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Strong Limit Theorems for the Growth of Increments
of Additive Processes in Groups.
Part I. Basic Properties of Globular Sets.

Mocne prawa graniczne dla przyrostéw proceséw addytywnych w grupach
Czeéé 1. Podstawowe wlasnoéci zbioréw globularnych

Abstract. In the paper the notion of a globular set is introduced and a wide class of groups
with globular neighbourhoods of zero is described. Next, various criteria for families of globular
neighbourhoods of zero to be upper and lower classes of sets for increments of group-valued additive
procesaes are given.

We first explain more precisely the main ideas of our approach.

Let G be an Abelian topological group. An open Baire neighbourhood U of zero
in G is called globular, if there exists a sequence of open Baire sets U = U(0) 2
U(-1) 2 U(-2) 2 ... containing zero such that for each k > 1 there are at most
countable families of Baire sets {C;(k)} and {H;(k)} satisfying the conditions: for
a fixed k > 1 the sets C;(k) are disjoint, U¢(—k) = U, C;(k), Cj(k) + H;(k) C
U¢(—k — 1) and Hj(k) C —Hj(k). An arbitrary globular set may be obtained by a
translation of U 3 0. It can be shown that each open convex set in a locally convex
linear topological Lindeldf space is globular. Suppose {X(t), t € R} } is a symmetric
additive stochastic process taking values in G and W =< w,z >C R}, is a bounded
rectangle, where R, denotes the set of nonnegative real numbers and ¢ > 1. Then
the following maximal symmetrization inequality can be proved:
for every globular set U C G,

P[ U {(8X(<s1)¢U)] <47P[AX(W) ¢ U(-29)] ,
2 tEQ(W) .

where Q(W) is a countable dense subset of W . Based on this estimate several results
containing integral tests for increasing families of globular sets {U;} are obtained,
ensuring that {U;} are upper or lower classes of sets for the growth of increments
AX(< 0,t)) on large and small rectangles. As corollaries, limit theorems for additive
processes with values in linear topological spaces are given. It appears that torus
and some cyclic groups do not contain any globular sets. Therefore representations of
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additive processes in torus and cyclic groups taking values in suitable globular groups
are also described, and by means of these representations limit theorems for such
processes are derived.

1. Introduction. Investigation of basic properties of stochastic processes with
independent increments has attracted attention of probabilists for the past sixty years.
The systematic study of the class of processes with independent increments was orig-
inated by de Finetti (5], and a remarkable progress in this area was made next
by Kolmogorov and Lévy. Kolmogorov [19] described the characteristic function
of a one-parameter process with independent jncrements having finite variance, and
Lévy [22] obtained the characteristic function of such a process in the general case.
Lévy [22] also proved that every process with independent increments is the sum
of some nonrandom function and two other independent processes: purely discrete
and stochastically continuous. Moreover, he showed that a stochastically continuous
process with independent increments has a modification without discontinuities of the
second kind. These investigations were continued by I1té [15], who obtained a de-
composition of a stochastically continuous process with independent increments into
two independent parts: Gaussian and Poissonian, and established a representation of
the last process by means of a stochastic integral. Locel and asymptotic growth at
infinity of trajectories for processes with independent increments was investigated by
Khintchine [18] and Gnedenko [8,9].

Further advances in the research work devoted to multi-parameter stochastic
processes with independent increments (called in short additive) were made by
Katkauskaité [17] and Adler , Monrad , Scissors and Wilson [1]. The
last paper, among other things, gives the characteristic functions and the Lévy-Ité
path decomposition for real-valued additive processes. Investigations concerning cer-
tain local and asymptotic properties of trajectories for multi-parameter real-valued
additive processes can be found in a paper by Zin&enko [31].

The comprehensive list of references concerning this subject cannot be presented
here. Some more information is furnished in an expository paper by Adler et al.
[1] or the books devoted to the general theory of stochastic processes by Gikhman
and Skorohod [6,7]. A survey of the most important properties of one-parameter
group-valued processes with independent increments and further references are given
in the monographs by Heyer [13] and Skorohod [25].

