ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLV, 17
SECTIO A
1991
Instytut Matematyki PAN
Lódz

J. Z A J A C

The Boundary Correspondence under Quasiconformal Automorphisms of a Jordan Domain

Odpowiedniość brzegowa przy odwzorowaniach quasikonforemnych automorfizmów obszarów Jordana

Abstract

Let Γ be a Jordan curve in the extended plane $\overline{\mathbf{C}}$ and let $D_{,} D^{*}$ be its complementary domains. With every ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$, two real values $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}$ and $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{+}}$, are associated and called conjugate harmonic cross-ratios. Both of them are conformal invariants. Continuing his earlier work on the boundary value problem for quasiconformal automorphisms and using the above invariants, the author defines two clases $A_{D}\left(K^{\prime}\right)$ and $A_{D^{*}}\left(K^{\prime}\right)$ of automorphisms of Γ, and proves that they are representing the boundary values of all K-quasiconformal automorphisms of D and D^{*}, respectively. As an application, new characterizationa of quasicircles are obtained.

1. Introduction. It is well-known that a K-quasiconformal (K-qc) automorphism F of a Jordan domain $D \subset \overline{\mathbf{C}}$, can be extended to a homeomorphism of the closure \bar{D}. It then induces an automorphism $f=\left.F\right|_{\Gamma}$ of the boundary curve $\Gamma=\partial D$. In the case of $D=U=\{z: \operatorname{Im} z>0\}$, and a K-qc automorphisms F of U that fixes the point at infinity, the induced automorphism $f=\left.F\right|_{\mathbf{R}}$ of \mathbf{R} can be represented by a ρ-quasisymmetric (ρ-qs) function in the sense of A. Beurling and L. V. Ahlfors (BA-condition) (see [3] and [10]). The family of all ρ-qs functions, $\rho \geq 1$, is invariant under composition only with increasing linear functions.

A characterization of the boundary values of K-qc automorphisms F of the unit disc $\Delta=\{z:|z|<1\}$ was given by J. G. Krzyż (K-condition) in [6]. Using the conformal configuration connected with harmonic measure, he also obtained a class of ρ-qs functions of $T=\partial \Delta$, representing boundary automorphisms $f=\left.F\right|_{T}$. This class of all ρ-qs functions, $\rho \geq 1$, is invariant under composition only with the group of rotations of T.

In both the cases, the ρ-qs functions have some deficiencies not shared by K-qc mappings (see [15]). In spite of extremal simplicity of these characterizations, it is not so easy to get a result asymptotically sharp for $\rho=1$ (cf. [5], [4] and [7]). It is worthwhile to note that the BA-condition is not conformally transferable, whereas the K-condition is conformally invariant. The qs constant $\rho(f)$, defined as the minimum of all ρ such that the qs condition BA (or K) is satisfied by f, can not be used
immediately to describe the Teichmüller distance without qc extensions.
Using the results of G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen ([1]; [2], and other papers), as well as obtaining new ones (see [15]) on the Hersch-Pfluger distortion function Φ_{K}, the author was able to present a new characterization of the boundary values for the family of all K-qc automorphisms of a generalized disc in the extended complex plane $\overline{\mathbf{C}}$ (see [13] and [15]).

To describe this characterization let us recall that by a generalized circle (gc) $\Gamma \subset \overline{\mathbf{C}}$, we mean the stereographical projection of a circle on the Riemann sphere $\mathbf{B}^{2}=\left\{(x, y, u): x^{2}+y^{2}+u^{2}-u=0\right\}$. The following expression

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left\{\frac{z_{3}-z_{2}}{z_{3}-z_{1}}: \frac{z_{4}-z_{2}}{z_{4}-z_{1}}\right\}^{1 / 2} \tag{1.1}
\end{equation*}
$$

introduced in [12], is well defined for each ordered quadruple of distinct points z_{1}, z_{2}, z_{3}, z_{4} of a gc $\Gamma \subset \overline{\mathbf{C}}$. It is invariant under homographies and its values range over $(0 ; 1)$.

By $A_{\Gamma}(K)$ we denote the family of all sense-preserving automos phisms f of a gc $\Gamma \subset \overline{\mathbf{C}}$, such that

$$
\begin{equation*}
\Phi_{1 / K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]\right) \leq\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right] \leq \Phi_{K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]\right) \tag{1.2}
\end{equation*}
$$

holds for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$, with a constant $K \geq 1$.

