ANNALES UNIVERSITATIS MARIAE CURIE-SKEODOWSKA
LUBLIN-POLONLA |

VOL.XXXIX .17 SECTIO A 1985

Instytut Matematyki
Uniwersytet Marii Curie-Sklodowskiej

Z.RADZISZEWSKI

The Frame Fleld Along a Curve In the Space P(p.g)
of p-dimensional Planes In the (p + q)-dimenslonal
Euclidean Space

Pole reperow wzdlus krzywej w przestrzeni P(p, g)
plaszczyzn p-wymiarowych w (p + ¢)-wymiarowej
przestrzeni euklidesowej

Moxe penepos proas xpusoft 8 npoctpauctae Plp, ¢
P-McpMbIX naockocTef (p + ¢)-Meproro
3BKAHIAOBOTO MPOCTPAHCTEA

1. On the metod applied in the paper. To construct a fram« field along
a curve in the space P(p.q) and to obtain differential equations of it we used the
method due to K.Radziszewskiin {7\. The method is different from the classic

Cartan’s orie. moreover, we have introduced a certain modification of it. That is

why, the applicd construction should be explained in a few words.

Let (M.G ) be a homogenesns space, wher: M is a manifold and G is a Lie group
of transformations of M. Given a surface X : R® — M :u =~ X(u) in M. Let gy
be an arbitrary peint of M. Any function of the form 4 : R* — G : u = A(u) such
that X (u) = A(u) - po is called a representation of the surface X in a Lie group G
with respect to the point pg

Let Ro be a fixed frame at py. The formuia R(u) = A(u) - Ro determines one-
to-one correspondence between the representatioas of X with respect to po and the
frame fields along X. So the construction of a frame field u — R{u) along .Y’ cau be
replaced by the construction of a representation u — .i(u) of X in G. K.Radzisze-
wsk i has proposed in [7i the following conctruction of the representation A of .X in
G'. We take an arbidrary represertation Ag of X' with respect to the fixed point po.
Each representation A of X with respect to pg is of the form A(u) = Ag(u) - h(u)
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for a certain function A : R® — Ho C G taking its values in the isotropy group Hp
of po.

Let us consider the Maurer-Cartan form 4~!dA for-the representation of the
form A = Agh. Let mg be a linear subspace of a Lie algebra § of G such that
§ = ho @ myo, where lig is a Lie algebra of Hp, and let pr ., denotes the projection
onto mg. Then i

Pr m, A"'dA = pr, h™1Ag dAoh.

We want the representation A to give the form 4~ 'dA that satisfies a condition:
pr m,A"'dAC Py (»,1)

for a certain linear subspace Py C mgp. We choose such mg and Py that make
the condition (=.1) as strong restriction for A as possible. When there exists one
and only one representation A = Acho that satisfies (#,1), then the construction
is finished.  If not, we repeat the above process taking any rcpresentation A, of
the property (*,1) instead of Ag, the group Hy = {h € Ho, pr (A~ ' Poh) C Po}
instead of f{p and an adequate condition (*.2) instead of (=.}). The process is
finished when after a finite number & of steps we obtain the only representation
A = A; = Aghghy ... he_) that satisfies a condition:

Pr m,_, A7 'dAi C Pic1. (s.k)

The form @ = A~'dA is invariant for X up to the transformations from G. So
the coefficients of ® in any basis of a Lie alzebra § form the complete svstem of
invarianis of X'. The equation d.i = A® is the equation of the constricted frame
field along X.

The author of the present paper has introduced a certain modification of the
above method. In the first step a general form of the representation Ag of X' was
taken and then the properties of Ag that make it satisfying the condition (*.1) were
found. So was done in the next steps. This way turns out to be very convenient in
a practical applications.

2. The space P(p,q) and curves in 1t. Given the Euclidean space £7*9 =
(RP+9 [PH9 (), where /77 is the group of iscmetries of R?77 and ( , ) is the
scalar produect.

Defirition 1. A p-dimensional, passing the point z and spaned by the vectors
€1,...,¢, plane in £279 is an image set {}| := Y (R?) of a function:

Woope Ll Loithay 3 abss 17 S L iy

It can be assumed that (e;, ¢5) = 4.
Let P(p,q) be a set of all p-dimensional planes in E?*9, [#*¢ acts on Pip,q)
‘by the rule:
' (YN =1gY}, g 1™, YieP(p,q).

where gV is the usuai composition of ¥ and 4.
Lemma 1. (P(p.q),I?™") s a homogencouvs space.