The aim of this article is the study of some fundamental limiting properties which
characterize realizations of group-valued additive processes indexed by the multi-
dimensional set of parameters R}, Ry =< 0,00), ¢ > 1. Namely, we investigate the
speed of the growth of g-dimensional increments for trajectories of additive processes
on asymptotically infinite and negligibly small rectangles V C RY. This topic of
investigations has been raised in view of the following situation. The law of the
iterated logarithm for Banach space valued Brownian motion and related theorems
for i.i.d. random elements via invariance principles were studied extensively during the
past decade (see e.g. Goodman and Kuelbs [11] and references therein). On the
other hand, there are fairly well-known strong limit theorems for real-valued processes
with independent increments which imply the law of the iterated logarithm for real
Brownian motion, also in its functional form (cf. Gikhman and Skorohod [6],
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Chapter VI, §6, and Wichura [29]). However, this fact has no counterpart in the
Banach space case, or more generally - in topological vector spaces and groups. Thus
the present work is perhaps the first attempt to fill this gap.

The main tool in our approach is a modified version of symmetrization inequality.
Presumably the most general form of such a result is known for processes or random
elements falling outside of convex sets in a Banach space (Gikhman and Skoro-
hod [7], Chapter IV, §1) or balls in a normed linear space (Vakhania, Tariela-
dze and Chobanian (28], Chapter V, §2). However, neither of these kinds of sets
can be defined at all in an arbitrary topological group, and therefore in the case of
group-valued random elements no results of this type are known.

To remove these difficulties we introduce in Section 2 the notion of a globular set
in a T topological Abelian group and quote a result on the existence of sufficiently
rich families consisting of globular sets for a wide class of spaces. The definition of a
globular set enables us to establish the so-called maximal symmetrization inequality
given in Lemma 3.2 and its Corollaries of Section 3. The mentioned estimate provides
an upper bound for probability of escape from a globular set of the process over a
bounded rectangle expressed in terms of distribution of the increment of the process
on the considered rectangle. On the basis of this result we obtain in Section 4 limit
theorems for local and global growth of increments of additive processes on infinitely
small and very large subintervals of the parameter set. Recent developments in the
theory of strong convergence for some classes of processes with independent increments
suggest that local properties and asymptotic behaviour at infinity of their trajectories
need not be investigated separately, because they are really of the same nature (see e.g.
Mueller [24]). Therefore we prove local and global limit theorems simultaneously.
The asymptotic behaviour of additive processes is described by means of limits of the
form

LEHpIDeet, gl AN
0<Ty <T5 1¢<Ti . Ta>

limsup D, = n U D,

=Rl erkoo 0<T <Tatg<T, T3>

and

for some random events D, and D}, t € R}. In a typical situation we have D, =
{4X(<0,t)) € Ui} and D} = {AX(< 0,1)) ¢ U!}, where {U;} and {U;} are increas-
ing families of globular sets and AX(V) denotes the increment of the process X on a
rectangle V C RY. Then the assertion

(+) P| liminf D] =1

lt—0 or oo
may be interpreted as follows: outside of a (random) interval < Ty, T >C RY \ RS
the increments AX(< 0,t)) of the process in question stay eventually with probability
linsets Uy, t € R\ < T, T3 >. Similarly,

(=) Pl limsup D ] =1

t—0 or oo

means that with probability 1 for every bounded interval < T}, T, >C R} \ R}
there exist points t € R}, t ¢< T),T; > for which AX(< 0,t)) ¢ U;. In this manner
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various types of strong laws of large numbers (such as Marcinkiewicz-Zygmund SLLN)
as well as the law of the iterated logarithm may be treated. To see this it suffices to
consider the one-dimensional case and take

U=t/ (-€,6), 0<r<2,or
) = (2tloglog[t])!/? - (-1 = (+)e, 1+ (<)e) , €>0.

Also the rate of convergence can be described in this way. As an example of appli-
cations we discuss in greater detail the law of the iterated logarithm for Brownian
surfaces with values in locally convex linear topological spaces. In fact we consider a
more general situation accepting instead of R} a partially bounded away from zero
or infinity set B to obtain integral tests for relations like (+) and (**) when t varies in
B. Next considering specific cases of B we can obtain local, global and the so-called
"mixed” law of the iterated logarithm.

Unfortunately, some important classes of groups have none globular neighbour-
hoods of zero. Therefore Section § is devoted to a brief discussion of a particular case
of a group of such kind, namely torus. In this section we obtain a representation in an
appropriate globular group for an additive process taking values in torus. Next, based
on the mentioned representation we prove various local limit theorems for additive
processes in torus.

In view of regulations concerning the size of articles in this journal the paper is
divided into parts, and the first part contains three sections. The second part of the
article will appear in the next issue of Annales.

2. Globular sets. In this section we explain the concept of globular sets and
present basic properties of these objects.
Let G be an Abelian topological group.

