ANNALES UNIVERSITATIS MARLAE CURIE-SKZODOWSKA LUBLN-POLO:IA

VOL.XXXIX. 17

SECTIOA
1985

Instytut Matematyki Uniweraytet Marii Curie-Sklodowskiej

Z.RADZISZEWSKI

> The Frame Field Along a Curve In the Space $P(p, q)$ of p-dimenslowal Planes in the $(p+q)$-dimensional Euclidean Space
> Pole reperów wzdluz̀ krzywej w przestrzeni $P(p, q)$ plaszezyen p-wymiarowych $w(p+q)$-wymiarowej przestrzeni euklidesowcj
> Поле релеров вдоль кривои в прострвмствс $P(p, q)$ р-мерных плоскостед $(p+q)$-мермого эвцлидового іпространства

1. On the metod applied in the paper. To construct a frame field along a curve in the space $P(p, q)$ and to obtain differential equations of it we used the method due to K .Radziszewsk! in 'T. The method is different from the classic Cartan's one, moreover, we have incroduced a certain modifisation of it. That is Why the applied construction should be explained in a few words.

Let (M. G) be a homogenesus space, where M is a manifold and G is a Lie group of tranformations of M. Given a surface $\mathcal{X}: R^{n} \rightarrow M: u \rightarrow X(u)$ in M. Let p_{n} be an arbitrary point of \mathcal{M}. Any function of the form $A: R^{n} \rightarrow G: u \rightarrow A(u)$ such that $\boldsymbol{X}(u)=\boldsymbol{A}(u) \cdot p_{0}$ is called a representation of the surface X in a Lie group G with respect to the point p_{0}.

Let R_{0} be a îxed frame at p_{0}. The formuia $R(u)=A(u) \cdot R_{0}$ determines one-to-one correspondence between the representations of X with respect to po and the frome fields along X. So the construction of a frame field $u \mapsto R(u)$ along X cald be replaced by the construction of a representation $u \rightarrow \boldsymbol{A}(u)$ of \boldsymbol{X} in G. K.Radz iszews $k i$ has proposed in $|7|$ the following conctruction of the representation A of X in G. We take an arbidrary representation A_{0} of X with respect to the fixed point p_{0}. Each representation A of X with respect to p_{0} is of the form $A(u)=A_{0}(u) \cdot h(u)$
for a certaiu function $h: R^{\mathfrak{n}} \rightarrow H_{0} \subset G$ taking its values in the isotropy group H_{0} of p_{0}.

Let us consider the Maurer-Cartan form $A^{-1} d A$ for the representation of the form $A=A_{0} h$. Let m_{0} be a linear subspace of a Lie algebra \bar{q} of G such that $\bar{q}=h_{0} \oplus m_{0}$, where h_{0} is a Lie algebra of H_{0}, and let $\mathrm{pr} m_{0}$ denotes the projection onto m_{0}. Then

$$
\operatorname{pr} m_{0} A^{-1} d A=\operatorname{pr}_{m_{0}} h^{-1} A_{0}^{-1} d A_{0} h .
$$

We want the representation A to give the form $A^{-1} d A$ that satisfies a condition:

$$
\begin{equation*}
\operatorname{pr}_{m_{0}} A^{-1} d A \subset P_{0} \tag{*,1}
\end{equation*}
$$

for a certain linear subspace $P_{0} \subset m_{0}$. We choose such m_{0} and P_{0} that make the condition ($*, 1$) as strong restriction for A as possible. When there exists one and only one representation $\bar{A}=A_{0} h_{0}$ that satisfies ($*, 1$), then the construction is finished. If not, we repeat the above process taking any representation A_{1} of the property $(*, 1)$ instead of A_{0}, the group $H_{1}=\left\{h \in H_{0}, \mathrm{pr}_{m_{0}}\left(h^{-1} P_{0} h 2\right) こ F_{0}\right\}$ instead of H_{0} and an adequate condition ($*, 2$) instead of ($\left.*, 1\right)$. The process is finished when after a tinite number k of steps we obtain the only representation $\bar{A}=A_{k}=A_{0} h_{0} h_{1} \ldots h_{k-1}$ that satisfies a condition:

$$
\begin{equation*}
\operatorname{pr}_{m_{k-},} A_{k}^{-1} d A_{k} \subset P_{k-1} . \tag{*,k}
\end{equation*}
$$

The form $\Phi=\bar{A}^{-1} d \bar{A}$ is invariant for X up to the transformations from G. So
 invariants of X. The equation $d \bar{A}=\bar{N} \Phi$ is the equation of the constructed frame field along X.

The author of the present paper has introduced a certain modification of the above method. In the first step a general form of the representation A_{0} of X was taken and then the properties of A_{0} that make it satisfying the condition ($*, 1$) were found. So was done in the next steps. This way turns out to be very corivenient in a practical applications.
2. The space $P(p, q)$ and curves in It. Given the Euclidearı space $E^{r+q}=$ ($R^{p+q}, I^{p+q},($,$)), where I^{p+q}$ is the group of isometries of R^{p+q} and $($,$) is the$ scalar product.

Defir:tion 1. A p-dimensional, passing the point x and spaned by the vectors $e_{1}, \ldots, e^{\prime}$, plane in $E^{p+\sigma}$ is an image set $\left\{Y^{\prime}\right\rangle:=\mathcal{Y}^{\prime}\left(R^{\prime}\right)$ of a function:

$$
\begin{equation*}
Y: R^{p} \rightarrow R^{p+\prime}:\left(\lambda^{i}\right) \mapsto x+\lambda^{j} e_{i}, \quad i=1, \ldots, p . \tag{1}
\end{equation*}
$$

It can be assumed that $\left(e_{i}, e_{j}\right)=\delta_{i j}$.
Let $P(p, q)$ be a set of all p-dimensional planes in E^{p+q}. I^{p+q} acts on $P\left(p, q_{q}\right)$ by the rule:

$$
\left.g([Y])=\lg Y], \quad g \in r^{p+q}, \quad Y\right\rangle \in P(p, q) .
$$

where $g Y$ is the usual composition of Y and g.
Lemma 1. $\left(P(p, q), I^{p+q}\right)$ is a homogeneous space.

Proof. It is obvious thar. f^{p+8} acrs on $P(p, q)$ rransitively, so we have only to show that the action is effertive. Let \int and g be rwo diferent isnmetries of E^{p+1}. There exists such a point $z_{0} \equiv R^{p+q}$ that $f\left(z_{0}\right) \neq j^{\prime}\left(z_{0}\right)$. Let $(Z \equiv P(p, 4)$ be any plain passing the puine $g\left(f_{0}\right)$ inat does not coutain $f\left(\mathcal{L}_{0}\right)$ and \mid et $Y\left|\mid=g^{-1}(\{Z i)\right.$. Then $f\left(\{Y \mid) \neq g\left(\left\{Y^{\prime} \mid\right)\right.\right.$, si) f and g are difierent transformations oi $P(f, y)$.

Definltion 2.