(2]
-3

Tie Frame Fle!d Along a Curve in the Space P(p,q) .. |

Proof. It is obvious that /?79 acrs on Pip,q) transitively, so we have only to
show that the action is ffective. Let f and g be rwo different isometries of E77Y.
There exists such a point zo = R?*? that f(z0) # y{zo. Let {Z; = P(p.q) be any
plain passing the puint g(z9) that does not coutain fizg) and It ¥ |'= g~ Zi).
Then f({Y]) # g({}]). so f and g are diifferent transformations of £(p.g).

-

Definltlon 2.
(2) A parametrized curve {we shall write p.c.) in P(p,q) is a function:
S:R — Plp,g): t— Y (t)i (2)
where Y(t) : R? — RPTY : (X') — z(t) + Nei(t)
(b) A curve in P(p,q) is an image set [Si:= I(R)
(¢) Given a pc. T in P(p,g) as in (a).. Any curve.in E?”! of the form

u(t) = z(t) + M (t)ei(t) is called the generating line both of the p.c. T and
the curve (],

. ) : aF o ]
We shall use the notation F = —— for a derivative of a function F of one

variable. It can be easy proved the tollowing (see 181):

Lemma 2. Given Yie): RP — k’*' s (N) — z(t) = Ne;(t) and Z(t) : R? —
RP=9 : (3) — ylt) + p Ei(t) . If1Y ()] = [Z(t)} for any t then:

- [t (€1y e Cpebiserertp) = n(Eyveee By Erven By

where lin (vy....,v,} denctes a vector space spaned by the vectors vy, ... v,.
Definltion 8. A p.c. in P(p,q) is called admissible (we shall write a.p.c.) if:

dim (D (€14.ees€pi€1y.nnbpl) =p+1 . ~(3)

We shall prove an important property of an a.p.c. in P(p,g).
Lemma 8. The planes [Y(t)] of ari a.p.c. T :t — [Y(t)] in P(p.q) can be
spaned by vector fields ¢y...., ¢, of the followsng property:

dim (R (e1,.0-1ps€areeastp)) =P (4)

Proof. Let an a.p.c. T be given in the form: T : ¢t — [Y(t) : (\) —
z{t)= N E,{t).. Sinice T is admissible then there exist a pon vanishing, erthogonai te
i (E),...,E,) vector fieid v and scaiar functions f; such that the projections of
E; onto the orthogonal complement of (Ey,...,E,) can be expressed in the form:

» 4
E-Y (BLB)Bv=fio, Y (f)F>0.

=1 =1

»
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Any vector fields ¢q,...,¢, spaning the planes [Y(t)] are of the form ¢; = bE;
where [b/] is an orthogonal matrix. Therefore &; = ¥ E; + ¥/ E;, and

» r E
6= (bres)es =&~ Y (&, Ea)Es =

=1 k=1

P
=BE; + b]E; - b!Es - ¥] Y (E;,E4)Ex =
k=1

Ld J
=i (E, - S(Ej,Ek)Eh) =& fv .

If we set b) =

1-1/2
| , then:

" »
_E(.f-')2

=1

L -1/3
’ (f, )’] v, fori=1
é — Z(éﬂ er)ep = [}gl '

=¥ .
. 0, fori> 1

i.e. & € lin (eq,...,¢p) for¢ > 1.
It is obvious that in the mentinned in Lemma 3 situation we have:

dim ( lin (e1y...,6p,61)) =p+1 . (5)

A vector field ¢; of the property (4) is determined for an a.p.c. up to the sign.

Deflnltlon 4. A vector field ¢; mentioned in Lemma 3 (as well as —¢;) is called
the directional vector of an a.p.c. in P(p, g).

Definltlon 8. An a.p.c. in P(p,q) is oriented (we shall write a.o.p.c.) if one
of two directional vectors of it is marked out. The orienting directional vector will
be denoted by e,.

