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Strong Limit Theorems for the Growth of Increments 
of Additive Processes in Groups.

Part I. Basic Properties of Globular Sets.

Mocne prawa graniczne dla przyrostów procesów addytywnych w grupach 
Część I. Podstawowe własności zbiorów globularnych

Abstract. In the paper the notion of a globular set is introduced and a wide class of groups 
with globular neighbourhoods of zero is described. Next, various criteria for families of globular 
neighbourhoods of zero to be upper and lower classes of sets for increments of group-valued additive 
processes are given.

We first explain more precisely the main ideas of our approach.
Let G be an Abelian topological group. An open Baire neighbourhood U of zero

in G is called globular, if there exists a sequence of open Baire sets U = U(0) 2 
U(—1) 2 U(—2) 2 ... containing zero such that for each k > 1 there are at most 
countable families of Baire sets {Cj(Jfc)} and {Zfj(fc)} satisfying the conditions: for 
a fixed k > 1 the sets Cj(k) are disjoint, Uc(-k) = CjW + HjW £
Uc(—k — 1) and Hj(k) C —Hj(k). An arbitrary globular set may be obtained by a 
translation of U 9 0. It can be shown that each open convex set in a locally convex 
linear topological Lindelof space is globular. Suppose {%(<) , < € R+ } is a symmetric 
additive stochastic process taking values in G and W =< w,z >C P+ is a bounded 
rectangle, where R+ denotes the set of nonnegative real numbers and q > 1. Then 
the following maximal symmetrization inequality can be proved:
for every globular set U C G,

p[ U {AX(< s,0) * U}] < 4’p[AX(W) i CZ(-2g)] ,
*,«€<?( IV)

where Q(W) is a countable dense subset of W . Based on this estimate several results 
containing integral tests for increasing families of globular sets {¿A} are obtained, 
ensuring that {(/<} are upper or lower classes of sets for the growth of increments 
AX(< 0, t)) on large and small rectangles. As corollaries, limit theorems for additive 
processes with values in linear topological spaces are given. It appears that torus 
and some cyclic groups do not contain any globular sets. Therefore representations of
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additive processes in torus and cyclic groups taking values in suitable globular groups 
are also described, and by means of these representations limit theorems for such 
processes are derived.

1. Introduction. Investigation of basic properties of stochastic processes with 
independent increments has attracted attention of probabilists for the past sixty years. 
The systematic study of the class of processes with independent increments was orig­
inated by de Finetti [5], and a remarkable progress in this area was made next 
by Kolmogorov and Lévy. Kolmogorov [19] described the characteristic function 
of a one-parameter process with independent increments having finite variance, and 
Lévy [22] obtained the characteristic function of such a process in the general case. 
Lévy [22] also proved that every process with independent increments is the sum 
of some nonrandom function and two other independent processes: purely discrete 
and stochastically continuous. Moreover, he showed that a stochastically continuous 
process with independent increments has a modification without discontinuities of the 
second kind. These investigations were continued by 11 ô [15], who obtained a de­
composition of a stochastically continuous process with independent increments into 
two independent parts: Gaussian and Poissonian, and established a representation of 
the last process by means of a stochastic integral. Local and asymptotic growth at 
infinity of trajectories for processes with independent increments was investigated by 
Khintchine [18] and Gnedenko [8,9].

Further advances in the research work devoted to multi-parameter stochastic 
processes with independent increments (called in short additive) were made by 
Katkauskaité [17] and Adler , Monrad , Scissors and Wilson [1]. The 
last paper, among other things, gives the characteristic functions and the Lévy-Itô 
path decomposition for real-valued additive processes. Investigations concerning cer­
tain local and asymptotic properties of trajectories for multi-parameter real-valued 
additive processes can be found in a paper by Zinëenko [31].

The comprehensive list of references concerning this subject cannot be presented 
here. Some more information is furnished in an expository paper by Adler et al. 
[1] or the books devoted to the general theory of stochastic processes by Gikhman 
and Skorohod [6,7]. A survey of the most important properties of one-parameter 
group-valued processes with independent increments and further references are given 
in the monographs by Heyer [13] and Skorohod [25].

