ The convolution (or Hadamard product) of two functions f, g holomorphic in U^{n} is the function $f * g$ defined by the following formula

$$
(f * g)\left(r^{2} z\right)=\int_{T^{n}} f(r \zeta) g(r z \zeta) d \nu(\zeta), \quad 0<r<1, \quad z \in U^{n}
$$

where $z \cdot \zeta=\left(z_{1} \zeta_{1}, \ldots, z_{n} \zeta_{n}\right)$.

If $f(z)=\sum_{\alpha} a_{\alpha} z^{\prime \prime}, g(z)=\sum_{\alpha} b_{\alpha} z^{\alpha}$, where α ranges over multi-indices, are holomorphic in U^{n}, then

$$
(f * g)(z)=\sum_{\alpha} a_{a} b_{\alpha} z^{\alpha}, \quad z \in U^{n}
$$

In his paper [1] Boo Rim Choe gave an integral mean inequality for the convolution of functions in the case $p \in(0,1)$; (see [2], too).

In this note we prove the following
Theorem 1. If $1 \leq p \leq s \leq q$, and $f \in H^{p}, g \in H^{q}$ then

$$
\begin{equation*}
\|f * g\|_{\theta} \leq\|f\|_{p} \cdot\|g\|_{\theta} . \tag{1}
\end{equation*}
$$

Let us observe that the inequality (1), in some sense, corresponds to the Young generalized inequality, [4].

Proof. Let λ be a fixed number, $\lambda \geq 1$. Then

$$
\begin{aligned}
M_{\lambda p}^{p}\left(r^{2}, f * g\right) & =\left[\int_{I^{n}}\left|(f * g)\left(r^{2} z\right)\right|^{p \lambda} d \mu(z)\right]^{1 / \lambda}= \\
& =\left[\int_{T^{n}}\left|\int_{T^{n}} f(r \zeta) g(r z \cdot \zeta) d \nu(\zeta)\right|^{p \lambda} d \mu(z)\right]^{1 / \lambda}
\end{aligned}
$$

Using the Minkowski integral inequality [4] we obtain

$$
\begin{aligned}
M_{\lambda p}^{p}\left(r^{2}, f * g\right) & \leq\left[\int_{T^{n}}\left(\int_{T^{n}}|f(r \zeta) g(r z \cdot \zeta)|^{p \lambda} d \mu(z)\right)^{\frac{1}{p \lambda}} d \nu(\zeta)\right]^{p}= \\
& =\left[\int_{T^{n}}|f(r \zeta)| d \nu(\zeta)\left(\int_{T^{n}}|g(r z \cdot \zeta)|^{p \lambda} d \mu(z)\right)^{\frac{1}{p \lambda}}\right]^{p} \leq \\
& \leq \int_{T^{n}}|f(r \zeta)|^{p} d \nu(\zeta) \cdot\left[\int_{T^{n}}|g(r z \cdot \zeta)|^{p \lambda} d \mu(z)\right]^{\star} \leq \\
& \leq\|f\|_{p}^{p} \cdot\|g\|_{p \lambda}^{p}
\end{aligned}
$$

for $1 \leq \lambda_{p} \leq q$. Since $M_{\lambda}\left(r^{2},|h|^{p}\right)=M_{\lambda p}^{p}\left(r^{2}, h\right)$ our Theorem is proved.
Now, let us remark, that a Banach algebra is a linear algebra with a Banach space norm which is related to the multiplication by $\|x y\| \leq\|x\|\|y\|$.

The space $H^{p}, p \geq 1$, is a Banach space [3]. Thus, from Theorem 1 we see that $H^{p}, p \geq 1$, is a Banach algebra. Let us notice that H^{p} does not contain a unit element.

Suppose $\epsilon(z)=\sum_{0} z^{\alpha}$. We see that $e \notin H^{P}$. Let us consider

$$
\begin{aligned}
& \hat{H}^{n}=\left\{\tilde{f}(z)=f(z)+t \cdot \boldsymbol{f}(z): f \in H^{p}, t \in \mathbf{C}\right\} \\
& \|\tilde{f}\|_{r}=\|f\|_{p}+|t|
\end{aligned}
$$

Then for $\tilde{f}(z)=f(z)+t e(z) \in \tilde{H}^{p}$ and $\tilde{g}(z)=g(z)+s e(z) \in \tilde{H}^{p}$ we have

$$
(\tilde{f} * \widetilde{g})(z)=(f * g)(z)+s f(z)+t g(z)+t s e(z) .
$$

Morenver,

$$
\|\tilde{f} * \tilde{g}\|_{p} \leq\|f * g\|_{p}+|s| \cdot\|f\|_{p}+|t| \cdot\|g\|_{p}+|t s| \leq\|\widetilde{f}\|_{p} \cdot\|\tilde{g}\|_{p} .
$$

Thus we have
Proposition. $\widetilde{H}^{p}, p \geq 1$ is a commutative Banach algebra with the unit element e.

Theorem 2. H^{p} is a maximal ideal of \tilde{H}^{p}.
Proof: It is well-known, that for A being a commutative algebra with the unit element J is a maximal ideal iff A / J is a field. Let us notice that $\widetilde{H}^{p} / H^{p}$ is the field C.

REFERENCES

[1] Boo Rim Choe, An integral mean inequality for Hadamard product on the polydisc, Complex Variables, 13 (1990), 213-215.
[2] Pavlovič, M. An inequality for the integral means of a Hadamard product, Proc. Amer. Math. Soc., 103 (1988), 404-406.
[3] Rudin, W. Function Theory in Polydisc, W.A. Benjamin, New York, Amsterdam 1969.
[4] Sadosky, C. , Interpolation of Operators and Singular Integrals, An Introduction to Harmnnic Analysis. Marcel Dekker, New York, Basel 1979.

STRESZCZENIE

Niech $f * g$ oznacza splot dwơrh funckji holomorficznych w polidysku U^{n}. Dowodzimy nastẹpujaçego twierdzenia: jeśli $1 \leq p \leq s \leq q$, oraz $f \in H^{p}, g \in H^{q}$ to

$$
\|f * g\|_{s} \leq\|f\|_{p} \cdot\|g\|_{s}
$$

Ponadto. jeśli $e(z)=\sum_{\alpha} z^{\alpha}$ to $\tilde{H}^{p}=\left\{\tilde{f}(z)+t e(z), f \in H^{p}, t \in \mathbf{C}\right\}$ jeat przemienna algebra Banacha z elementem jednostkowym e i H^{p} jest jej maksymalnym idealem