Definitlon 6. Given an p.c. £:t s [Y(t) : (X*) — z(t) + Me(t)] in P(p,q).
A curve:

B 1t (VO (1)1 (u°) =) + w%aalt)] , a=1,..0¢  ° (6)

in P(q,p) such that (an,e) = 0 for any a and i (i.e. (Y(¢)] and [V °¥(¢)] are
orthogonal planes for any t) is called an orthogonal to T p.c. relative to the curve
y:tesy(t) in EPTE,

Lemma 4. If L s an a.p.c. in P(p,q) 40 is any ortiogonal to £ p.c. £ in
P(q,p). Moreover, if ¢y is the directional vector.of £ then the normalized projection

of é, onto the linear orthogonal complement of lin (e1y...4¢p) 18 the directional
veetor of £°7,
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’
Proof. In virtue of Lemma 3 it can be assumed that: ¢; - z(él,ck)q =0
k=1

’
and ¢; - S(éi,c,,)c, =0 fors > 1 i.e. ¢; is the directional vector of £. Let £°7 in°

=1
P(q,p) be given in the form:

Ot [V(0): (%) ~ y(t) +.1%aqa(2)] .

g v (N
Then Sf&l‘a,}a‘, = 0 and S:(}é.-,at,)a° = 0 fors > | therefore S_' (dgiey)Bs =0

a=1 a=1 a=l

q
and Z(dn,q)aa ='0 for ¢ > 1 what implies that for any a = 1,...,q

a=1

q
aq — E(daaaﬁ)aﬂ = (daey)ey
=1

and that these vector fields do not vanish simultaneously, so %7 is admissible.
It can be assumed that a, is a directional vector of £°¥ from now on. Then

0 9
iy - :(dl,ag)ag # 0 and a4 - Z(da,ag)ag =0fora>1.
8=1 =1

Consequently ) '
3(€1,8a,) =0 . J(a1,6,) 70 ,
Qo to-

7 Y(€,8,) =0 . V V(dg,&)=0 ,
i>la a>li

14
o (€;,81) # 0 and (&;,c,) =0 whens > 1ora>1ie ¢ — Z(él.c.)e. and a,

k=1
have the same direction.

The above lemma allows us to introduce the following definition.

Deflnitlon 7. Given an a.0.p.c. E:t— [F(t) : (A*) = z(t) + X'¢;(t)] in Plp,q)
oriented with e, = ¢;. The induced orientation of an orthogonal to T 2.p.c. £%7 in
P(q,p) is an orientation determined by:

-1/2 . » \
(5- E E(én‘k)ca‘:i . (7
a /

k=2

a. = [(a.)2 - ﬁ(é., &)

k=2

@ is called the normal orienting directional vector of .
We can introduce a certain generzlization of a notion of the cylindric ruled

surface in E3.
Definltion 8. A parametrized curve T : t — [Y(t)| in P(q,p) is called r-
eylindric (1 € r < p) if there exists an r-dimensional constant plane parallel to
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every plane [Y(t)| and the dimension r is greatest possible. A p.c. T in Plp,q)
is called orthogonally e-cylindric (1 < # < ¢) if any orthogonal to T p.c. £% is
s-cylindric.

It can be shown the following (see [9]):

Lemma 6. A p.c. :t— [Y(2)] in P(q,p) s r-cylindric sff the planes [V (t))
can be spaned by veclora ey, ... e, of the property

dlm(lin (61,...,6,,6.“...,6',)):" (8)

where r @ grealest possible.

Note that a p.c. in P(p,q) that is not p-cylindric need not be admissible.

8. The construetion of a frame fleld along a curve In P(p,q). We shall
use the following notations:

k=1 p% afi7=1....9; I,J,K:l,._..,p+q.

(7,0) is an orthonormal system of coordinates in E?*f. C'} ,C!' (I < J) are the
matrices that form a basis of Lie algebra F?* of 719 where:

l- 1 fa=7I, b=J
[Cily'=1 -1 fa=J , b=1I
|_ 0 for remaininga , bfroml,...,p+¢g+1

[C”.— 0 ifa, b=l,....p+qora=p+q+l
T 6 ifb=p+g+1

Given a p.c. & in P(p,q)
Bt [V(8) 1 (X) = 2(8) + ¥eslt)] 9)

2(t) =0+ 25()e . «(t) = (thek
and a plane [¥5] in P(p,q)