A function $f \in A_{\Gamma}(K)$ is said to be the K-quasihomography (K-qh) of Γ. This class of functions represents the boundary values of all K-qc automorphisms of the domains D and D^{*}, complementary with respect to Γ, with the same constant K at the necessity. It is invariant under self-homographies of Γ, and has a number of properties close to those of K-qc mappings (see [15] and [16]). The relationships between K-qh and ρ-qs functions, in both the cases of $\Gamma=\overrightarrow{\mathbf{R}}$, or $\Gamma=T$, are obtained in [13] and [15]. Some fundamental results on $A_{\Gamma}(K)$ can be found in [16]. All of them are asymptotically sharp for $K=1$. Nevertheless, the condition (1.2) is not conformally invariant.

Suppose that Γ is a Jordan curve (Jc) in $\overline{\mathbf{C}}$, while D and D^{\bullet} are its complementary domains. Let $\mathcal{F}_{\mathcal{D}}(K)$ and $\mathcal{F}_{D^{\bullet}}(K)$, be the classes of all K-qc automorphisms of D and D^{*}, respectively. If Γ is a gc of $\overline{\mathbf{C}}$, then $\mathcal{F}_{\mathcal{D}}(K)$ and $\mathcal{F}_{\mathcal{D}^{\bullet}}(K)$ are identical for each $K \geq 1$. In the case when Γ is a Q-quasicircle, $Q \geq 1$, both the classes are related by a Q^{2}-qc reflection in Γ, and can be identified on the level of the universal Teichmüller space, Theorem 11. In the most general case, when Γ is an arbitrary Jc of $\overline{\mathbf{C}}$, we do not have any quasiconformal relation between $\mathcal{F}_{\mathcal{D}}(K)$ and $\mathcal{F}_{\mathcal{D}^{\bullet}}(K)$, preserving points of Γ. This state of matter is an obstacle to our research on the boundary value problem for K-qc automorphisms. It means, that we can not simply start with a given Jc $\Gamma \subset \overline{\mathbf{C}}$, and a certain family of sense-preserving automorphisms of Γ, representing boundary values of $\mathcal{J}_{D}(K)$ or $\mathcal{J}_{D^{\bullet}}(K)$.

The idea, that the starting point should be a Jc $\Gamma \subset \overline{\mathbf{C}}$, not a Jordan domain, when working with the boundary value problem for K-qc automorphisms, has its strong encouragement from the universal Teichmüller space theory (see [8, p. 97]). Keeping in mind this idea, we associate with a given Jc $\Gamma \subset \overline{\mathbf{C}}$, two classes $A_{D}(K)$
and $A_{D^{\bullet}}(K)$ of sense-preserving automorphisms of Γ, representing the boundary values of $\mathcal{J}_{\mathcal{D}}(K)$ and $\mathcal{J}_{\mathcal{D}} \cdot(K)$, respectively, with the same K at the necessity. In the case when Γ is a gc of $\overline{\mathbf{C}}$, the mentioned characterizations reduce to (1.2).
2. Conjugate harmonic cross-ratios. Let $\Gamma \subset \overline{\mathbf{C}}$ be an arbitrary Jc and let D, D^{*} be its complementary domains. Suppose that $a \in D$, is arbitrary and that $z^{\prime}, z^{\prime \prime} \in \Gamma$, are arbitrary and distinct points of Γ. Consider

$$
\begin{equation*}
\left[z^{\prime}, z^{\prime \prime}\right]_{D}^{a}=\sin \pi \omega\left(a,<z^{\prime}, z^{\prime \prime}>; D\right) \tag{2.1}
\end{equation*}
$$

where $\left\langle z^{\prime}, z^{\prime \prime}\right\rangle$ is an oriented open arc of Γ, with end points z^{\prime} and $z^{\prime \prime}, \omega$ being harmonic measure. It is obvious that $\left[z^{\prime}, z^{\prime \prime}\right]_{D}^{a}=\left[z^{\prime \prime}, z^{\prime}\right]_{D}^{a}$, where $\left\langle z^{\prime \prime}, z^{\prime}\right\rangle=\Gamma \backslash \overline{\left\langle z^{\prime}, z^{\prime \prime}\right\rangle}$. Suppose that $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$, is an ordered quadruple of distinct points. Let

