ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL XLIV, 2

SECTIO A

1990

Instytut Matematyki UMCS, Lublin

J. GODULA, M. NOWAK

THE STREET

On Integral Means of the Convolution

Średnie całkowe dla splotów

Abstract. Let f * g denote the convolution of two functions holomorphic in the unit polydisc U^n . We prove the following theorem: If $1 \le p \le s \le q$ and $f \in H^p$, $g \in H^q$ then

$$\|f \ast g\|_{\mathfrak{s}} \leq \|f\|_{\mathfrak{p}} \cdot \|g\|_{\mathfrak{s}}.$$

Besides, if $e(z) = \sum_{\alpha} z^{\alpha}$ then $\widetilde{H}^{p} = \{\widetilde{f}(z) + te(z), f \in H^{p}, t \in \mathbb{C}\}$ is a commutative Banach algebra with the unit element e and H^{p} is its maximal ideal.

Let U be the open unit disc in the complex plane C and let T be its boundary. The unit polydisc U^n and the torus T^n are the product of n copies of U and T, respectively. We assume throughout that μ is a positive (σ -finite) measure, normalized so that $\mu(T^n) = 1$.

For $0 let <math>H^p$ be the class of all complex-valued functions f holomorphic in U^n for which

$$||f||_p = \sup_{0 < r < 1} M_p(r, f) < \infty$$

where

$$M_p(r,f) = \left(\int_{T^n} |f(rz)|^p \, d\mu(z)\right)^{1/p}$$

Since $|f|^p$ is *n*-subharmonic, the supremum can be replaced by the limit as $r \to 1^-$; H^{∞} is the space of all functions f bounded and holomorphic in U^n ; $||f||_{\infty} = \sup_{z \in U^n} |f(z)|$.

The convolution (or Hadamard product) of two functions f, g holomorphic in U^n is the function f * g defined by the following formula

$$(f * g)(r^2 z) = \int_{T^n} f(r\zeta)g(rz\overline{\zeta}) d\nu(\zeta) , \quad 0 < r < 1 , \quad z \in U^n$$

where $z \cdot \zeta = (z_1 \zeta_1, \ldots, z_n \zeta_n)$.

If $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$, $g(z) = \sum_{\alpha} b_{\alpha} z^{\alpha}$, where α ranges over multi-indices, are holomorphic in U^{n} , then

$$(f * g)(z) = \sum_{\alpha} a_{\alpha} b_{\alpha} z^{\alpha} , \quad z \in U^n .$$

In his paper [1] Boo Rim Choe gave an integral mean inequality for the convolution of functions in the case $p \in (0, 1)$; (see [2], too).

In this note we prove the following

Theorem 1. If
$$1 \le p \le s \le q$$
, and $f \in H^p$, $g \in H^q$ then
1) $\|f * g\|_{\theta} \le \|f\|_p \cdot \|g\|_{\theta}$.

Let us observe that the inequality (1), in some sense, corresponds to the Young generalized inequality, [4].

Proof. Let λ be a fixed number, $\lambda \geq 1$. Then

$$M^{p}_{\lambda p}(r^{2}, f * g) = \left[\int_{T^{n}} |(f * g)(r^{2}z)|^{p\lambda} d\mu(z)\right]^{1/\lambda} = \\ = \left[\int_{T^{n}} \left|\int_{T^{n}} f(r\zeta)g(rz \cdot \zeta) d\nu(\zeta)\right|^{p\lambda} d\mu(z)\right]^{1/\lambda}$$