The aim of this article is the study of some fundamental limiting properties which 
characterize realizations of group-valued additive processes indexed by the multi­
dimensional set of parameters R+,R+ =< 0, oo), q > 1. Namely, we investigate the 
speed of the growth of ç-dimensional increments for trajectories of additive processes 
on asymptotically infinite and negligibly small rectangles V C R+. This topic of 
investigations has been raised in view of the following situation. The law of the 
iterated logarithm for Banach space valued Brownian motion and related theorems 
for i.i.d. random elements via invariance principles were studied extensively during the 
past decade (see e.g. Goodman and Kuelbs [11] and references therein). On the 
other hand, there are fairly well-known strong limit theorems for real-valued processes 
with independent increments which imply the law of the iterated logarithm for real 
Brownian motion, also in its functional form (c.f. Gikhman and Skorohod [6],
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Chapter VI, §6, and Wichura [29]). However, this fact has no counterpart in the 
Banach space case, or more generally - in topological vector spaces and groups. Thus 
the present work is perhaps the first attempt to fill this gap.

The main tool in our approach is a modified version of symmetrization inequality. 
Presumably the most general form of such a result is known for processes or random 
elements falling outside of convex sets in a Banach space (Gikhinan and Skoro- 
hod [7], Chapter IV, §1) or balls in a normed linear space (Vakhania , Tariela- 
dze and Chobanian [28], Chapter V, §2). However, neither of these kinds of sets 
can be defined at all in an arbitrary topological group, and therefore in the case of 
group-valued random elements no results of this type are known.

To remove these difficulties we introduce in Section 2 the notion of a globular set 
in a To topological Abelian group and quote a result on the existence of sufficiently 
rich families consisting of globular sets for a wide class of spaces. The definition of a 
globular set enables us to establish the so-called maximal symmetrization inequality 
given in Lemma 3.2 and its Corollaries of Section 3. The mentioned estimate provides 
an upper bound for probability of escape from a globular set of the process over a 
bounded rectangle expressed in terms of distribution of the increment of the process 
on the considered rectangle. On the basis of this result we obtain in Section 4 limit 
theorems for local and global growth of increments of additive processes on infinitely 
small and very large subintervals of the parameter set. Recent developments in the 
theory of strong convergence for some classes of processes with independent increments 
suggest that local properties and asymptotic behaviour at infinity of their trajectories 
need not be investigated separately, because they are really of the same nature (see e.g. 
Mueller [24]). Therefore we prove local and global limit theorems simultaneously. 
The asymptotic behaviour of additive processes is described by means of limits of the 
form

liminf Dt 
<—*0 or oo u n

0<T, <T, <i<Ti,Ta>

and

<—»0 or oo
limsup D't — n u

0<T, <Tj

for some random events D, and D'„ t € R+ ■ In a typical situation we have Dt = 
{AX(< 0,<)) e Ut} and D't = {A„Y(< 0,/)) $ 17,'}, where {i/,} and {{/,'} are increas­
ing families of globular sets and AV(V) denotes the increment of the process % on a 
rectangle V C Rq+. Then the assertion

(♦) P liminf Dt = 1
U—>0 or oo J

may be interpreted as follows: outside of a (random) interval < Ti,Tj >C P+ \ 5P+ 
the increments AX(< 0, t)) of the process in question stay eventually with probability 
1 in sets Ut, t € P+\ < Ti,T2 >. Similarly,

(**) pf limsup £>[1 = 1
M—«0 or oo J

means that with probability 1 for every bounded interval < T,, Tj >C P+ \ 9P’ 
there exist points t € P’ , t $< T,, T? > for which AX(< 0,<)) U't. In this manner
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various types of strong laws of large numbers (such as Marcinkiewicz-Zygmund SLLN) 
as well as the law of the iterated logarithm may be treated. To see this it suffices to 
consider the one-dimensional case and take

Ut = t*fr • (—e, e) , 0 < r < 2 , or

» (2< log log |f I)1'1 • (-1 - (+)«, 1 + (-)£) , C > 0 .

Also the rate of convergence can be described in this way. As an example of appli­
cations we discuss in greater detail the law of the iterated logarithm for Brownian 
surfaces with values in locally convex linear topological spaces. In fact we consider a 
more general situation accepting instead of /?’ a partially bounded away from zero 
or infinity set B to obtain integral tests for relations like (♦) and (♦*) when t varies in 
B. Next considering specific cases of B ve can obtain local, global and the so-called 
’’mixed” law of the iterated logarithm.

Unfortunately, some important classes of groups have none globular neighbour­
hoods of zero. Therefore Section 5 is devoted to a brief discussion of a particular case 
of a group of such kind, namely torus. In this section we obtain a representation in an 
appropriate globular group for an additive process taking values in torus. Next, based 
on the mentioned representation we prove various local limit theorems for additive 
processes in torus.

In view of regulations concerning the size of articles in this journal the paper is 
divided into parts, and the first part contains three sections. The second part of the 
article will appear in the next issue of Annales.

2. Globular sets. In this section we explain the concept of globular sets and 
present basic properties of these objects.