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{a}=\left\{\left(\left[z_{2}, z_{3}\right]_{D}^{a}\left[z_{1}, z_{4}\right]_{D}^{a}\right) /\left(\left[z_{1}, z_{3}\right]_{D}^{a}\left[z_{2}, z_{4}\right]_{D}^{a}\right)\right\}^{1 / 2} . \tag{2.2}
\end{equation*}
$$

Then we prove
Theorem 1. Let Γ be a Jordan curve in $\overline{\mathbf{C}}$, and let D, D^{*} be its complementary domains. For every $a, b \in D$, the identity

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{a}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{b} \tag{2.3}
\end{equation*}
$$

holds for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$.
Proof. Suppose that a and b are arbitrary points of D. By the Riemann mapping theorem, there are conformal mappings H_{a} and H_{b}, that map Δ onto D with $H_{a}(0)=a$ and $H_{b}(0)=b$. Both these mappings can be regarded as homeomorphisms of $\bar{\Delta}$ onto \bar{D}. By the conformal invariance of the harmonic measure, the equalities

$$
\begin{align*}
{\left[H_{a}^{-1}\left(z^{\prime}\right), H_{a}^{-1}\left(z^{\prime \prime}\right)\right]_{\Delta}^{\circ} } & =\sin \pi \omega\left(0,\left\langle H_{a}^{-1}\left(z^{\prime}\right), H_{a}^{-1}\left(z^{\prime \prime}\right)\right\rangle ; \Delta\right) \tag{2.4}\\
& =\sin \pi \omega\left(H_{a}(0),\left\langle z^{\prime}, z^{\prime \prime}\right\rangle ; H(\Delta)\right) \\
& =\sin \pi \omega\left(a,\left\langle z^{\prime}, z^{\prime \prime}\right\rangle, D\right)=\left[z^{\prime}, z^{\prime \prime}\right]_{D}^{a}
\end{align*}
$$

hold for an arbitrary $z^{\prime}, z^{\prime \prime} \in \Gamma$. The equality

$$
\left[H_{b}^{-1}\left(z^{\prime}\right), H_{b}^{-1}\left(z^{\prime \prime}\right)\right]_{\Delta}^{o}=\left[z^{\prime}, z^{\prime \prime}\right]_{D}^{b}
$$

holds by the same argument as (2.4). Let $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$, be an ordered quadruple of distinct points. Setting $t_{k}=H_{a}^{-1}\left(z_{k}\right)$ and $r_{k}=H_{b}^{-1}\left(z_{k}\right), k=1,2,3,4$, then using (2.4) and (2.4'), it follows that

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{a}=\left[t_{1}, t_{2}, t_{3}, t_{4}\right]_{\Delta}^{\circ}=\left[t_{1}, t_{2}, t_{3}, t_{4}\right] \tag{2.5}
\end{equation*}
$$

and

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{b}=\left[r_{1}, r_{2}, r_{3}, r_{4}\right]_{\Delta}^{\circ}=\left[r_{1}, r_{2}, r_{3}, r_{4}\right] .
$$

Since $H_{b}^{-1} \circ H_{a}$ is a conformal automorphism of Δ, then it is a homography mapping $\bar{\Delta}$ onto itself and thus it preserves (1.1). Therefore

$$
\begin{align*}
{\left[r_{1}, r_{2}, r_{3}, r_{4}\right] } & =\left[H_{b}^{-1} \circ H_{a}\left(t_{1}\right), H_{b}^{-1} \circ H_{a}\left(t_{2}\right), H_{b}^{-1} \circ H_{a}\left(t_{3}\right), H_{b}^{-1} \circ H_{a}\left(t_{4}\right)\right] \tag{2.6}\\
& =\left[t_{1}, t_{2}, t_{3}, t_{4}\right] .
\end{align*}
$$

This completes the proof.
Theorem 1 says that the expression, defined by (2.2), is a constant as a function of $a \in D$. By this we set

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}:=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{a} \quad \text { for any } a \in D \tag{2.7}
\end{equation*}
$$

Note, that the statement of Theorem 1 remains true when we insert D^{*} instead of D, and $\Delta^{\bullet}=\overline{\mathbf{C}} \backslash \Delta$ instead of Δ, reapectively. Thus we define

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{0}}:=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{a}}^{a} \quad \text { for any } a \in D^{\bullet}
$$

Both these expressions, defined by (2.7) and (2.7'), are called the conjugate harmonic cross-ratios (c.h. cross-ratios).