(a) A parametrized curve (we shall write p.c.) in $P(p, q)$ is a furction:

$$
\begin{equation*}
\Sigma: R \rightarrow P(p, q): t \mapsto[Y(t)! \tag{2}
\end{equation*}
$$

where $Y^{\prime}(t): R^{p} \rightarrow R^{p+1}:\left(\lambda^{i}\right) \mapsto z(t)+\lambda^{i} e_{i}(t)$
(b) A curve in $P(p, q)$ is an image set, $[\Sigma:=\Sigma(\Omega)$
(c) Given a p.c. $\quad I$ in $P(p, q)$ as in (a). Any curve in E^{p+9} of the form $y(t)=x(t)+\lambda^{\prime}(t) e_{i}(t)$ is called the senerating line both of the p.e. I and the curve [D].

We shall use the notation $\vec{F}=\frac{d i^{F}}{d t}$ fur a derivative of a function F of one variable. It can be easy proved the following (see ; 9):

Lemma 2. Given $Y^{\prime}(t): R^{p} \rightarrow R^{p+q}:\left(\lambda^{i}\right)-z(t)-\lambda^{\prime} e_{i}(t)$ and $Z(t): R^{p} \rightarrow$ $R^{p+q}:\left(\mu^{i}\right)-y(t)+\mu^{i} E_{i}(t) \cdot I f\left\{Y^{j}(t)\right]=[Z(t)]^{1}$ for any t then:

$$
\operatorname{lir}\left(e_{1}, \ldots e_{p}, \dot{e}_{1}, \ldots, \dot{e}_{p}\right)=\operatorname{lin}\left(E_{1}, \ldots, E_{p}, \dot{E}_{1} \ldots, \dot{E}_{p}\right)
$$

where lin $\left(\because, \ldots, v_{p}\right)$ denctes a vector space spaned by the vectors v_{1}, \ldots, v_{p}.
Definltion 8. A p.c. in $P(p, q)$ is called admissible (we shall write a.p.c.) if:

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{iin}\left(e_{1} \ldots, e_{p}, \dot{e}_{1}, \ldots, \dot{e}_{p}\right)\right)=p+1 . \tag{3}
\end{equation*}
$$

We shall prove an important property of an a.p.c. in $P(p, q)$.
Lemma s. The planee $[Y(t)]$ of an a.p.c. $\Sigma: t-\{Y(t)]$ in $P(p, q)$ an be spaned by veetor fields e e_{1}, \ldots, c, of the following property:

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{lin}\left(e_{1}, \ldots, c_{p}, \dot{e}_{2}, \ldots, \dot{e}_{p}\right)\right)=p \tag{4}
\end{equation*}
$$

Proof. Let $3 n$ a.p.c. Σ be given in the form: $\Sigma: t \rightarrow\left[Y(t):\left(\lambda^{j}\right) \mapsto\right.$ $x(t)-\lambda^{i} E_{j}(t)$. Sitice Σ is admissible then there exist a minn vanishing, orthogonal to lis: $\left(E_{1} \ldots, E_{p}\right)$ vector nieid v aud seaiar furctions δ_{i} such that the projections of \dot{E}_{i} onto the orthogorial complement of $\left(E_{1}, \ldots, E_{p}\right)$ can be expressed in the form:

$$
\dot{E}_{i}-\sum_{k=1}^{n}\left(\dot{E}_{i}, E_{k}\right) E_{k}=f_{i} v, \quad \sum_{i=1}^{n}\left(f_{i}\right)^{2}>0
$$

Any vector fields e_{1}, \ldots, c_{p} spaning the planes $[Y(t)]$ are of the form $e_{i}=b_{i} E_{j}$ where $\left[b_{i}^{j}\right]$ is an orthogonal matrix. Therefore $\dot{e}_{i}=\dot{b}_{i} E_{j}+\psi_{i} \dot{E}_{j}$, and

$$
\begin{gathered}
\dot{c}_{i}-\sum_{k=1}^{p}\left(\dot{\epsilon}_{i}, e_{k}\right) e_{k}=\dot{e}_{i}-\sum_{k=1}^{p}\left(\dot{e}_{i}, E_{k}\right) E_{k}= \\
=\dot{b}_{i}^{j} E_{j}+b_{i}^{j} \dot{E}_{j}-\dot{b}_{i}^{k} E_{k}-b_{i}^{j} \sum_{k=1}^{p}\left(\dot{E}_{j}, E_{k}\right) E_{k}= \\
=b_{i}^{j}\left(\dot{E}_{j}-\sum_{k=1}^{p}\left(\dot{E}_{j}, E_{k}\right) E_{k}\right)=b_{i}^{j} j_{j} v .
\end{gathered}
$$

If we set $\forall_{1}^{j}=\left[\sum_{i=1}^{n}\left(f_{i}\right)^{2}\right]^{-1 / 2}$, then:

$$
\dot{e}_{i}-\sum_{k=1}^{p}\left(\dot{c}_{i}, c_{k}\right) e_{k}=\left\{\begin{aligned}
{\left[\sum_{k=1}^{p}\left(f_{k}\right)^{2}\right]^{-1 / 2} v, } & \text { for } i=1 \\
0, & \text { for } i>1
\end{aligned}\right.
$$

i.e. $\dot{e}_{i} \in \operatorname{lin}\left(e_{1}, \ldots, e_{p}\right)$ for $i>1$.

It is obvious that in the mentinned in Lemma 3 situation we have:

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{lin}\left(e_{1}, \ldots, e_{p}, \dot{e}_{1}\right)\right)=p+1 \tag{5}
\end{equation*}
$$

A vector field e_{1} of the property (4) is determined for an a.p.c. up to the sign.
Definition 4. A vector field e_{1} mentioned in Lemma 3 (as well as $-e_{1}$) is called the directional vector of an a.p.c. in $P(p, q)$.

Definitlon 5. An a.p.c. in $P(p, q)$ is oriented (we shall write a.o.p.c.) if one of two directional vectors of it is marked out. The orienting directional vector will be denoted by e_{0}.

Definition 6. Given an p.c. $\Sigma: t \mapsto\left[Y(t):\left(\lambda^{i}\right) \mapsto x(t)+\lambda^{i} e_{i}(t)\right]$ in $P(p, q)$. A curve:

$$
\begin{equation*}
\Sigma^{0 y}: \ell \mapsto\left[Y^{08}(t):\left(\mu^{a}\right) \mapsto y(t)+\mu^{a} a_{a}(t)\right], \quad \alpha=1, \ldots, q \tag{6}
\end{equation*}
$$

in $P(q, p)$ such that $\left(a_{a}, e_{i}\right)=0$ for any a and i (i.e. $\left[Y(t) \mid\right.$ and $\left[Y^{\text {oy }}(t)\right]$ are orthogonal planes for any t) is called an orthogonal to Σ p.c. relative to the cirve $y: t \mapsto y(t)$ in E^{p+t}.

Lemma 4. If Σ is an a.p.c. in $P(p, q)$ so is any ortiogonal $\omega \Sigma$ p.c. $\Sigma^{0 y}$ in $P(q, p)$. Moreover, if e_{1} is the directional vector. of Σ then the normalized projection of \dot{e}_{1} onto the linear orthogonal complement of lin $\left(e_{1}, \ldots, e_{p}\right)$ is the directional vector of $\Sigma^{0 \%}$.