Let G be an Abelian topological group.

Definition 2.1. An open Baire set U 9 0 in G is called globular, if there exists 
an open Baire neighbourhood of zero U(—1) C U = 1/(0), such that

jj f W = U, Qi » where {Cj = Cy(0) , j € J) is at most countable family 
( of disjoint Baire sets;

to each Cj there corresponds a Baire set Hj = Hj(0) satisfying 
the conditions: Cj + Hj C t/(-l)c and H' C -Hj .

Moreover, £/(—1) possesses the same properties as U specified by (2.1) and (2.2) with 
possibly another sets Cj and Hj.

In other words, an open Baire neighbourhood U of zero is globular if there exists 
a sequence of open Baire neighbourhoods of zero U = U(0) 2 U{—1) 2 ... such that 
for every k > 1, U(-k) satisfy conditions (2.1)-(2.2) with Cj = Cj(k), Hj = Hj(k) 
and U{—1) replaced by U(—k — 1). An arbitrary open Baire set U' 9 x is called 
globular if U' = x + U, where U is a globular neighbourhood of zero. In such a case 
we put i/'(-fc) = x + iZ(-Jk), C'(lt) = x + Cj(k) and H'^k) = H,(k).
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The notion of r globular set seems to be quite new, therefore we have to discuss 
basic properties of this concept. The below properties show that under suitable addi­
tional conditions globular sets can be taken as a basis at zero for the topology of Q.

1°. The product of two globular sets is globular.

Proof. Let CZ'(-l), {<?'} , {#'} and iZ"(-l), {CJ*}, {H"} for j € J and i € I 
be the families of Baire sets associated with two globular sets U' and U" according 
to Definition 2.1. For U - U' Cl U" we put Cy = C), j G J, C< = C'f \ (Jy C}, i € I 
(if some sets Ci are empty, the corresponding indices are rejected), Hj = H'-, j 6 J, 
Hi = H", i e I, and IZ(-l) = iZ'(-l) Cl iZ"(-l). Then conditions (2.1)-(2.2) are 
obviously fulfilled, and U'{ — 1) D [/"(—1) can be treated likewise U' D U".

2°. If U is a globular set, then —U is also globular.

Proof. Let U be a globular set, and let {Cy}, {#y} and U{-1) be Baire sets 
as specified in Definition 2.1 for U. Then {—Cj}, {—Hj} and -CZ(-l) are also Baire 
sets, and conditions (2.1)-(2.2) for these sets with U replaced by —U can be easily 
verified.

From 1° and 2° we conclude at once that for every globular neighbourhood of 
zero U there exists a symmetric globular neighbourhood of zero V contained in U , 
namely V — U Cl (—U).

3°. Every open Baire set V containing any globular set U is globular.

Proof. Let {Cy}, {Zfy} and U(-l) be the Baire sets corresponding to the globu­
lar set U . Put Cl — Cy Cl V*, //' = Hj and V(—1) a= U(—1). Then these sets satisfy 
(2.1)-(2.2) with V instead of U .

4°. Let {t/i} be a countable family of globular sets. Then their union U =* (Jj Ui 
is a globular set too.

Proof. This is an immediate consequence of 3°.

5°. Let U be a globular set and let A be an arbitrary set such that A + U is a 
Baire set. Then A + U is a globular set. In particular, this is the case when A is at 
most countable.

Proof. This follows easily from 3° and 4°.

6°. A family U = {(/} of globular neighbourhoods of sero in an Abelian topological 
group G constitutes a basis at sero for a topology making G a topological group, if 
and only if
(i) for each U € U there exists V € U such that V + V Q U , and

(ii) for each U € U and x Ell there exists V 6 II such that x + V £ U.

Proof. An arbitrary basis at zero for every topological group clearly satisfies (i)- 
(ii), so it is enough to demonstrate the converse assertion. By virtue of 1° and 2°, W 
possesses the finite intersection property. Furthermore, if U € II, then V = C D(—U)
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is globular and V = —V C V. Taking into account Theorem 4.5 of Chapter II in 
Hewitt and Ross [12] we see that conditions (i)-(ii) ensure that U is an open basis at 
zero making G a topological group.

A To topological Abelian group G having as a local basis a family U consisting 
of globular neighbourhoods of zero may be termed as a globular topological group. 
The next result shows that the class of such groups is sufficiently wide.

Proposition 2.2. Let G be a linear topological space (real or complex) and 
let U be a convex open neighbourhood of sero in G . If Uc equipped with a topology 
containing open Baire sets is a Lindelof space, then U is globular.