[Yo:(N)m— 0+ Negyi] . (10)
The isotropy group Hp of (Y] consists of the matrices of the form:

kg 0 0]
0 K K|,
0 0 1

; J] are orthogonal.
A Lie algebra ko of Ho is spaned by Cs, C":;, C*''. For any vector fields
t — aqa(t) = al(t)ex in EPF1 such that (aq(t), as(t)) = Sap, (ae(t),ei(t)) =0, a

function
} af(t) () 2¢(9 ]
0 0 1

where matrices (A%

A:R-I¥ ¢t (11)
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[}

is a representation of the p.c. £ (9) in a Lie group /?*? with respect to the point
[Yo] (10), since

[Y(0)} = A(¢)[¥o] (12)

The 1-th step. Let Ag be a representation of £ of the form (11) and let (g,
be a function of the form h(g) : R — Ho. We set

m, = lin (C2,,;,C°) , """ =kho@dmg (13)

and
P, = lin (C;;;,C® a>1) , Pocmg . (14)

Then for the representation A(¢) = Ao(t) - h(o)(t) we have:
Pr AT dA = Kk (as,des)CZ, | + [(ha der)k* + (ha,d2)C° , (15)

where ko, = h8ag. The representation A satisfies a condition:

pr moA_ldA ch (*u l)
if and only if
h9k!(ag,dex) =0 fora > 1 or I > 1 (16)
and
(hl.dcg)k'+(h|,dz)=0 3 (17)

Easy calculation shows (see [0]) that A% and kf satisfy (16) iff A2 and k¥ are
solutions of the following system of equations:

-1/2
1 hfkf = [Z(a‘lél)’] (a'p'é.) ’

= (M) =1, b

.4
3 Ty =1,

h

Lemma 6. (a) The system of eguationas (18) s solvable iff the p.c. £ (9) i
admisasble.

(b) The solutions of (18) are of the form

kt =6, K =67 orkt=—st, H)=-4f

iff ¢) 18 one of two dsrectional vectors and ¢y 1s ane of two normal directional vectors

of L.
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Proof. (a) When the system (18) is assumed to be solvable then E(a, ,6)% > 0.
a,l

Let hf, kf be a solution of (18). For any k we have: .

z:(éh“ﬂ)“’ (éb - Z(éhc«)e‘)
Z(aas el)2 A E(aas Ci)

a,l oyl

Zh’l:,a, =

On the other hand: Zh’k'a, =k} zh’a, = kfh,, where h; := Ehla, is a
)
non vanishing vector ﬁeld in virtue of (18) (2). So the vector fields é; — E(c.,q)c.-

are parallel to &; and they do not vanish simultaneously, i.e. X is admissible.

Let £ be assumed to be admissible now. Let ¢; be a directional vector of £ and
a; a normal directional vector of £. Then (é;,a;) # 0 and (¢;,8,) = 0 when @ > 1
or ¢ > 1. In this situation the system (18) takes a form:

13} (41161)
Mk = )]

kP =0 forA>1ork>1 (18")
Y )i=1, Z(k =L
p

It is clear that the system (18°) is solvable and its only solutions are of the form:
k=6, =8l andkt=-6!, ) =-6.

(b) It remains to note that putting the solutions of the above form into (18) (1)
we obtain the conditions on ¢; and a; to be the directional vector and the normal
directional vector of ¥ respectively.

Because of the above lemma, the considered p.c. £ must be assumed to be
admissible from now on. Moreover, when the representation Ag itself satisfies (16)
(ko) = id) it has determined two columns up to the sign. Its (g + 1)-th column
is formed by the coordinates of one of two directional vectors of £ and its 1-th
column is formed by the coordinates of one of two normal directional vectors of . If
a.p.c. is oriented then the orienting directional vector ¢, and the normal directional
vector a, are chosen. So the mentioned columns can be exactly determined. Let us
consider the condition (17) after the assumption that the representation Aq satisfies
(16). Since hy = a; and (a;,de,) = 0 for £ > 1 then (17) takes the form:

(a1, dey)&* + (a1,dz) = 0 )
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Thus the coefficient k! of h(g) is determined by the formula

| i (al’z-)
S (a1,61) _ (20)

When the representation Ag itself satisfies (16) and (19) (hio) = id i.e. k! =0)
it has partially determined the last column by the condition:

(alvi) =0 (21)
Finally, the representation Ag of an a.o.p.c. satisfies (s,1) iff
&1=¢€ , 83 =as , (a1,d2)=0 (22)

where bars over ¢; and a; denote that these vectors are already determined.