Proof. In virtue of Lemma 3 it can be assumed that: $\dot{e}_{1}-\sum_{k=1}^{p}\left(\dot{e}_{1}, e_{k}\right) e_{k}=0$ and $\dot{e}_{i}-\sum_{k=1}^{n}\left(\dot{e}_{i}, e_{k}\right) e_{k}=0$ for $i>1$ i.e. e_{1} is the direerional vector of Σ. Let $\Sigma^{O_{y}}$ in $P(q, p)$ be given in the form:

$$
\Sigma^{0}: t \mapsto\left[Y(t):\left(\mu^{\alpha}\right) \mapsto y(t)+\mu^{\alpha} a_{a}(t)\right] .
$$

Then $\sum_{a=1}^{q}\left(\dot{c}_{1}, a_{a}\right) a_{a} \neq 0$ and $\sum_{a=1}^{n}\left(\dot{i}_{i}, a_{a}\right) a_{a} \neq 0$ for $i>1$ therefore $\sum_{a=1}^{n}\left(\dot{a}_{a}, c_{1}\right) a_{a}=0$ and $\sum_{a=1}^{q}\left(\dot{a}_{a}, e_{j}\right) a_{a}=0$ for $i>1$ what implies that for any $\alpha=1, \ldots, q$

$$
\dot{a}_{a}-\sum_{B=1}^{q}\left(\dot{a}_{a}, a_{\theta}\right) a_{B}=\left(\dot{a}_{a} e_{1}\right) e_{1}
$$

and that these vector fields do not vanish simultaneously, so Σ^{0} is admissible.
It can be assumed that a_{1} is a directional vector of $\Sigma^{0 y}$ from $n o w n$. Then

$$
\dot{a}_{1}-\sum_{\theta=1}^{1}\left(\dot{a}_{1}, a_{\theta}\right) a_{\theta} \neq 0 \text { and } \dot{a}_{a}-\sum_{\theta=1}^{q}\left(\dot{u}_{a}, a_{B}\right) u_{B}=0 \text { for } \alpha>1 .
$$

Consequently

$$
\begin{aligned}
& \underset{a_{0}}{\exists}\left(\dot{e}_{1}, a_{a_{0}}\right) \neq 0, \quad \exists_{i_{0}}^{\exists\left(\dot{a}_{1}, e_{i o}\right) \neq 0,} \\
& \underset{i>1 a}{7 \forall\left(e_{i}, a_{a}\right)=0,} \quad \underset{a>1 i}{\forall \forall\left(\dot{a}_{a}, e_{i}\right)=0,}
\end{aligned}
$$

so $\left(\dot{e}_{1}, a_{1}\right) \neq 0$ and $\left(\dot{e}_{i}, c_{a}\right)=0$ when $i>1$ or $\alpha>1$ i.e. $\dot{e}_{1}-\sum_{k=1}^{n}\left(\dot{e}_{1}, e_{k}\right) e_{k}$ and a_{1} have the same direction.

The above lemma allows us to introduce the following definition.
Definition 7. Given an a.o.p.c. $\Sigma: t \mapsto\left\{Y^{\prime}(t):\left(\lambda^{j}\right) \mapsto x(t)+\lambda^{j} e_{i}(t) \mid\right.$ in $P(p, q)$ oriented with $e_{c}=e_{1}$. The induced orientation of an orthogonal to Σ a.p.c. $\Sigma^{0 y}$ in $P(g, p)$ is an orientation determined by:

$$
\begin{equation*}
a_{*}=\left[\left(\dot{e}_{0}\right)^{2}-\sum_{k=2}^{p}\left(e_{*}, e_{k}\right)^{2}\right]^{-1 / 2}\left(i_{0}-\sum_{k=2}^{p}\left(i_{0}, e_{k}\right) e_{k}\right) . \tag{7}
\end{equation*}
$$

a_{0} is called the normal orienting directional vector of Σ.
Wie can introduce a certain generalization of a notion of the cylindric ruled surface in E^{3}.

Definltion 8. A parametrized curve $\Sigma: t \mapsto\{Y(t) \mid$ in $P(q, p)$ is called r cylindric ($1 \leq r \leq p$) if there exists an r-dimensional constant plane parallel to
every plane $\{\boldsymbol{Y}(t)]$ and the dimension r is greatest possible. A p.c. Σ in $P(p, q)$ is called orthogonally e-cylindric $(1 \leq e \leq q)$ if any orthogonal to Σ p.c. $\Sigma^{0 a}$ is --cylindric.

It can be shown the following (see [0]):
Lemma B. A p.c. $\Sigma: t \mapsto[Y(t)]$ in $P(q, p)$ is r-cylindric iff the planes $[Y(t)]$ can be spaned by vectore e_{1}, \ldots, e_{p} of the property

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{lin}\left(e_{1}, \ldots, e_{r}, \dot{e}_{1}, \ldots, \dot{e}_{r}\right)\right)=r \tag{8}
\end{equation*}
$$

where r is greateat possible.
Note that a p.e. in $P(p, q)$ that is not p-cylindric need not be admissible.
8. The construetion of a frame field along a curve in $P(p, q)$. We shall use the following notations:

$$
i, j, k=1, \ldots, p ; \quad \alpha, \beta, \gamma=1, \ldots, q ; \quad I, J, K=1, \ldots, p+q .
$$

$\left(\varepsilon_{I}, 0\right)$ is an orthonormal system of coordinates in $E^{p+1} . C_{J}^{J}, C^{I} \quad(I<J)$ are the matrices that form a basis of Lie algebra I^{p+1} of $I^{r+\boldsymbol{q}}$, where:

$$
\begin{aligned}
& \left\lvert\, C_{J i b}^{{ }^{e}}= \begin{cases}1 & \text { if } a=I, b=J \\
-1 & \text { if } a=J, b=I \\
0 & \text { for remaining } a, b \text { from } 1, \ldots, p+q+1\end{cases} \right. \\
& {\left[C^{I}\right]_{b}^{c}= \begin{cases}0 & \text { if } a, b=1, \ldots, p+q \text { or } a=p+q+1 \\
\delta^{t a} & \text { if } b=p+q+1\end{cases} }
\end{aligned}
$$

Given a p.c. Σ in $P(p, q)$

$$
\begin{align*}
& \text { 上:t } \mapsto\left[Y(t):\left(\lambda^{i}\right) \mapsto x(t)+\lambda^{i} e_{i}(t)\right], \tag{9}\\
& x(t)=0+x^{K}(t) e_{K}, \quad e_{i}(t)=e_{i}^{K}(t) \varepsilon_{K}
\end{align*}
$$

and a plane $\left[Y_{0}\right]$ in $P(p, q)$

$$
\begin{equation*}
\left[Y_{0}:\left(\lambda^{i}\right) \mapsto 0+\lambda^{i} \varepsilon_{q+i}\right] . \tag{10}
\end{equation*}
$$