The proof of this result is based on the general Hahn-Banach theorem and will 
be given elsewhere. In fact we are interested in a situation when the class of globular 
subsets of G is sufficiently rich, but globular neighbourhoods of zero need not form 
necessarily a local basis for the topology of G. As we shall see in Section 4, in such a 
case we are able to give various integral tests for families of globular sets {(/<} to be 
upper or lower classes of sets for increments AX(< 0,t)) of an additive process in G, 
< 0,i) C Rq+, though they do not describe convergence of AX(< 0,<)) to zero.

Examples.

1. Each open convex set U containing zero in a linear topological Lindelof space 
is globular, because a closed subspace of the Lindelof space is Lindelof. In particular, 
every open ball in a separable Banach or Hilbert space is globular. Consequently, 
every locally convex linear topological Lindelof space is a globular topological group.

2. In certain cases we can take U =■ U(—I) = U(—2) = ... . To see this, let 
S / 0 be an arbitrary parameter set and let Rs be the product space equipped with 
the Tychonoff topology. Then every open neighbourhood of zero in Rs of the form

U - {at € Rs : -ci < *., <<i,...- e'n <»,.<«„},

where 0 < ..c„,e'B < oo, n > 1, is globular. This can be shown in a direct
way. Indeed,

Uc = U {« € RS : X.t > £>} U U {* 6 RS : < -<} •

Define C\ = {x,, > £j}, Cj ■= f]*<> Cl {*•> — •/} f°r j n> Cm “ Cl
< -e'm-n} for n < m < 2n, Hj = {i,, > 0} for j < n, and Hm = {x,m_„ <

0} for n < m < 2n. As can be easily seen, {C>} and {//>} satisfy (2.1) and (2.2) with 
if(-l) = U.

3. Let Z be the set of integers with the usual addition of real numbers. Clearly, Z 
is a globular subgroup of the group R . More generally, let Z(r) be the set of numbers 
{0, ±l/r,±2/r,...} , where r € N = {1,2,...} and let Z(ri,...rp) = Z(r,) x ... x 
Z(rp) be the product group considered with addition of vectors. Then Z(rj,... rp) is 
a globular subgroup of the globular group Rp.
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4. Notice that for a class of groups globular neighbourhoods of zero do not exist 
at all. For instance, this is the case when G is equal to the torus Tp = {z € C : 
|z| = 1 }p, p € N regarded with coordinate-wise multiplication of complex numbers, 
or G = C(p) = {z 6 C : zr = 1} with p even. However, in a cyclic group C(p) 
with p odd, globular neighbourhoods of zero constitute a local basis for the topology 
of C(p), in particular the one-point set {0} is globular. Consequently, the group 
C(rj,...rp) = C(n ) x ... X C(rp) is globular if and only if all r, are odd, and it is 
not globular iff at least one of these numbers is even.

3. Maximal symmetrization inequality. In this section we present an in­
equality which allows us to estimate the behaviour of realizations for a group-valued 
stochastic process over a bounded rectangle < w,z >C /?+ by its properties on the 
boundary d < w,z >.

Let T be a subset of 7Z’ and let Xt — (X(<) , i 6 T} be a stochastic process 
defined on a complete probability space (fi, J-, P) taking values in a To topological 
Abelian group G equipped with its Baire cr-field (7(G) = Q. FYom now on, throughout 
the whole paper we impose a general restriction on the class of considered random 
elements assuming that group operations within it are always permitted. In particular, 
this is substantiated if the process X satisfies one of the conditions 1°, 2° or 3° 
of an earlier work by Zapala_[30]. In the case of 3° we assume in addition that 
distributions of finite vectors Xl = (X(<(1)),... X(<(L))), <(1), ...t(L) g T, are 
determined uniquely on <?(GL) by their restrictions to Ql‘.

In the sequel the index set T C R+ is a set satisfying the following condition: for 
every a, b g T all the points v = (uj,... v?) with the coordinates v* equal either to 
or 6, belong to T. We shall consider mainly processes with independent increments 
AX(V) on disjoint rectangles V =< a,b) C R+, and for simplicity such processes will 
be called in short additive. Obviously, if the process in question is indexed by a proper 
subset T C Rq+, then AX(V) is determined only for a, b g T. The process X is said 
to be symmetric, if their finite dimensional distributions are symmetric (i.e. invariant 
under the inversion x —» — x) probability measures on finite products (GL,QL') (or 
(GLprovided group operations are ensured by (/(G^j-measurability). Note 
that under the above assumption the distribution of each increment of the process X 
is a symmetric probability measure. To derive our maximal symmetrization inequality 
instead of additive processes in fact a wider class of processes can be treated that is 
specified below.