Definition 2.1. An open Baire set U 3 0 in G is called globular, if there exists
an open Baire neighbourhood of zero U(-1) C U = U(0), such that

(21) !U(O)‘ =, C; , where {C; = Cj(0), j € J} is at most countable family
- | of disjoint Baire sets;

to each C; there corresponds a Baire set H; = H;(0) satisfying

2.2
4% {the conditions: C; + H; C U(-1)° and HfC -H;.

Moreover, U(—1) possesses the same properties as U specified by (2.1) and (2.2) with
possibly another sets C; and H;.

In other words, an open Baire neighbourhood U of zero is globular if there exists
a sequence of open Baire neighbourhoods of zero U = U(0) 2 U(—1) 2 ... such that
for every k 2> 1, U(—k) satisfy conditions (2.1)-(2.2) with C; = C(k), H; = H;(k)
and U(-1) replaced by U(—k — 1). An arbitrary open Baire set U’ 3 z is called
globular if U' = z + U, where U is a globular neighbourhood of zero. In such a case
we put U'(—k) = z 4+ U(~k), Cj(k) = z + C;(k) and Hi(k) = Hj(k).
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The notion of a globular set seems to be quite new, therefore we have to discuss
basic properties of this concept. The below properties show that under suitable addi-
tional conditions globular sets can be taken as a basis at zero for the topology of G.

1°. The product of two globular sets is globular.
Proof. Let U'(-1), {C}} , {H}} and U"(-1), {C!'}, (H'} for j € J andi € I

be the families of Baire sets associated with two globular sets U’ and U" according
to Definition 2.1. For U = U'NU" we put C; = Cj, j € J, Ci = \U C,,lGI
(if some sets C; are empty, the corresponding mdlces are rejected), H nJ€Jd,
Hi = H!, i € I, and U(-1) = U'(-1) N U"(-1). Then conditions (2 1) (2 2) are
obviously fulfilled, and U’(~1) N U"(~1) can be treated likewise U' N U".

2°. If U is a globular set, then —U 1s also globular.

Proof. Let U be a globular set, and let {C,}, {H;} and U(-1) be Baire sets
as specified in Definition 2.1 for U. Then {-C;}, {—H;} and —U(—1) are also Baire
sets, and conditions (2.1)-(2.2) for these sets with U replaced by —U can be easily
verified.

From 1° and 2° we conclude at once that for every globular neighbourhood of
zero U there exists a symmetric globular neighbourhood of zero V' contained in U ,

namely V = U N (-U).

3°. Every open Baire set V containing any globular set U is globular.

Proof. Let {C;}, {H;} and U(—1) be the Baire sets corresponding to the globu-
lar set U . Put C; = C; NV, H) = Hj and V(~1) = U(~1). Then these sets satisfy
(2.1)-(2.2) with v mst.ead of U .

4°. Let (U;} be a countable family of globular sets. Then their union U = | J, U
1s a globular set too.

Proof. This is an immediate consequence of 3°.

5°. Let U be a globular set and let A be an arbitrary set such that A+ U s a
Baire set. Then A+ U is a globular set. In particular, this is the case when A is at
most countable.

Proof. This follows easily from 3° and 4°.

6°. A familyU = (U} of globular neighbourhoods of sero in an Abelian topological
group G conastitutes a basis at sero for a topology making G a topological group, if
and only if
(1) for each U € U there exzists V € U such that V +V C U , and
(ii) for each U € U and z € U there ezists V € U such that 2+ V C U.

Proof. An arbitrary basis at zero for every topological group clearly satisfies (i)-
(ii), 8o it is enough to demonstrate the converse assertion. By virtue of 1° and 2°, Y
possesses the finite intersection property. Furthermore, if U € U, then V = UN(-U)
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is globular and V = -V C U. Taking into account Theorem 4.5 of Chapter II in
Hewitt and Ross [12] we see that conditions (i)-(ii) ensure that U is an open basis at
zero making G a topological group.

A T, topological Abelian group G having as a local basis a family & consisting
of globular neighbourhoods of zero may be termed as a globular topological group.
The next result shows that the class of such groups is sufficiently wide.

Proposition 2.2. Let G be a linear topological space (real or complez) and
let U be a convez open neighbourhood of sero in G . If US equipped with a topology
containing open Baire sets is a Lindelof space, then U s globular.