The form (2,,dg;) = (a,,de,) # 0 is invariant for a.o.p.c. We shall use the
notation:

Pl t= (a.,dc.);ﬁo (23)

It can be easy verified that the group Hy = {h€ Hg , prm, (h~'Poh) C Py}
is of the form H; = {h EHo,ho =60 , kb =5t k' = 0}, what finishes the 1-st
step.

It is clear, that the representation of T is completely determined in the first

step, when T is an a.o.p.c. in P(1,1) or P(1,2). When p > 1 or ¢ > 2 the process
must be continued.

The 2-nd step. Let A; be an assumed to satisfy (»,1) representation of the
a.0.p.c. ¥ and let A(;) be a function of the form h;y : R — Hy. We set:

my = lin (Cg,,,0°,C5,08H,0m) (24)

and
P, = ln (c;“, c* a>1, Cl, c::,‘) (25)

For the representation A(t) = A;(t)h(y)(t) we have:

Pr p,A™'dA = h8(ay,das)CL + kf(21,des)CTT} +TIC) 1+

+(ha,dz)C® + ((21,des )k* + (al,fiz)]C"“ a, Bk, 0> 1 (29)
Then A satisfies the condition:
pr ., A"'dAc P, (=.2)
if and only if
S h2(ay,dag) =0 fora>2 (27,0)

f>1
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Zk,‘(ll,dc,) =0 forl>2 (27,¢)
t>1

Y (21, dea)k* + (21,dz) =0 (27,2)
>1 '

Let us introduce the notations:

< da; >= Z(dd;,a,)a, ! (28,4a)
a>1

< dey >= ) (&, 6)e (28,¢)
i>1

and h, = hZay, k; = kfe,. Then (27,3) and (27,¢) can be written down in the
following short form:

(ha,<da; >)=0 fora>2, ' (29,a)
(ki,<dé&; >)=0 forl>2 (29,¢)

If an a.0.p.c. I is assumed to satisfy:

<dd; >#0 (ie <dae >£0) ,

(30)
<dé; >F0 (i.e. <des >#10),
then (29,a) and (29,e) determine vector fields A, and &,
< iil >
s 31,
i = (31,a)
<& >
k= ——— 31,
P <a > | (31,¢)

A geometrical sense of the assumption (30) is explained by the following lemma
(proved in (9])

Lemma 7. Given an a.p.c.  in P(p,q) with the directional vector e, and the
normal directional vector ay. Then

< deg >=0ff T is (p — 1)-cylindrse

< day >= 0 sff L 18 orthogonally (g — 1)-eylsndric .

Thus (30) means that T is neither (p — 1)-cylindric nor orthogonally (¢ — 1)-
cylindric.

When the representation A itself satisfies (20.a) and (29.e) (i.e. k() = id )
then hy = a7 and k; = e2. So a3 and ep (i.e. the 2-nd ai:d the (q+2)-th cnlumns
of A}) are determined

< lil
a’ —

NETE bl
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<& >

e = ———
B iy, 34

(32,¢)
Since (daq,&;) = 0 for @ > 1 , {deg,d1) = 0 for £ > 1 and because of (23),

(32,3), (32,e) we have:
da, = -[lg +wfa2 g wf = (da,,a, #0 , (33,a)

dé; =Na, + 0362 4 Q% = (de;,8, =0 | (33,¢)

and

(ay - (a1,81) &)
\/(al) ~ (a,&)°

A e QY ) (34,0)

e NIl pd 2
VE) - (@)
Let us consider the condition (27,x) for A after the assumption that the repre-

sentation A; satisfies (27,a) and (27,e). Then the equation (27,x) can be written
down in the form:

Q2K = (&, dz) . (35,z)
So the coefficient k2 of h{y). is determined by the formula:
k= %‘)—) Q= Fldt . (36,z)
Ay

When the representation .4, itself satisfies (27,x) then
(81,2)=0 ° (37,2)

It is the next after (21) condition, that partially detérmines the last column
of A;. Finally, the representation of an a.o.p.c. T satisfies (*,2) if and only if it
satisfies (22), (37,x) and its 2-nd and (q+2)-th columns are determined by (34,2)
and (34,¢) respectively. Note that the forms @i and Q% in (33,3) and (33,¢) and
the form (hy,dz) = (@3,dz) (see (26)) are invariant forms for L. We shall use the
notation:

w? = (ag,d2) (38)

The group H,; obtained as the reduction of H, in the 2-nd step is of the form
Ho={heHy,hf =82 k' =6 , k*=0,9=1, 2} .Afer the 2-nd step the
representation of T is completely dctermined when I is a neither (p — 1)-cylindric
nor orthogonally (¢ = 1)-cylindric a.o.p.c. in P(p,q) forp=1,9=3;p=2,9=2
iP=249=3.