The isotropy group H_{0} of $\left[Y_{0}\right]$ consists of the matrices of the form:

$$
\left[\begin{array}{lll}
h_{\beta}^{a} & 0 & 0 \\
0 & k_{j}^{i} & k^{i} \\
0 & 0 & 1
\end{array}\right],
$$

where matrices $\left[h_{\beta}^{a}\right]$ and $\left[k_{j}^{j}\right]$ are orthogonal.
A Lie algebras \bar{h}_{0} of H_{0} is spaned by $C_{\beta}^{a}, C_{i+j}^{+i}, C^{9+i}$. For any vecter fields $t \rightarrow a_{a}(t)=a_{\alpha}^{K}(t) e_{K}$ in E^{p+t} such that $\left(a_{a}(t), a_{\mathcal{A}}(t)\right)=\delta_{\alpha \beta},\left(a_{\alpha}(t), e_{i}(t)\right)=0$, a function

$$
A: R \rightarrow I^{p+1}: \left.t \mapsto 1 \begin{array}{ccc}
a_{\alpha}^{K}(t) & \sigma_{i}^{K}(t) & x^{K}(t) \tag{11}\\
0 & 0 & 1
\end{array} \right\rvert\,
$$

is a representation of the p.c. $\Sigma(9)$ in a Lie group I^{p+1} with respect to the point [Y_{0} | (10), since

$$
\begin{equation*}
[Y(t)]=A(t)\left[Y_{0}\right] \tag{12}
\end{equation*}
$$

The 1-th step. Let A_{0} be a representation of Σ of the form (11) and let $h_{(0)}$ be a function of the form $h_{(0)}: R \rightarrow H_{0}$. We set

$$
\begin{equation*}
m_{0}=\operatorname{lin}\left(C_{i+j}^{a}, C^{\bullet}\right), \quad I^{p+\varnothing}=h_{0} \oplus m_{0} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{0}=\operatorname{lin}\left(C_{0+1}^{1}, C^{a} \alpha>1\right), \quad P_{0} \subset m_{0} \tag{14}
\end{equation*}
$$

Then for the representation $A(t)=A_{0}(t) \cdot h_{(0)}(t)$ we have:

$$
\begin{equation*}
\operatorname{pr} m_{0} A^{-1} d A=h_{a}^{\hat{\beta}} \dot{k}_{l}^{k}\left(a_{\theta}, d e_{k}\right) C_{q+1}^{\alpha}+\left\{\left(h_{a}, d e_{k}\right) k^{k}+\left(h_{a}, d x\right)\right] C^{a} . \tag{15}
\end{equation*}
$$

where $h_{a}=h_{\alpha}^{\beta} a_{\beta}$. The representation A satisfies a condition:

$$
\begin{equation*}
\operatorname{pr}_{m_{0}} A^{-1} d A \subset P_{0} \tag{*,1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
h_{\mathrm{a}}^{\theta} k_{l}^{h}\left(a_{\beta}, d e_{k}\right)=0 \text { for } \alpha>1 \text { or } 1>1 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{1}, d e_{k}\right) k^{k}+\left(h_{1}, d x\right)=0 \tag{17}
\end{equation*}
$$

Easy calculation shows (see [0]) that h_{α}^{ρ} and k_{1}^{k} satisfy (16) iff h_{1}^{0} and k_{1}^{k} are solutions of the following system of equations:

$$
\begin{array}{ll}
1 & h_{1}^{\theta} k_{1}^{k}=[\\
2 & \left.\left[a_{a, i}, \dot{c}_{i}\right)^{2}\right]^{-1 / 8}\left(a_{p}, \dot{c}_{k}\right), \tag{18}\\
3 & \sum_{0}^{g}\left(h_{1}^{p}\right)^{2}=1, \\
& \sum_{k}\left(k_{1}^{k}\right)^{2}=1 .
\end{array}
$$

Lemma 6. (a) The system of equations (18) is solvable iff the p.c. $\Sigma(9)$ is admissible.
(b) The solutions of (18) are of the form

$$
k_{1}^{k}=\delta_{1}^{k}, \quad h_{1}^{*}=\delta_{1}^{*} \text { or } k_{1}^{k}=-\delta_{1}^{k}, \quad h_{1}^{\theta}=-\delta_{1}^{\theta}
$$

iff e_{1} is one of two directional vectors and a_{1} is one of two normal directional vectors of Σ.

Proof. (a) When the system (18) is assumed to be solvable then $\sum_{a, i}\left(a_{a}, \dot{c}_{i}\right)^{2}>0$. Let h_{1}^{ρ}, k_{1}^{k} be a solution of (18). For any k we have: .

$$
\sum_{\beta} h_{1}^{\beta} k_{1}^{k} a_{\beta}=\frac{\sum_{\beta}\left(\dot{e}_{k}, a_{\beta}\right) a_{\beta}}{\sqrt{\sum_{\alpha, i}\left(a_{a}, \dot{c}_{i}\right)^{2}}}=\frac{\left(\dot{e}_{k}-\sum_{i}\left(\dot{e}_{k}, e_{i}\right) e_{i}\right)}{\sqrt{\sum_{\alpha, i}\left(a_{\alpha}, \dot{c}_{i}\right)^{2}}}
$$

On the other hand: $\sum_{\beta} h_{1}^{\theta} k_{1}^{k} a_{\beta}=k_{1}^{\phi} \sum_{\beta} h_{1}^{\theta} a_{\beta}=k_{1}^{k} h_{1}$, where $h_{1}:=\sum_{\beta} h_{1}^{\theta} a_{\beta}$ is a non vanishing vector field in virtue of (18) (2). So the vector fields $\dot{e}_{k}-\sum_{i}\left(e_{k}, e_{i}\right) e_{i}$ are parallel to h_{1} and they do not yanish simultaneously, i.e. $\dot{\Sigma}$ is admissible.

Let Σ be assumed to be admissible now. Let e_{1} be a directional vector of Σ and a_{1} a normal directional vector of Σ. Then $\left(\dot{e}_{1}, a_{1}\right) \neq 0$ and $\left(\dot{e}_{i}, a_{0}\right)=0$ when $\alpha>1$ or $i>1$. In this situation the system (18) takes a form:

$$
\begin{gather*}
h_{1}^{1} k_{1}^{1}=\frac{\left(a_{1}, \dot{c}_{1}\right)}{\left|\left(a_{1}, \dot{c}_{1}\right)\right|} \\
h_{1}^{\beta} k_{1}^{k}=0 \quad \text { for } \beta>1 \text { or } k>1 \\
\sum_{\beta}\left(h_{1}^{\beta}\right)^{2}=1 ; \quad \sum_{k}\left(k_{1}^{k}\right)^{2}=1 .
\end{gather*}
$$

It is clear that the system $\left(\mathbf{1 8}^{\prime}\right)$ is solvable and its only solutions are of the form:

$$
k_{1}^{H}=\delta_{1}^{k}, \quad h_{1}^{\theta}=\delta_{1}^{\theta} \text { and } k_{1}^{\hat{H}}=-\delta_{1}^{\hat{k}}, \quad h_{1}^{\theta}=-\delta_{1}^{\theta} .
$$

(b) It remains to note that putting the solutions of the above form into (18) (1) we obtain the conditions on e_{1} and a_{1} to be the directional vector and the normal directional vector of Σ respectively.