Thus, with an arbitrary Jc $\Gamma \subset \overline{\mathbf{C}}$, and each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$, we associate two values defined by (2.7) and (2.7'). The relationship between them will be of our special interest.

Theorem 2. These c.h. cross-ratios are invariant under conformal mappings and their values range over $(0 ; 1)$ for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4}$ of an arbitrary Jc Γ in $\overline{\mathrm{C}}$. Moreover,

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{2}=1-\left[z_{2}, z_{3}, z_{4}, z_{1}\right]_{D}^{2} \tag{2.8}
\end{equation*}
$$

where D is one of the domains complementary with respect to Γ.
These atatements are obtained by the conformal invariance of c.h. cross-ratios and [12, Theorem 1]. Inserting D^{*} instead of D, we get the parallel result.
3. One dimensional qc mappings. Suppose that Γ is an arbitrary Jc in $\overline{\mathbf{C}}$, where D and D^{*} are the domains complementary with respect to Γ.

Let A_{Γ} denotes the family of all sense-preserving automorphisms of Γ. This is evident that ($A_{r}, 0$) is a group with composition.

Definition 1. Let Γ be an arbitrary Jc in $\overline{\mathbf{C}}$, and let D, D^{*} be its complementary domains. An automorphism $f \in A_{\Gamma}$ is said to be of $A_{D}\left(K^{\prime}\right)$ class if

$$
\begin{equation*}
\Phi_{1 / K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}\right) \leq\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right]_{D} \leq \Phi_{K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}\right) \tag{3.1}
\end{equation*}
$$

holds for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$, and a constant $K \geq 1$.

The class $A_{D \cdot}(K)$ is defined by using D^{*} in (3.1) instead of D.
First we prove
Theorem 3. Suppose that Γ is a $J c$ in $\overline{\mathbf{C}}$, and let D, D^{*} be its complementary domains. If $F \in \mathcal{J}_{\mathcal{D}}(K)$ is an arbitrary, then $f=\left.F\right|_{\Gamma} \in A_{D}(K)$ for each $K \geq 1$.

Proof. Let H be a conformal mapping that maps Δ onto D. It can be regarded as a homeomorphism of $\bar{\Delta}$ onto \bar{D}. Let $F \in \mathcal{J}_{\mathcal{D}}(K)$ be an arbitrary, where $K \geq 1$. The mapping

$$
\begin{equation*}
\tilde{F}=S_{H}(F)=H^{-1} \circ F \circ H \tag{3.2}
\end{equation*}
$$

is a K-qc automorphism of Δ, and thus $\tilde{f}=\left.\tilde{F}\right|_{T} \in A_{T}(K)$ (cf. [15] and [16]). Hence, by the conformal invariance of the c.h. cross-ratios, the proof of our theorem is established.

We may now describe the parallel theorem, whose statement is as follows: if $F \in \mathcal{J}_{D}(K)$ is an arbitrary then $f=\left.F\right|_{\Gamma} \in A_{D^{\cdot}}(K)$ for $K \geq 1$.

To show the sufficiency we prove
Theorem 4. Suppose that Γ is a $J c$ in $\overline{\mathbf{C}}$, and that D and D^{*} are its complementary domains. For each $f \in A_{D}(K), K \geq 1$, there exists a $K^{\prime}=K^{\prime}(K)-q c$ automorphism F_{f} of D such that $F_{f \mid \Gamma}=f$.

Proof. Let $f \in A_{D}(K), K \geq 1$, be an arbitrary and let H be a conformal mapping of U onto D. Then $f=S_{H}(f)$ is an element of $A_{\overline{\bar{R}}}(K)$, and thus it has a $K^{\prime}=K^{\prime}(K)$-qc extension F_{f} to U (cf. [15, Theorem 14]). By this

$$
\begin{equation*}
F_{f}=S_{H}^{-1}\left(F_{j}\right) \tag{3.3}
\end{equation*}
$$

is the desired K^{\prime}-qc automorphism of D, where $K^{\prime} \leq \min \left\{\lambda^{3 / 2}(K), 2 \lambda(K)-1\right\}$ with $\lambda(K)=\Phi_{K}^{2}(1 / \sqrt{2}) / \Phi_{1 / K}^{2}(1 / \sqrt{2})(c f .[9])$.