Note that the written down in the formulas with symbols (a) and (e} parts of
considerations in the 2-nd step were led independently. They have determined the
vectors d; and 2; respectively (i.. the 2-nd and the (q+2)-th columns of A) and
have given us the formulas on da, and dé;. The results of the parts (a) and (¢)
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were used in the part denoted with (x) to obtain the conditions for the generating
line. When p > 2 or ¢ > 3 than the process should be continued in the steps
analogous to the 2-nd one. After the assumption that the considered a.o.p.c.
is neither r-cylindric for any r = 1,...,p — 1 nor orthogonally s-cylindric for any
¢ = 1,...,p — 1, the part (a) finishes after g — 1 steps and the part (e) after p - |
steps. These parts determine vectors &,,...,3, , €1,...,&, that form the columns
of the representation A of ¥ except the last one. The last column of A is completely
determined in the part denoted with (z), that finishes after p steps. The part (z)
gives the sequence of equations on the only generating line of £. The mentioned
equations are following:

(8,,d2) =0, (&,d2)=0, 1<r<p. (39)

Definitlon 9. The unique satisfying (39) generating line z of an assumed
to be neither r-cylindric nor ort;hogonally ¢-cylindric for any r = 1,...,p — 1,
e=1,...,9-1,3.0.p.c. Tin P(p,q) is called the striction line of T.

It can be easy verified that if x is an arbitrary generating line of T then the
striction line 2 of £ can be obtained in the form:

2(t) = z(t) + A (2)&(¢) (40)
where A’ are given by the following formulas:

b L (z' al)

el (31.31)

N2y (zyzl)'+"\l

(3 51)

w1 _(GE) + 3 421G, 1,6)
(€h+1,8)

(41)

k=2,...,p—1 (see [8])

Note that the constructed representation A of £ can be understood as a linear
orthonormal frame field in E”*¥ alond the striction line of E. A linear orthonormal
frame is not a frame in P(p, ¢) in the sense of Cartan but it is much more convenient
in the considerations than a frame understood as a sequence of planes in P(p,q).
That is why we shall call the representation A itself a frame field along I.

The main results of the paper can be formulated in the following theorem.

Theorem 1. Given an a.o.p.c. T in P(p,q) '

E:te [V(t) 2 (V) 2(t) + Nei(t)]

that 1s assumed to be nesther r-cylindric for any r = 1,...,p — 1 nor orthogonally
o-cylindric for any @ = 1,...,4 — ). There ezists a linear orthonormal frame field
in E7+e

J(') = |2y (a),.. -:'1(') y &1(0),...,2,(0), !(')]
such that

Apc. B : o [P(0) : (X)) 2(s) + N&(0)] _(TL,))
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and T determine the same curve (E| = [Z] in P(p, ).
21 = ¢q 8 the orsenting directional vector of &
d; = a, 18 the normal orsenting directional vector of b))
S & - (8),31)a,
T, | .
\/(fl) . (Cn-lh)2
a; — (8;,8;)¢
dy it 2( 1y .1) 1 ; (T1,2)
\[(3-1) —_(31,31)
&1 — (&- 961'— &—
V= F.‘ (3 l_ z} 23 y 8=35000,p
V’_(é.'—l) . (&-1,&-1)
2, = a,ajl = (:a—l,da—'l)aa—zz , a= 3,. 'q
V(2a-1) - (3a=1,30-2)
2 38 the striction line of . -
The equations of the linear osthonormal frame field A are of the form:
& = a; + Flzlz
©) & =F'ag  + Pt e, k=2,..,p-1
e .
2, = Fr-'g,
Pt =-F},
a; = - + fia
x pil o a+1 - (T1,3)
(8) dg =I’ a’-l+fp ap41 ﬂ = z_,---,Q" 1
&' o= [;‘12!,_1 :
187 =~1au
? = f°a,+Fe, , = 2
x) _f &, @=2...,9
(2 =F¢, vheng=1)
where

(d&1,3)) =M =: de (i.e. (€;(e),2(s) =

Fi*' o) = —F{, (s) : = (&(0),&41(0)), i=1,.