Because of the above lemma, the considered p.c. Σ must be assumed to be admissible from now on. Moreover, when the representation A_{0} itself satisfies (16) ($h_{(0)}=$ id $)$ it has determined two columns up to the sign. Its $(q+1)$-th column is formed by the coordinates of one of two directional vectors of Σ and its 1 -th column is formed by the coordinates of one of two normal directional vectors of Σ. If a.p.c. is oriented then the orienting directional vector e_{0} and the normal directional vector a_{0} are chosen. So the mentioned columns can be exactly determined. Let us consider the condition (17) after the assumption that the representation A_{0} satisfies (16). Since $h_{1}=a_{1}$ and $\left(a_{1}, d e_{k}\right)=0$ for $k>1$ then (17) takes the form:

$$
\begin{equation*}
\left(a_{1}, d e_{1}\right) k^{1}+\left(a_{1}, d x\right)=0 \tag{19}
\end{equation*}
$$

Thus the coefficient k^{1} of $h_{(0)}$ is determined by the formula

$$
\begin{equation*}
k^{1}=-\frac{\left(a_{1}, \dot{x}\right)}{\left(a_{1}, \dot{e}_{1}\right)} \tag{20}
\end{equation*}
$$

When the representation A_{0} itself satisfies (10) and $(18)\left(h_{(0)}=\right.$ id i.e. $\left.k^{1}=0\right)$ it has partially determined the last column by the condition:

$$
\begin{equation*}
\left(a_{1}, \dot{x}\right)=0 \tag{21}
\end{equation*}
$$

Finally, the representation A_{0} of an a.o.p.c. satisfies $(*, 1)$ iff

$$
\begin{equation*}
\bar{c}_{1}=e_{0}, \quad \bar{a}_{1}=a_{0},\left(\bar{a}_{1}, d x\right)=0 \tag{22}
\end{equation*}
$$

where bars over e_{1} and a_{1} denote that these vectors are already determined.
The form $\left(\bar{a}_{1}, d \bar{e}_{1}\right)=\left(a_{0}, d e_{0}\right) \neq 0$ is invariant for a.o.p.c. We shall use the notation:

$$
\begin{equation*}
\Pi:=\left(a_{0}, d e_{0}\right) \neq 0 \tag{23}
\end{equation*}
$$

It can be easy verified that the group $H_{1}=\left\{h \in H_{0}, \operatorname{pr}_{m_{0}}\left(h^{-1} P_{0} h\right) \subset P_{0}\right\}$ is of the form $H_{1}=\left\{h \in H_{0}, h_{1}^{s}=\delta_{1}^{\theta}, k_{1}^{k}=\delta_{1}^{k}, k^{1}=0\right\}$, what finishes the 1-st step.

It is clear, that the representation of Σ is completely determined in the first step, when Σ is an a.o.p.c. in $P(1,1)$ or $P(1,2)$. When $p>1$ or $q>2$ the process must be continued.

The 2-nd step. Let A_{1} be an assumed to satisfy ($*, 1$) representation of the a.o.p.c. Σ and let $h_{(1)}$ be a function of the form $h_{(1)}: R \rightarrow H_{1}$. We set:

$$
\begin{equation*}
m_{1}=\operatorname{lin}\left(C_{q+j}^{\alpha}, C^{\alpha}, C_{j}^{1}, C_{q+j}^{q+1}, C^{q+1}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}=\operatorname{lin}\left(C_{\ell+1}^{1}, C^{a} \alpha>1, C_{2}^{1}, C_{\uparrow+2}^{\ell+1}\right) \tag{25}
\end{equation*}
$$

For the representation $A(t)=A_{1}(t) h_{(1)}(t)$ we have:

$$
\begin{align*}
& \operatorname{pr}_{m_{1}} A^{-1} d A=h_{a}^{\beta}\left(\bar{a}_{1}, d a_{\beta}\right) C_{a}^{1}+k_{l}^{h}\left(\varepsilon_{1}, d e_{k}\right) C_{l+l}^{+1}+\Pi C_{q+1}^{1}+ \tag{26}\\
& \quad+\left(h_{a}, d x\right) C^{a}+\left[\left(\bar{e}_{1}, d e_{k}\right) k^{k}+\left(\tau_{1}, d x\right)\right] C^{\bullet+1} \quad \alpha, \beta, k, l>1
\end{align*}
$$

Then A satisfies the condition:

$$
\begin{equation*}
\operatorname{pr}_{m} A^{-1} d A \subset P_{1} \tag{*,2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{\beta>1} h_{\alpha}^{\theta}\left(\pi_{1}, d a_{\beta}\right)=0 \quad \text { for } \alpha>2 \tag{27,a}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{k>1} k_{l}^{k}\left(\varepsilon_{1}, d e_{k}\right)=0 \quad \text { for } l>2 \tag{27,e}\\
& \sum_{k>1}\left(\varepsilon_{1}, d e_{k}\right) k^{k}+\left(\tau_{1}, d x\right)=0 \tag{27,x}
\end{align*}
$$

Let us introduce the notations:

$$
\begin{align*}
& \left\langle d \bar{d}_{1}\right\rangle=\sum_{a>1}\left(d \bar{a}_{1}, a_{a}\right) a_{a}, \tag{28,a}\\
& \left\langle d \bar{e}_{1}\right\rangle=\sum_{i>1}\left(d \bar{e}_{1}, a_{i}\right) a_{i}, \tag{28,e}
\end{align*}
$$

and $h_{a}=h_{a}^{\beta} a_{\beta}, k_{l}=k_{l}^{k} e_{k}$. Then (27,a) and (27,e) can be written down in the following short form:

$$
\begin{array}{ll}
\left(h_{\mathrm{a}},<d \bar{a}_{1}>\right)=0 & \text { for } \alpha>2, \\
\left(k_{1},<d \bar{e}_{1}>\right)=0 & \text { for } l>2, \tag{29,e}
\end{array}
$$

If an a.o.p.c. $\boldsymbol{\Sigma}$ is assumed to satisfy:

$$
\begin{align*}
& <d \bar{a}_{1}>\neq 0 \quad\left(\text { i.e. } \quad<d a_{\bullet}>\neq 0\right), \tag{30}\\
& <d \bar{e}_{1}>\neq 0 \quad\left(\text { i.e. } \quad<d e_{\bullet}>\neq 0\right),
\end{align*}
$$

then $(29, a)$ and $(29, \mathrm{e})$ determine vector fields h_{2} and k_{2}

$$
\begin{align*}
& h_{2}=\frac{\left\langle\dot{a}_{1}\right\rangle}{\left|\left\langle\dot{\dot{a}}_{1}\right\rangle\right|} \tag{31,a}\\
& k_{2}=\frac{\left\langle\dot{\varepsilon}_{1}\right\rangle}{\left|\left\langle\dot{e}_{1}\right\rangle\right|} \tag{31,e}
\end{align*}
$$

A geometrical sense of the assumption (30) is explained by the following lemma (proved in [9])

Lemma 7. Given an a.p.c. Σ in $P(p, q)$ with the directional vector e_{0} and the normal directional vector a. Then

$$
\left\langle\operatorname{de}_{0}\right\rangle=0 \text { iff } \Sigma \text { is }(p-1) \text {-cylindric }
$$

$$
\left\langle d a_{0}\right\rangle=0 \text { iff } \Sigma \text { is orthogonally }(q-1) \text {-cylindric. }
$$

Thus (30) means that Σ is neither $(p-1)$-cylindric nor orthogonally $(q-1)$. cylindric.