Definition 3.1. We say that the process Xt has sign-invariant increments if 
for each finite array of disjoint rectangles Vj,... V„ C R and for arbitrary systems

... Sr^ } of subrectangles of Vj with endpoints in T, the random vectors

(AX(S1(1)),...AX(S<11>), . . . AX(Sjn)),... AX(S^"^)) and 

(^AX(S,(1>),...e,AX(S^), . . . 0„AX(S5’°),...enAX(S<:)))

on (GL,GL) (or (Gl,G(Gl)) resp.), L = r, + ...rn, have the same distribution for 
any choice of signs 0, = ±1.
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Obviously, every additive symmetric process has sign- invariant increments on 
(GL,GL), but the converse is not true.

Lemma 3.2. Let Xt be a stochastic process with sign-invariant increments 
taking values in a To topological Abelian group G with the o-field Q. If < w,z >, 
w, z € T is a fixed bounded rectangle in R+ and D C T is a finite set of points 
t €< w, z >, then for every globular set U in G we have

(3.1) p[ |J (AX(< s,t)) LZ)] < 4’p[aX(< w,z)) tZ(-2g)] .
• ,<€D

In this article we omit the proof of the above inequality, for it is rather long and 
tedious. The proof of it will be presented elsewhere.

Corollary 3.3. Let Xt be a stochastic process satisfying the hypotheses of 
Lemma 3.2 above and let Q C T be a countable set of points t €< w, z >. Then (3.1) 
remains true with D replaced by Q. Moreover, if in addition Xt is a separable process 
on < w, z > ClT with respect to closed sets F £ Q, then

(3.2) P[ |J (AX(O,<))^)] <4’p[aX(< w, r)) iZ(-2,)] .
»,«e<w,»>nT

We mention now some special cases of the above inequalities.

Corollary 3.4. a). Let X = (X(<) , t € P’ = T} be a symmetric additive 
stochastic process taking values in a linear topological Lindelof space G with its Baire 
o-field Q. Then for every open convex neighbourhood U of zero in G and arbitrary 
real number e, 0 < £ < 1,

(3.3) P[ (J (a%(< s,<)) i £/)] < 4’P[AX(< w,*)) * £[z] ,
«,<€<?

where Q is a finite or countable subset of points of a bounded rectangle <w,z >C R+ ■ 
If in addition X is a separable process on < w, z > with respect to closed sets F 6 Q, 
then Q in (3.3) may be replaced by < w,z >. Moreover, lettinge / I through rational 
numbers we see that our inequality remains valid for £ = 1. In a special case when 
X is a Brownian sheet taking values in R and U — (—e,e) C R, £ > 0, the obtained 
result reduces to Proposition 3.7 by Walsh [27). Furthermore, if G is a separable 
Banach space and q = 1 we obtain a variant of inequality (18), Chapter IV, §1 in 
Gikhman and Skorohod [7].

b) Let X = {i(i),i € N’ = T) be a stochastic process with sign-invariant incre­
ments taking values in a separable normed linear space G considered with the Borel 
o-field B = Q. Suppose that for a nondecreasing sequence n = £ N?,

f oo, || 52 C(i)|| tends weakly to ||S||, where S is a random element in 
»<n

(G,P). Then for every £ > 0,

(3-4) P[ sup ||52<(i)|j >e] < 4?p[||S|| > £]
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and
(3.5) P [jmp ||((n)|| > e] < 4’P [||S|| > e] .

For q = 1 we obtain Lévy’» inequalities (with constant 4 instead of2)~ see Proposition 
2.3 and its Corollary, Chapter V, p. 210-211 in Vakhania, Tarieladze and Chobanian 
[28].

Remark. If the distributions of increments of the process X are Radon measures, 
then Corollary 3.4 a) remains true without Lindelof property imposed on G. Indeed, 
in such a case for each rectangle S C T there is an increasing sequence K\ C K2 C 
... Ç G of compact sets such that P[AX(S) € G \ (J, Ki] = 0. Since every compact 
set is a Lindelof space, we can choose at most denumerably many open Baire sets Cj 
so that P[AX(S) e Uc \ 1J> Cj] = 0, and this suffices for the proof of our inequality. 
Similarly, instead of assuming that G is separable in Corollary 3.4 b) we may consider 
separably valued random elements.
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STRESZCZENIE

W artykule wprowadzono pojęcie zbioru globularnego oraz opisano szeroką klasę grup mających 
globularne otoczenia zera. Następnie podane zostały różne kryteria na to, aby rodzina globularnych 
otoczeń zera była klasą górną lub dolną zbiorów dla przyrostów procesu addytywnego w grupie.
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