The proof of this result is based on the general Hahn-Banach theorem and will
be given elsewhere. In fact we are interested in a situation when the class of globular
subsets of G is sufficiently rich, but globular neighbourhoods of zero need not form
necessarily a local basis for the topology of G. As we shall see in Section 4, in such a
case we are able to give various integral tests for families of globular sets {U;} to be
upper or lower classes of sets for increments AX(< 0,t)) of an additive process in G,
< 0,t) C R}, though they do not describe convergence of AX(< 0,t)) to zero.

Examples.

1. Each open convex set U containing zero in a linear topological Lindelof space
is globular, because a closed subspace of the Lindelof space is Lindeldf. In particular,
every open ball in a separable Banach or Hilbert space is globular. Consequently,
every locally convex linear topological Lindelof space is a globular topological group.

2. In certain cases we can take U = U(—1) = U(-2) = ... . To see this, let
S # 0 be an arbitrary parameter set and let RS be the product space equipped with
the Tychonoff topology. Then every open neighbourhood of zero in RS of the form

U={zeR%:—¢ <z, <&,...-¢, <z, <€},

where 0 < &;,¢),...€n,6, < 00, n 2 1, is globular. This can be shown in a direct
way. Indeed,

U = U{zeRs:z., 2¢€}uU U{zGRs:x., < -¢} .
J&n ign

Define C) = {z,, 2 €1}, Cj = 4;CiN{z,, 2 ¢j} for j S n, Con = N, CEN
{Tomen S —€m_n)lforn<m<2n H;= {z,, 20} for j < n,and Hp, = {2z, _. <

0} for n < m < 2n. As can be easily seen, {C;} and { H,} satisfy (2.1) and (2.2) with
U(-1)=U.

3. Let Z be the set of integers with the usual addition of real numbers. Clearly, Z
is a globular subgroup of the group R . More generally, let Z(r) be the set of numbers
{0,£1/r,+2/r,...} , where r € N = {1,2,...} and let Z(ry,...r,) = Z(r;) x ... x
Z(rp) be the product group considered with addition of vectors. Then Z(ry,...r,) is
a globular subgroup of the globular group R”.
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4. Notice that for a class of groups globular neighbourhoods of zero do not exist
at all. For instance, this is the case when G is equal to the torus T, = {z € C :
|z] = 1}?, p € N regarded with coordinate-wise multiplication of complex numbers,
or G = C(p) = {2 € C : zP = 1} with p even. However, in a cyclic group C(p)
with p odd, globular neighbourhoods of zero constitute a local basis for the topology
of C(p), in particular the one-point set {0} is globular. Consequently, the group
C(ry,...1rp) = C(r1) x ... x C(rp) is globular if and only if all r; are odd, and it is
not globular iff at least one of these numbers is even.

3. Maximal symmetrization inequality. In this section we present an in-
equality which allows us to estimate the behaviour of realizations for a group-valued
stochastic process over a bounded rectangle < w,z >C R} by its properties on the
boundary 4 < w,z >.

Let T be a subset of R} and let X1 = {X(t) , t € T} be a stochastic process
defined on a complete probability space (2, F, P) taking values in a Ty topological
Abelian group G equipped with its Baire o-field G(G) = ¢. From now on, throughout
the whole paper we impose a general restriction on the class of considered random
elements assuming that group operations within it are always permitted. In particular,
this is substantiated if the process X satisfies one of the conditions 1°, 2° or 3°
of an earlier work by Zapala [30]. In the case of 3° we assume in addition that
distributions of finite vectors X = (X(t(1)),...X(¢(L))), t(1),...t(L) € T, are
determined uniquely on G(GL) by their restrictions to G L.

In the sequel the index set T C RY is a set satisfying the following condition: for
every a,b € T all the points v = (v;,...v,) with the coordinates v; equal either to a;
or b; belong to T. We shall consider mainly processes with independent increments
AX(V) on disjoint rectangles V =< a,b) C R}, and for simplicity such processes will
be called in short additive. Obviously, if the process in question is indexed by a proper
subset T C R, then AX(V) is determined only for a,b € T. The process X is said
to be symmetric, if their finite dimensional distributions are symmetric (i.e. invariant
under the inversion z — —z) probability measures on finite products (G%,G%) (or
(GL,@(GY)) provided group operations are ensured by (G )-measurability). Note
that under the above assumption the distribution of each increment of the process X
is a symmetric probability measure. To derive our maximal symmetrization inequality
instead of additive processes in fact a wider class of processes can be treated that is
specified below.