The parallel theorem for $f \in A_{D}(K)$, may be formulated automatically.
An automorphism $f \in A_{D}(K)$ (or $f \in A_{D \cdot}(K)$) is said to be a $1-$ dimensional K $q c(1-d i m . K-q c)$ automorphism of Γ. Both the classes $A_{D}(K)$ and $A_{D^{*}}(K), K \geq 1$, are called conjugate classes of 1 -dim. K-qc automorphisms of Γ. Let $f \in A_{D}(K)$, then the infimum $K_{D}(f)$, of all K such that (3.1) is satisfied, is said to be the 1-dim. gc constant of f. Same we define $K_{D^{\cdot}}(f)$ for $f \in A_{D^{\prime}}(K)$.

Some basic properties of $1-\mathrm{dim}$. K-gc automorphisms are presented as:
Theorem 5. For an arbitrary Jc $\Gamma \subset \bar{C}$, and $K_{1}, K_{2} \geq 1$, if $f_{1} \in A_{D}\left(K_{1}\right)$ and $f_{2} \in A_{D}\left(K_{2}\right)$, then $f_{1} \circ f_{2} \in A_{D}\left(K_{1} K_{2}\right)$;

Theorem 6. For an arbitrary $J c \Gamma \subset \overline{\mathbf{C}}$, and $K \geq 1$, if $f \in A_{D}(K)$, then $f^{-1} \in A_{D}(K)$.

The proof of Theorem 5 follows immediately from the composition property of Φ_{K} and the definition of $A_{D}(K)$. Theorem 6 is a consequence of similar arguments. The parallel theorems may be formulated for $A_{D^{\cdot}}(K)$.

Theorem 7. Let Γ be an arbitrary $J c$ in $\overline{\mathbf{C}}$, and let D, D^{*} be its complementary domains. A function f is of $A_{D^{\prime}}(1)$ (or $A_{D^{*}}$ (1)) class if, and only if, f is the boundary value of a conformal automorphism of D (or D^{*}).

Proof. Let H maps conformally Δ onto D, and let $f \in A_{D}(1)$ be an arbitrary. The mapping $h=S_{H}(f) \in A_{D}(1)$ if, and only if, it is a homography mapping T onto itself (cf. [15, Theorem 11]. Denoting by H. a conformal mapping of Δ^{\bullet} onto D^{\bullet}, then by the identity $A_{T}(1)=A_{\Delta} \cdot(1)$, we obtain the alternative assertion.
4. Quasicircles. Now we shall obtain the following characterizations of quasicircles as an application of the c.h. cross-ratios and the conjugate 1-dim. K-qc automorphisms of an arbitrary Jc $\Gamma \subset \overline{\mathrm{C}}$.

Theorem 8. Let $\Gamma \subset \overline{\mathbf{C}}$ be a Jc, and let D, D^{\bullet} be its complementary domains. Then Γ is a quasicircle if, and only if, there exists a constant $K \geq 1$, such that

$$
\begin{equation*}
\Phi_{1 / K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}\right) \leq\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{\cdot}} \leq \Phi_{K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}\right) \tag{4.1}
\end{equation*}
$$

holds for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$.
Proof. Suppose that Γ is a Q-quasicircle, $Q \geq 1$. Then there is a Q^{2}-qc reflection J_{Γ} in Γ. Let H and H. be conformal mappings of Δ and Δ^{\bullet}, onto D and D^{*}, respectively. The mapping

$$
\begin{equation*}
F=J_{T} \circ H_{*}^{-1} \circ J_{\Gamma} \circ H \tag{4.2}
\end{equation*}
$$

is a qc automorphism of Δ. Consider $f=\left.F\right|_{T}$ and an ordered quadruple of distinct points $w_{1}, w_{2}, w_{3}, w_{4} \in T$. Then we have (cf. [15, Theorem 7])

$$
\begin{equation*}
\Phi_{1 / Q^{2}}\left(\left[w_{1}, w_{2}, w_{3}, w_{4}\right]\right) \leq\left[f\left(w_{1}\right), f\left(w_{2}\right), f\left(w_{3}\right), f\left(w_{4}\right)\right] \leq \Phi_{Q^{2}}\left(\left[w_{1}, w_{2}, w_{3}, w_{4}\right]\right) . \tag{4.3}
\end{equation*}
$$