When the representation A_{1} itself satisfies $(29, a)$ and (29.e) (i.e. $h_{(1)}=$ id) then $h_{2}=a_{2}$ and $k_{2}=e_{2}$. So a_{2} and e_{2} (i.e. the 2-nd and the ($q+2$)-th enlumns of A_{1}) are determined

$$
\begin{equation*}
a_{2}=\frac{<\dot{a}_{1}}{\left|<\dot{a}_{1}>\right|} \tag{32,a}
\end{equation*}
$$

$$
\begin{equation*}
\bar{e}_{2}=\frac{\left\langle\dot{e}_{1}\right\rangle}{\left|\left\langle\dot{\tilde{e}}_{1}\right\rangle\right|} \tag{32,e}
\end{equation*}
$$

Since $\left(d a_{a}, \bar{e}_{1}\right)=0$ for $\alpha>1,\left(d e_{k}, \bar{c}_{1}\right)=0$ for $k>1$ and because of (23), $(32, a),(32, e)$ we have:

$$
\begin{align*}
& d \bar{a}_{1}=-\Pi \bar{e}_{1}+\omega_{1}^{2} a_{2}, \omega_{1}^{2}=\left(d \bar{a}_{1}, \bar{a}_{2} \neq 0,\right. \tag{33,a}\\
& d \bar{e}_{1}=\Pi \bar{a}_{1}+\Omega_{1}^{2} e_{2}, \Omega_{1}^{2}=\left(d \bar{e}_{1}, \bar{e}_{2}=0\right. \tag{30,e}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{a}_{2}=\frac{\left(\dot{\bar{a}}_{1}-\left(\dot{\bar{u}}_{1}, \bar{e}_{1}\right) \bar{e}_{1}\right)}{\sqrt{\left(\dot{\bar{a}}_{1}\right)^{2}-\left(\dot{\bar{a}}_{1}, \bar{e}_{1}\right)^{2}}} \tag{34,u}\\
& \bar{e}_{2}=\frac{\left(\dot{\bar{c}}_{1}-\left(\dot{\bar{c}}_{1}, \overline{\bar{c}}_{1}\right) \bar{a}_{1}\right)}{\sqrt{\left(\dot{\bar{c}}_{1}\right)^{2}-\left(\dot{\bar{e}}_{1}, \bar{u}_{1}\right)^{2}}} \tag{34,e}
\end{align*}
$$

Let us consider the condition $(27, x)$ for A after the assumption that the representation A_{1} satisfies $(27, a)$ and $(27, e)$. Then the equation $(27, x)$ can be written down in the form:

$$
\begin{equation*}
\Omega_{1}^{2} k^{2}=\left(\tilde{C}_{1}, d x\right) \tag{35,x}
\end{equation*}
$$

So the coefficient k^{2} of $h_{(t)}$ is determined by the formula:

$$
\begin{equation*}
k^{2}=\frac{\left(e_{1}, \dot{x}\right)}{\left(F_{1}^{2}\right)}, \quad \Omega_{1}^{2}=F_{1}^{2} d t \tag{36,x}
\end{equation*}
$$

When the representation A_{1} itself satisfies $(27, x)$ then

$$
\begin{equation*}
\left(\bar{e}_{1}, \dot{x}\right)=0 \tag{37,x}
\end{equation*}
$$

It is the next after (21) condition, that partially determines the last column of A_{1}. Finally, the representation of an a.o.p.c. Σ satisfies $(*, 2)$ if and only if it satisfies (22), $(37, \mathrm{x})$ and its 2 -nd and ($\mathrm{q}+2$)-th columns are determined by $(34, a)$ and (34,e) respectively. Note that the forms ω_{1}^{2} and Ω_{1}^{2} in $(33, a)$ and $(33, e j$ and the form $\left(h_{2}, d x\right)=\left(\bar{a}_{2}, d x\right)$ (see $\left.(26)\right)$ are invariant forms for Σ. We shall use the notation:

$$
\begin{equation*}
\omega^{2}=\left(a_{2}, d x\right) \tag{38}
\end{equation*}
$$

The group H_{2} obtained as the reduction of H_{1} in the 2-nd step is of the form $H_{2}=\left\{h \in H_{0}, h_{s}^{\theta}=\delta_{s}^{\theta}, k_{s}^{k}=\delta_{s}^{k}, k^{*}=0, s=1,2\right\}$. After the 2 -nd step the representation of Σ is completely determined when Σ is a neither ($p-1$)-cylindric nor orthogonally $(q-1)$-cylindric a.o.p.c. in $P(p, q)$ for $p=1, q=3 ; p=2, q=2$; $p=2, q=3$.

Note that the written down in the formulas with symbols (a) and (e) parts of considerations in the $2-n d$ step were led independently. They have determined the vectors \tilde{a}_{2} and \tilde{d}_{2} respectively (i.e. the 2 -nd and the $(q+2)$-th columns of $\left.\bar{A}\right)$ and have given us the formulas on $d \varepsilon_{1}$ and $d \bar{e}_{1}$. The results of the parts (a) and (e)
were used in the part denoted with (x) to obtain the conditions for the generating line. When $p>2$ or $q>3$ than the process should be continued in the steps analogous to the 2 -nd one. After the assumption that the considered a.o.p.c. Σ is neither r-cylindric for any $r=1, \ldots, p-1$ nor orthogonally o-cylindric for any - $=1, \ldots,{ }_{2} p-1$, the part (a) finishes after $q-1$ steps and the part (e) after $p-1$ steps. These parts determine vectors $\bar{a}_{1}, \ldots, \bar{a}_{i}, \bar{c}_{1}, \ldots, \bar{c}_{,}$that form the columns of the representation \bar{A} of Σ except the last one. The last column of \bar{A} is completely determined in the part denoted with (x), that finishes after p steps. The part (x) gives the sequence of equations on the only generating line of Σ. The mentioned equations are following:

$$
\begin{equation*}
\left(\bar{a}_{1}, d \bar{E}\right)=0, \quad\left(\bar{C}_{p}, d \bar{x}\right)=0, \quad 1 \leq r<p . \tag{39}
\end{equation*}
$$

Definltion 9. The unique satisfying (39) generating line \bar{x} of an assumed to be neither r-cylindric nor orthogonally e-cylindric for any $r=1, \ldots, p-1$, - $=1, \ldots, q-1$, a.o.p.c. Σ in $P(p, q)$ is called the striction line of Σ.

It can be easy verified that if x is an arbitrary generating line of Σ then the striction line \mathcal{I} of Σ can be obtained in the form:

$$
\begin{equation*}
x(t)=x(t)+\lambda^{i}(t) \bar{x}_{i}(t) \tag{40}
\end{equation*}
$$

where λ^{\prime} are given by the following formulas:

$$
\begin{gather*}
\lambda^{1}=-\frac{\left(\dot{\dot{c}}, \bar{c}_{1}\right)}{\left(\dot{c}_{1}, \bar{c}_{1}\right)} \\
\lambda^{2}=-\frac{\left(\dot{\dot{x}}, \bar{c}_{1}\right)+\dot{\lambda}^{1}}{\left(\dot{ट}_{2}, \bar{c}_{1}\right)} \tag{41}\\
\lambda^{k+1}=-\frac{\left(\dot{x}, \bar{c}_{k}\right)+\dot{\lambda}^{k}+\lambda^{k-1}\left(\dot{c}_{k-1}, \bar{c}_{k}\right)}{\left(\bar{c}_{k+1}, \bar{c}_{k}\right)} \quad k=2, \ldots, p-1 \quad \text { (see [8]) }
\end{gather*}
$$

Note that the constructed representation \bar{A} of Σ can be understood as a linear orthonormal frame field in $E^{\boldsymbol{\gamma}}$ alond the striction line of Σ. A linear orthonormal frame is not a frame in $P(p, q)$ in the sense of Cartan but it is much more convenient in the considerations than a frame understood as a sequence of planes in $P(p, q)$. That is why we shall call the representation \bar{A} itself a frame field along Σ.