Definition 3.1. We say that the process X7 has sign-invariant increments if
for each finite array of disjoint rectangles V;,...V, C R and for arbitrary systems

(819,...8} of subrectangles of V; with endpoints in T, the random vectors

(AX(S™M),...aX(SD), ... AX(S™),...AX(S()) and
B AX(SM),...0,AX(SD), ... 8.8X(5{™),... 0.8X(S))

on (GL,GL) (or (GL,G(GL)) resp.), L = ry +...7q, have the same distribution for
any choice of signs 8, = £1.
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Obviously, every additive symmetric process has sign-invariant increments on
(GL,GL), but the converse is not true.

Lemma 3.2. Let X1 be a stochastic process with sign-invariant sncrements
taking values in a Ty topological Abelian group G with the o-field G. If < w,z >,
w,z € T is a fized bounded rectangle in R}, and D C T is a finite set of points
t €< w, z >, then for every globular set U in G we have

a1y P[U (ax(<st)¢ v)| < 4P[ax(<w,2) ¢ U(-2q)] -
8 ,t€D

In this article we omit the proof of the above inequality, for it is rather long and
tedious. The proof of it will be presented elsewhere.

Corollary 3.3. Let X1 be a stochastic process satisfying the hypotheses of
Lemma 3.2 above and let Q C T be a countable set of points t €< w,z >. Then (3.1)
remains true with D replaced by Q. Moreover, if in addition Xt is a separable process
on < w,z > NT with respect to closed sets F € G, then

(3.2) P[ U (AX(< s,1)) ¢ U)] < 4"P[AX(< w, z)) ¢ U(—2q)] .

8,tE<w,s>NT

We mention now some special cases of the above inequalities.

Corollary 3.4. a). Let X = {X(t), t € R}, = T} be a symmetric additive
stochastic process taking values in a linear topological Lindelof space G with its Baire
o-field G. Then for every open convez neighbourhood U of zero in G and arbstrary
real numbere, 0 <e <1,

(3.3) p[ U (AX(< s,t)) ¢ U)] < '4'P[AX(< w, 7)) ¢ eU] \
l,(EQ

where Q is a finite or countable subset of points of a bounded rectangle < w,z >C RY.
If in addstion X is a separable process on < w,z > with respect to closed sets F € G,
then Q in (3.3) may be replaced by < w,z >. Moreover, lettinge / 1 through rational
numbers we see that our inequality remains valid for € = 1. In a special case when
X 1is a Brownian sheet taking values in R and U = (—¢,¢) C R, € > 0, the obtained
result reduces to Proposition 3.7 by Walsh [27). Furthermore, if G is a separable
Banach space and ¢ = 1 we obtain a variant of inequality (18), Chapter IV, §1 in
Gikhman and Skorohod [7].

b) Let X = {£(1),5 € N9 = T} be a stochastic process with sign-invariant sncre-
ments taking values in a separable normed linear space G considered with the Borel
o-field B = G. Suppose that for a nondecreasing sequence n = (ny,...ny) € N9,
Ryy..ong /oo, |8 {(1)” tends weakly to ||S||, where S is a random element in

i<n

(G, B). Then for every ¢ > 0,

(3.4) P Lseu’?‘

Y€ 2 €] <avp[isi 2 ]

i<n
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and

(3.5) P sup llem)ll 2 e] <47P[ISl 2 €] .
nEN?

For q = 1 we obtain Lévy’s inequalities (with constant 4 instead of 2) - see Proposition
2.3 and its Corollary, Chapter V, p. 210-211 in Vakhania, Tarieladze and Chobanian
[28].

Remark. If the distributions of increments of the process X are Radon measures,
then Corollary 3.4 a) remains true without Lindelof property imposed on G. Indeed,
in such a case for each rectangle S C T there is an increasing sequence K| C K; C
... € G of compact sets such that P[AX(S) € G\ |J; Ki] = 0. Since every compact
set is a Lindelf space, we can choose at most denumerably many open Baire sets C;
so that P[AX(S) € U¢\ |J; C;] = 0, and this suffices for the proof of our inequality.
Similarly, instead of assuming that G is separable in Corollary 3.4 b) we may consider
separably valued random elements.
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STRESZCZENIE
W artykule wprowadeono pojgcie gbioru globularnego oraz opisano szeroky klasq grup majscych

globularne otoczenia zera. Nastgpnie podane zostaly rézne kryteria na to, aby rodzina globularnych
otoczen zera byla klasg gérng lub dolng gbioréw dla przyrostéw procesu addytywnego w grupie.
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