Due to the conformal invariance of the c.h. cross-ratios, it follows that

$$
\left[w_{1}, w_{2}, w_{3}, w_{4}\right]=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D},
$$

where $w_{i}=H^{-1}\left(z_{i}\right), i=1,2,3,4$. The reflection J_{Γ} does not change the points of Γ, whereas

$$
\left[f\left(w_{1}\right), f\left(w_{2}\right), f\left(w_{3}\right), f\left(w_{4}\right)\right]=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{\bullet}}
$$

holds by the conformal invariance of the c.h. cross-ratios. Thus we have the necessity with $K=Q^{2}$.
(\Leftarrow) Let Γ be a Jc in $\overline{\mathbf{C}}_{\text {, such }}$ that the inequalities (4.1) hold for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$. Consider $h=H^{-1} \circ H_{0}$ on T.

By (4.1) and by the conformal invariance of the c.h. cross-ratios, then the identity $[\cdot, \cdot, \cdot, \cdot]_{\Delta}=[\cdot, \cdot, \cdot, \cdot]_{\Delta^{\cdot}}$, the following inequalities

$$
\begin{equation*}
\Phi_{1 / K}\left(\left[w_{1}, w_{2}, w_{3}, w_{4}\right]\right) \leq\left[h\left(w_{1}\right), h\left(w_{2}\right), h\left(w_{3}\right), h\left(w_{4}\right)\right] \leq \Phi_{K}\left(\left[w_{1}, w_{2}, w_{3}, w_{4}\right]\right) \tag{4.4}
\end{equation*}
$$

hold for $w_{i}=H^{-1}\left(z_{i}\right)$. Hence, by [15, Theorem 14], there exists $K^{\prime}=K^{\prime}(K)$-qc automorphism F_{h} of Δ, with the boundary values given by h. Consider

$$
\begin{equation*}
G=H \circ J_{T} \circ F_{h} \circ H_{*}^{-1} . \tag{4.5}
\end{equation*}
$$

We may see that G is a sense-reversing qc mapping of \bar{D} onto $\overline{D^{*}}$, which is the identity on Γ. Defining $G(z)=G^{-1}(z)$ for $z \in D^{\bullet}$, it follows that G is a K^{\prime}-qc reflection in Γ, where $K^{\prime} \leq \min \left\{\lambda^{3 / 2}(K), 2 \lambda(K)-1\right\}$ with $\lambda(K)=\Phi_{K}^{2}(1 / \sqrt{2}) / \Phi_{1 / K}^{2}(1 / \sqrt{2})$ (cf. Theorem 4), and consequently Γ is a quasicircle.

Let Γ be a Jc in $\overline{\mathbf{C}}$, and let D, D^{*} be its complementary domains. Denote by

$$
\begin{equation*}
R_{\Gamma}=\left\{f \in A_{\Gamma}: f=H \circ H_{\bullet}^{-1}\right\}, \tag{4.6}
\end{equation*}
$$

 respectively. The family $S_{H}^{-1}\left(R_{\Gamma}\right)=C R(\Gamma)$ is said to be the conformal representation of Γ with respect to T (cf. [11]).

Let

$$
\begin{equation*}
A_{D}^{\infty}=\bigcup_{K \geq 1} A_{D}(K) \text { and } A_{D^{\bullet}}^{\infty}=\bigcup_{K \geq 1} A_{D}(K) \tag{4.7}
\end{equation*}
$$

Hence, $\left(A_{D}^{\circ}, \circ\right)$ and $\left(A_{D^{\circ}}^{\circ}, \circ\right)$ are subgroups of $\left(A_{\Gamma}, \circ\right)$, where o denotes the composition.

The transformation

$$
\begin{equation*}
S_{H H_{\bullet}}=S_{H_{0}}^{-1} \circ S_{H} \tag{4.8}
\end{equation*}
$$

maps $A_{D}(K)$ onto $A_{D^{\bullet}}(K)$ for every $K \geq 1$, and is an isomorphism between $\left(A_{D}^{\infty}, o\right)$ and $\left(A_{D^{*}}^{\infty}, 0\right)$.

Since

$$
\begin{equation*}
S_{H H_{0}}\left(H \circ H_{\bullet}^{-1}\right)=H \circ H_{*}^{-1}, \tag{4.9}
\end{equation*}
$$

then the fix-points group of $S_{H} H_{0}$ contains the group ($R_{\Gamma}^{\circ \circ}, o$), generated by R_{Γ} (see (17]).