The main results of the paper can be formulated in the following theorem.
Theorem 1. Given an a.o.p.c. Σ in $P(p, q)$

$$
\Sigma: t \mapsto\left[Y(t):\left(\lambda^{i}\right) \mapsto x(t)+\lambda^{i} e_{i}(t)\right]
$$

that is asoumed to be neither r-cylindric for any $r=1, \ldots, p-1$ nor orthogonally - cylindric for any $:=1, \ldots, q-1$. There exists a linear orthonormal frame field in E^{p+1}

$$
\bar{A}(\theta)=\left[a_{1}(0), \ldots, a_{q}(0), c_{1}(0), \ldots, c_{p}(c), \dot{\varepsilon}(0)\right]
$$

such that

$$
\begin{equation*}
\text { A p.c. } \Sigma: \mapsto\left[P(0):\left(\lambda^{i}\right) \mapsto z(0)+\lambda^{i} \bar{\sigma}_{i}(0)\right] \tag{T1,1}
\end{equation*}
$$

and Σ determine the same curve $[\bar{\Sigma}]=[\Sigma]$ in $P(p, q)$.

$$
\begin{align*}
& \bar{c}_{1}=e_{0} \text { is the orienting directinnal vector of } \Sigma \\
& \bar{a}_{1}=a_{0} \dot{i} \text { the normal orienting directional vector of } \Sigma \\
& a_{2}=\frac{\dot{\bar{c}}_{1}-\left(\dot{\bar{c}}_{1}, \bar{a}_{1}\right) a_{1}}{\sqrt{\left(\dot{c}_{1}\right)^{2}-\left(\dot{c}_{1}, a_{1}\right)^{2}}} \\
& a_{2}=\frac{\dot{a}_{1}-\left(\dot{a}_{1}, \bar{c}_{1}\right) \bar{c}_{1}}{\sqrt{\left(\dot{a}_{1}\right)^{2}-\left(\dot{a}_{1}, \bar{c}_{1}\right)^{2}}} \tag{T1,2}\\
& \omega_{i}=\frac{\dot{c}_{i-1}-\left(\dot{\bar{c}}_{i-1}, \bar{c}_{1-2}\right) \bar{c}_{-2}}{\sqrt{\left(\dot{c}_{i-1}\right)^{2}-\left(\dot{c}_{i-1}, \bar{c}_{i-2}\right)^{2}}}, i=3, \ldots, p \\
& a_{a}=\frac{\dot{a}_{a-1}-\left(\dot{a}_{a-1}, a_{a-2}\right) a_{a-2}}{\sqrt{\left(\dot{a}_{a-1}\right)^{2}-\left(\dot{a}_{a-1}, a_{a-2}\right)^{2}}}, a=3, \ldots, q
\end{align*}
$$

2 is the striction line of Σ.
The equations of the linear osthonormal frame field \bar{A} are of the form:
(e)

$$
\begin{aligned}
& \dot{\bar{c}}_{1}=\bar{a}_{1}+F_{1}^{2} \bar{\tau}_{2} \\
& \dot{\bar{c}}_{k}=F_{k}^{k-1} \bar{c}_{k-1}+F_{k}^{k+1} \bar{c}_{k+1}, \quad k=2, \ldots, p-1
\end{aligned}
$$

$$
\dot{c}_{p}=F_{p}^{p-1} \bar{c}_{p-1}
$$

$$
F_{k}^{k+1}=-F_{k+1}^{k}
$$

$\dot{a}_{1}=-\bar{c}_{1}+f_{1}^{2} \bar{a}_{2}$
(a)

$$
\begin{equation*}
\dot{\bar{a}}_{\theta}=f_{\beta}^{\beta-1} \bar{a}_{B-1}+f_{\theta}^{\theta+1} \bar{a}_{\theta+1}, \quad \beta=2, \ldots, q-1 \tag{T1,3}
\end{equation*}
$$

$$
\dot{a}_{q}=f_{q}^{-1} \bar{a}_{q-1}
$$

$$
\int_{\theta}^{\beta+1}=-\int_{\theta+1}^{\theta}
$$

(x)

$$
\dot{i}=f^{a} \bar{\omega}_{\propto}+F \bar{\omega}_{p}, \quad a=2, \ldots, q
$$

$$
\left(\dot{i}=F \tau_{p} \text { when } q=1\right)
$$

where

$$
\begin{aligned}
& \left(\operatorname{de}_{1}, \bar{a}_{1}\right)=\Pi=: \text { de (i.e. }\left(\dot{\bar{c}}_{1}(o), a_{1}(c)=1\right) \\
& F_{i}^{i+1}(0)=-F_{i+1}^{i}(0):=\left(\dot{\xi}_{i}(0), \xi_{+1}(0)\right), \quad i=1, \ldots, p-1 \\
& F_{i}^{i+1}(0)>0 \text { for } i=1, \ldots, p-2 \\
& \int_{\gamma}^{\gamma+1}(s)=-f_{\gamma+1}^{\gamma}(s):=\left(\dot{a}_{\gamma}(s), \dot{a}_{\gamma+1}(s)\right), \quad \gamma=1, \ldots, q-1 \\
& \mathcal{f}_{\gamma}+1(\mathrm{c})>0 \text { for } \gamma=1, \ldots, q-2 \\
& \Gamma(0):=\left(\dot{i}(0), a_{\gamma}(0)\right), \quad \gamma=2 \ldots \ldots q \\
& \left.F(0):=(i)(0), \epsilon_{p}(0)\right) \text {. }
\end{aligned}
$$

are invariante of Σ.
Definltion 10. (a) The vectors $\bar{c}_{i}(i=1, \ldots, p)$ and $\bar{u}_{a}(\alpha=1, \ldots, q)$ determined in ($\mathrm{T} 1,2$) we shall call the i-th directional vector and the α-th normal directional vector of Σ respectively.
(b) The appearing in (T1,3) scalar functions we shall call as follows:

$$
\begin{aligned}
& F_{i}^{i+1}>0(i=1, \ldots, p-2) \text { the } i \text {-th curvature of } \Sigma \\
& F_{p-1}^{p} \text { the torsion of } \Sigma \\
& \int_{\gamma}^{\gamma+1}>0(\gamma=1, \ldots, q-2) \text { the } \gamma \text {-th normal curvature of } \Sigma \\
& f_{i-1}^{\gamma} \text { the normal torsion of } \Sigma \\
& f^{\gamma}(\gamma=2, \ldots, q) \text { the } \gamma \text {-th strictional curvature of } \Sigma \\
& F \text { the strictional torsion of } \Sigma .
\end{aligned}
$$

Theorem 2. Given scalar functions (of the class C^{∞}) of the parameter $s \in R$

$$
\begin{aligned}
& F_{i}^{i+1}: \theta \mapsto F_{i}^{i+1}(s), \quad i=1, \ldots, p-1 \\
& F_{j}^{j+1}(\varepsilon)>0 \quad \text { for } j=1, \ldots, p-2 \\
& \int_{a}^{a+1}: \mapsto \int_{a}^{a+1}(s), \quad a=1, \ldots, q-1 \\
& f_{\theta}^{\rho+1}(0)>0 \quad \text { for } \beta=1, \ldots, q-2 \\
& f^{\prime}: \theta \mapsto \rho^{\prime}(c), \quad \gamma=2, \ldots, q \\
& F: \bullet F(0)
\end{aligned}
$$