1. 1 T T T T T

Using the Minkowski integral inequality [4] we obtain

$$\begin{split} M^p_{\lambda p}(r^2, f * g) &\leq \left[\int_{T^n} \left(\int_{T^n} |f(r\zeta)g(rz \cdot \overline{\zeta})|^{p\lambda} d\mu(z) \right)^{\frac{1}{p\lambda}} d\nu(\zeta) \right]^p = \\ &= \left[\int_{T^n} |f(r\zeta)| \, d\nu(\zeta) \Big(\int_{T^n} |g(rz \cdot \overline{\zeta})|^{p\lambda} d\mu(z) \Big)^{\frac{1}{p\lambda}} \Big]^p \leq \\ &\leq \int_{T^n} |f(r\zeta)|^p \, d\nu(\zeta) \cdot \left[\int_{T^n} |g(rz \cdot \overline{\zeta})|^{p\lambda} d\mu(z) \right]^{\frac{1}{\lambda}} \leq \\ &\leq \|f\|_p^p \cdot \|g\|_{p\lambda}^p \end{split}$$

for $1 \leq \lambda p \leq q$. Since $M_{\lambda}(r^2, |h|^p) = M^p_{\lambda p}(r^2, h)$ our Theorem is proved.

Now, let us remark, that a Banach algebra is a linear algebra with a Banach space norm which is related to the multiplication by $||xy|| \le ||x|| ||y||$.

The space H^p , $p \ge 1$, is a Banach space [3]. Thus, from Theorem 1 we see that H^p , $p \ge 1$, is a Banach algebra. Let us notice that H^p does not contain a unit element.

Suppose $e(z) = \sum_{\alpha} z^{\alpha}$. We see that $e \notin H^p$. Let us consider

$$\widetilde{H}^p = \{ \widetilde{f}(z) = f(z) + t \cdot e(z) : f \in H^p , t \in \mathbb{C} \} ;$$
$$\|\widetilde{f}\|_p = \|f\|_p + |t| .$$

Then for $f(z) = f(z) + te(z) \in \widetilde{H}^p$ and $\widetilde{g}(z) = g(z) + se(z) \in \widetilde{H}^p$ we have

$$(f \ast \widetilde{g})(z) = (f \ast g)(z) + sf(z) + tg(z) + tse(z)$$

Moreover,

$$\|f * \tilde{g}\|_{p} \le \|f * g\|_{p} + |s| \cdot \|f\|_{p} + |t| \cdot \|g\|_{p} + |ts| \le \|f\|_{p} \cdot \|\tilde{g}\|_{p}$$

Thus we have

Proposition. \widetilde{H}^p , $p \ge 1$ is a commutative Banach algebra with the unit element e.

Theorem 2. H^p is a maximal ideal of \tilde{H}^p .

Proof: It is well-known, that for A being a commutative algebra with the unit element J is a maximal ideal iff A/J is a field. Let us notice that \tilde{H}^p/H^p is the field C.

REFERENCES

- [1] Boo Rim Choe, An integral mean inequality for Hadamard product on the polydisc, Complex Variables, 13 (1990), 213-215.
- [2] Pavlović, M., An inequality for the integral means of a Hadamard product, Proc. Amer. Math. Soc., 103 (1988), 404-406.
- [3] Rudin, W., Function Theory in Polydisc, W.A. Benjamin, New York, Amsterdam 1969.
- [4] Sadosky, C., Interpolation of Operators and Singular Integrals, An Introduction to Harmonic Analysis, Marcel Dekker, New York, Basel 1979.

STRESZCZENIE

Niech f * g oznacza splot dwóch funckji holomorficznych w polidysku U^n . Dowodzimy następującego twierdzenia: jeśli $1 \le p \le s \le q$, oraz $f \in H^p$, $g \in H^q$ to

$$\|f \ast g\|_{\mathfrak{s}} \leq \|f\|_{\mathfrak{p}} \cdot \|g\|_{\mathfrak{s}}.$$

Ponadto, jeśli $e(z) = \sum_{\alpha} z^{\alpha}$ to $\widetilde{H}^{p} = \{\widetilde{f}(z) + te(z), f \in H^{p}, t \in \mathbb{C}\}$ jest przemienną algebrą Banacha z elementem jednostkowym e i H^{p} jest jej maksymalnym ideałem.

(received June 27, 1991)