Hence, and by Theorem 6, the identities

$$
\begin{equation*}
K_{D}\left(H \circ H_{\bullet}^{-1}\right)=K_{D}\left(H_{\bullet} \circ H^{-1}\right)=K_{D}\left(H_{\bullet} \circ H^{-1}\right)=K_{D} \cdot\left(H \circ H_{*}^{-1}\right) \tag{4.10}
\end{equation*}
$$

hold for every H and H_{*}, as above.
Definition 2. The common value, described by (4.10), we denote by K_{Γ}.

First we prove
Theorem 9. If a Jc $\Gamma \subset \overline{\mathbf{C}}$, is a Q-quasicircle, $Q \geq 1$, then $R_{\Gamma} \in A_{D}\left(Q^{2}\right) \cap$ $A_{D} \cdot\left(Q^{2}\right)$. Conversely, for each $K \geq 1$, there is $Q=Q(K)$ such that, if $R_{\Gamma} \in$ $A_{D}(K) \cup A_{D^{\bullet}}(K)$, then Γ is a $Q(K)$-quasicircle, where $1 \leq Q\left(K^{\circ}\right) \leq \min \left\{\lambda^{3 / 2}(K), 2 \lambda(K)-1\right\}$.

Proof. Suppose that $\Gamma \subset \overline{\mathbf{C}}$, is a Q-quasicircle, $Q \geq 1$. Then there is a Q^{2}-qc reflection in Γ. The mapping F, defined by (4.2), is a Q^{2}-qc automorphism of Δ. Thus $\left.F\right|_{T}=H_{*}^{-1} \circ H \in A_{T}\left(Q^{2}\right)$. The automorphism

$$
\begin{equation*}
S_{H}^{-1}\left(H_{*}^{-1} \circ H\right)=S_{H_{0}}^{-1}\left(H_{*}^{-1} \circ H\right)=H \circ H_{*}^{-1} \tag{4.11}
\end{equation*}
$$

is an element of $A_{D}\left(Q^{2}\right) \cap A_{D^{\bullet}}\left(Q^{2}\right)$.
(\Leftarrow) Suppose now that $H \circ H_{*}^{-1} \in A_{D}(K) \cup A_{D^{\bullet}}(K), K \geq 1$. The automorphism $H_{*}^{-1} \circ H \in A_{\Delta}(K) \cup A_{\Delta} \cdot(K)=A_{T}(K)$. Then, by [15, Theorem 14], there exists a $Q=Q(K)$-qc automorphism F_{h} of Δ, with the boundary values given by $h=H_{*}^{-1} \circ H$. From this moment we follow the sufficiency proof of Theorem 9 , starting from (4.4), to obtain the sufficiency of this theorem.

Then we have

Theorem 10. A Jc $\Gamma \subset \overline{\mathrm{C}}$, is a quasicircle if, and only if, $K_{\Gamma}<\infty$.
Proof. It is an immediate consequence of the previous considerations and Theorem 9.

It is worth-while to note that a Jc $\Gamma \subset \overline{\mathbf{C}}$ is a gc in $\overline{\mathbf{C}}$ if, and only if, the identity

$$
\begin{equation*}
A_{D}(K)=A_{D}(K) \tag{4.12}
\end{equation*}
$$

holds for each $K \geq 1$. Further, we have the following
Theorem 11. If a Jc $\Gamma \subset \overline{\mathbf{C}}$ is a quasicircle, then

$$
\begin{equation*}
A_{D}^{\infty}=A_{D^{\circ}}^{\infty} \tag{4.13}
\end{equation*}
$$

Proof. Suppose that $\Gamma \subset \overline{\mathbf{C}}$, is a Jc while H and H. are conformal mappings of Δ and Δ^{\bullet}, onto D and D^{\bullet}, respectively. Assume that Γ is a Q-quasicircle, $Q \geq 1$, and that $f \in A_{D}^{\infty}$ is an arbitrary. Then there is $K \geq 1$, such that $f \in A_{D}(K)$.

Let

$$
\begin{equation*}
f_{\bullet}=S_{H H_{0}}(f) \tag{4.14}
\end{equation*}
$$

By the previous considerations, then Theorem 5 and Theorem 9, it follows that

$$
\begin{equation*}
K_{D^{\bullet}}(f) \leq Q^{4} K_{D}(f) \tag{4.15}
\end{equation*}
$$

Hence, there is $1 \leq L \leq Q^{4} K$, such that $f \in A_{D^{\cdot}}(L)$. Starting with any $f \in A_{D_{0}}^{\infty}$, and using the fact that $S_{H H_{0}}^{-1}=S_{H_{0}}$, we may obtain similar inclusion, by which the identity (4.13) follows.