Then the oystem of equations of the form (e) (a) (x) from (T1,3) determines: (T2,1): A linear orthonormal frame field in E^{p+q}

$$
A(\theta)=\left[a_{1}(\theta), \ldots, a_{p}(b), e_{1}(b), \ldots, c_{p}(\theta), x(\theta)\right]
$$

up to the isometry in E^{p+9}.
(T2,2): An a.o.p.c. $\Sigma: \mapsto\left[Y(s):\left(\lambda^{i}\right) \mapsto x(e)+\lambda^{i} e_{i}(o)\right]$ in $P(p, q)$ (up to the isometry) that is neither r-cylindric for each $r=1, \ldots, p-1$ nor orthogonally - cylindric for each $:=1, \ldots, q-1$, and

1. e_{1} is the 1 -th orienting directional vector of Σ
2. $c_{j}(j=2, \ldots, p)$ is the j-th directional vector of Σ
3. a_{1} is the 1-th normal orienting directional vector of Σ
4. $a_{\theta}(\beta=2, \ldots, q)$ is the β-th normal directional vector of Σ
5. x is the otriction line of Σ
6. $F_{i}^{i+1} \cdot(i=1, \ldots, p-2)$ is the i-th curvature of Σ
7. $F_{\gamma-1}^{p}$ is the torsion of Σ
8. $\int_{a}^{a+1}(\alpha=1, \ldots, q-2)$ is the $\alpha-$ th nopmal curvature of Σ
9. $\int_{q-1}^{!}$is the normal torsion of Σ
10. $\Gamma(\gamma=2, \ldots, q)$ is the $\gamma-$ th strictional curvature of Σ

11. F is the strictional torsion of Σ.

Proof. It is well known that the system of differential equations ($\mathrm{T} 1,3$) has the unique solution $A(s)=\left[a_{1}(\theta), \ldots, a_{q}(\theta), e_{1}(\varepsilon), \ldots, e_{p}(\theta), x(\theta)\right]$ with the initial condition $A\left(e_{0}\right)=A^{0}=\left[a_{1}^{0}, \ldots, a_{8}^{0}, e_{1}^{0}, \ldots, e_{p}^{0}, x^{0}\right]$. Because of the skewsymmetricity of the matrices of parts (e) and (a) of the system (T1,3), if A^{0} is an orthonormal frame in E^{p+q} so is $A(0)$ for each 8 . Since A^{0} is an arbitrary orthonormal frame then A is determined up to the isometry. ($\mathrm{T} 2,2$) is a direct consequence of the properties of solutions of $(T 1,3)$. Thus $\operatorname{dim}\left(\operatorname{lin}\left(e_{1}, \ldots, e_{p}, \dot{e}_{1}, \ldots, \dot{e}_{p}\right)\right)=p+1$ and $\operatorname{dim}\left(\operatorname{lin}\left(\epsilon_{1}, \ldots, e_{p}, \dot{e}_{2}, \ldots, \dot{e}_{p}\right)\right)=p$ then Σ is admissible and e_{1} is the 1 th orienting directional vector of Σ. Moreover, $\dot{c}_{1}-\sum_{i=2}^{p}\left(\dot{c}_{1}, e_{i}\right) e_{i}=u_{i}$ than u_{i} is the 1 -th normal orienting directional vector of Σ. Easy calculations show that solutions $e_{2}, \ldots, e_{p}, a_{2}, \ldots, a_{4}$ of (e) and (a) must be of the form (T1.2) then they are succesive the directional vectors and the normal directional vectors of Σ respectively. Since $F_{k}^{k+1} \neq 0$ for $k=1, \ldots p-1$ and $f_{3}^{\beta+1} \neq 0$ for $3=1, \ldots, q-1 \Sigma$ is neither k-cylindric nor orthegonally β-cylindric. Because of ($\mathrm{T} 1,3$) (x) we have $\left(\dot{x}, a_{1}\right)=0$ and $\left(\dot{x}, \mathrm{c}_{\mathrm{i}}\right)=0$ for $i=1, \ldots, p-1$ so Σ is the striction line of Σ. The names of the functions $F_{i}^{i+1}, f_{a}^{a+1}, f^{\top}, F$ are suitable because of Definition 10.

REFERENCES

(1) Berezina.L.Ju.pMsnifolde of arrighs line - Nanes in En,(Russian) Lev.Vyss.Uceba.Zaved. 8 (111) (1971), 11-15.
[2i Lumiste.Ju.G..Differcnlid geometry of rulad asrfoces in \mathcal{F}_{4},(Russinn) Mat.Sb. 30 (198) (1980), 303 . 220.
[8] Lumiss e.Ju.G...Mstsidimensionel raled asbapeces of exdidean opsce(Russian) Mas.Sb. 80 (97) (1981), 411-420.
 18:15.15\%.

 15 (1970), 25\%-830.
 (1.775), 27ว-233.
 -201.
(D) Kadziszewskh h., Specieliadtion of a jrame dored espre in the arece $P(p, q)$ of p-dimensional plarea in $(g+q)$-dimeasionsi es didesn space $E^{p-\mathcal{V}}$. (Puliah), Thesis. Maria Curie. Sklodowaka Universiry, Lublin 1288.
|10| Sccerbakow,R.N., Fosadasiona of e Method of Exterior Forme end of Relad Differential Geomelry,(Russian), Tomsk 1978.
[11] Wagnep, V., Differensial geomery of the famaly of R_{k} 's in R_{n}, Mas.Sb. 10 (32) (1949), 165-202

STRESZCZENIE

Niech $P(p, q)$ bedzle przestrenia jednorodna plaseczyzn p-wymiarowych w $p+q$-wymiarowej preestrseni euk IIdesowej E^{p+1}. W pracy edefiniowano pojecie krzywej w $P(p, q)$ oraz wynotrniono apecjalne typy kryywych: krzywe dopuscezalne, kreywe r-waleowe ikrıywe ortogonalnie ewaleowe. D'prowadzone zossaly pojecia wektora kiepunkowego kreywel dopuasezalnej. Nastepnie, przy uijeiu metody apracowanej przer K.Radziszewskiego, skonsiruowano pole ortonormalnych reperów liniowych dla szerokiej klasy krzywyeh w $P(p, q)$. Uzyakano zupelay uklad niez mienników krıywej w $P(p, q)$ oras rówaanie nóziczkowe skonstruowanego pola reperów. Prace koiczy ıwierdrenie o wyzdaczaniu krzywej w $P(p ; q)$ przes zupelny ukiad jej nlezmienników.

PE310ME

Пусть $P(p, q)$ обознвжет однородное прострвнство p-мерных плоскостеи в $p+q$ -
 и выделены специальиые типы кривых: допустимые хривые, r-цилиндрияеские кривые и ортоговольно в-цилиндривеские кривне. Введемы понятия налраеляющего вехторя и мормельного нопрвялею щего вехторв допустимоя хривоя. Звтем, польэуясь методом ря зрясотаниым К.Радзишевским было схомструировано пале ортомормальиых линей ных
 тов кривои в $P(p, g)$ и дифференциальное урввнение скомструированиого поля реперов. Ряботу контвет теоремв об определевил хривои в $P(p, q)$ полнои еистемой ее инвг ркантог