Suppose now that Γ is an arbitrary Jc in $\overline{\mathbf{C}}$, for which the identity (4.13) holds, where D and D^{*}, denote the complementary domains. The author conjectures it sufficies to make Γ a quasicircle.

Let us note that Theorem 9 is a generalization of a result of J. G. Krzyz [6 , Theorem 3], whereas Theorem 9 is close to a characterization obtained by D. Partyka [11, p. 13]. A continuation of this research, in the direction of the universal Teichmüller space theory, can be found in [17].

REFERENCES

[1] Anderson, G. D. , Vamanamurthy, M. K. , Vuorinen, M. , Distortion function for plane quasiconformal mappings, Israel J. Math. 62, 1 (1988), 1-16.
[2] Anderson, G. D. , Vamanamurthy, M. K. , Vuorinen, M. , Inequalitico for quasiconformal mappings in the plane and in space, Preprint, (1991).
[3] Beurling, A. Ahlfors, L. V., The boundary correspondence under guasiconformal mappings, Acta Math 96 (1956), 125-142.
[4] Hayman, W. K., Hinkkanen, A. , Distortion estimates for quasisymmetric functions, Ann. Univ. Mariae CurieSklodowska Sect. A 36/37, (1982/1983), 61-67.
[B] Kelingos, J. A. Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13, (1966), 235-249.
[6] Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. AIMath. 12, (1987), 19-24.
[7] Krzyí, J. G. , Harmonic analyase and boundary correspondence under quasiconformal mappinga, Ann. Acad. Sci. Fenn. Ser. A I Math. 14, (1989), 225-242.
[8] Lehto. O. , Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer-Verlag, New York, Heidelberg and Berlin, 1987.
[9] Lehtinen, M., Remarks on the maximal dilatation of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 8, (1984), 133-139.
[10] Lehto, O. Virtanen , K.I., Quasiconformal Mappings in the Plane, Grundlehren der Math. Wissenschaften 126, Second ed., Springer-Verlag, New York, Heidelberg and Berlin, 1973.
[11] Partyka, D. , Spectral values of quasicircles, Manuscript, 1991.
[12] Zajęc, J. , A new definition of quasisymmetric functions, Mat. Vesnik 40, (1988), 361-36b.
[13] Zajac, J., Distortion function and quasisymmetric mappings, Ann. Polon. Math. B5, (1991), 361-369.
[14] Zajac, J., Quasisymmetric functions and quasihomographies of the unit circle, Ann. Univ. Mariae Curie-Sklodowaka Sect. A 44, (1990), 83-95.
[15] Zajac, J., The distortion function Φ_{K} and quasihomognaphies, CTAFT, 1992, (to appear).
[16] Zajac, J. , Quasihomographies and the universal Teichmüller apace, (lo appear).
[17] Zajac, J. , The universal Teichmüller apace of an arbitnary Jordan curve, Manuscript, 1891.

STRESZCZENIE

Niech Γ bpdsie krzywa Jordana w plaszczyénie domknieptej $\overline{\mathbf{C}}$ i niech D, D^{\bullet} bedaskladowymi jej dopelnienia. Uporsąkowanej czwórce punktów $z_{1}, z_{2}, z_{3}, z_{4}$ krzywej Γ można przyporsadkowad́ dwie licsby rzeczywiste $\left[z_{1}, z_{2}, z_{3}, z_{4}\right] D_{1}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] D^{\bullet}$, które autor nazywa eprzéonymi dwut etoaunkami harmonicanymi. S® one konforemnje niezmiennicze. Kontynuuje swe wesefniejase prace na temat odpowiedniokci brsegowej przy odwzorowaniach quasikonforemnych autor okredla używajac wprowadsonych przez siebie niezmienników dwie klasy $A_{D}(K), A_{D^{*}}(K)$ automorfismów Γ i wykasuje, ic określaja one wartóci brsegowe wasystkich automorfismów quesikonforemnych obezandw D i D^{*}. Jako sestocowanie podaje on now charakteryzecjo quasiokregow.