F/*'e)>0fori=1,...,p—2

f:,H-l(.) = —f:,'+1(') Ly = (iﬁ(‘)’a"!-f-l(.)) s T=LkL.iiq-1

]'.','“('n)>0for7=l,...,q—2
() 2= (2(0),34(0)) , T=12....q
F(a) : = (2(0),&(s)).

1)
coyp—1
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are snvariants of L.

Definition 10. (a) The vectors & (s = 1,...,p) and @4 (@ = 1,...,q) de-
termined in (T1,2) we shall call the s-th directional vector and the a-th normal
directional vector of T respectively.

(b) The appearing in (T1,3) scalar functions we shall call as follows:
F*' >0 (f=1,...,p — 2) the i-th curvature of T

FP

1 the torsion of &

[t >0 (y=1,...,9 - 2) the y-th normal curvature of £
fi-1 the normal torsion of &

f7 (1=2,...,q) the 4-th strictional curvature of £

F  the strictional torsion of .
Theorem 2. Given scalar functions (of the classa C®) of the parameter s € R

FiI*!: e Fi*Y0), i=1,....,p-1
Ff"'l(c)>0 fors=1,....p-2

atl e fot(e) , a=1,...,¢4-1
5@ >0 forf=1,...,9-2

iamf(0), v=2....9

F : e~ F(s)

Then the syotem of equationa of the form (e) (a) (x) from (T1,3) determines:
(T2,1): A linear orthonormal frame field sn EP+¥

A(s) = [ay(#),...,a,(0) , e1(8),...,cp(0) , 2(s)]

up to the ssometry sn E79,

(T2,2): Anaopec. £ : ¢ (Y(s) : () z(e) + Nei(e)] in P(p,q) (up to
the isometry) that is nesther r-cylindric for cachr = 1,...,p — 1 nor orthogonally
s-cylindric for each e =1,...,q- 1, and

1. ¢y 18 the 1-th orsenting directional vector of T
e5 (5 =2,...,p) s the j-th directional veetor of T
a) s the 1-th normal orienting directional vector of &

ag (B=2,...,q) is the B-th normal directional vector of &

z 18 the atriction line of T

S ;o w e

. FY i =1,...,p — 2) is the i-th curvature of &
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7. F]_y is the torsion of E

8. f2*! (a=1,...,q9 - 2) is the a-th normal curvature of T
9. fi_y is the normal torsion of T

10. f7 (v =2....,q) 18 the 3-th strictsonal :I:urvaturc of

11. F 1s the strictional torsion of L.

AY

Proof. It is well known that the system of differential equations (T1,3) has the
unique solution A(s) = [a;1(e),....a4(¢) , €1(#),...,2x(¢) ., z(s)] with the initial
condition 4(s0) = 4% = a},...,a0 , ¢},...,¢8, 20]. Because of the skewsymme-
tricity of the matrices of parts (¢) and (a) of the system (T1,3), if A? is an ortho-
normal frame in E?*9 so is A(#) for each . Since A? is an arbitrary orthonormal
frame then A is determined up to the isometry. {T2.2) is a direct consequence of the
properties of solutions of (T1,3). Thus dim ( lin (e1,.-.,p, £15--+,6,)) =p + 1
and dim (lin (&1,...4¢p , é24...,¢p)) = p then T is admissible and e; is the 1-th

P
orienting directional vector of . Moreover, ¢; — E(él,c,-)e,- = «; than g, is the

1-th normal orienting directional vector of T. Easy ‘calculations show that solutions
€24...18p 4 G2,....a¢ Of (¢) and (a) must be of the form (T1.2) then they are suc-
cesive the directional vectors and the normal directional vectors of £ respectively.
Since Ff*! #0fork=1,....p—1and fg“ Z0for 3=1,...,9—1 T is neither
k-cylindric nor orthegonally 3-cylindric. Because of (T1,3) (x) we have (z,a;) =0
and (Z,¢;) =0 for 1 = 1,...,p — 1 so z is the striction line of £. The names of the
functions F'."“, f2*Y, [7, F are suitable because of Definition 10.

REFERENCES

Berezina.L.Ju.,Manifolds of straight linec - planes in En,(Russian] Izv.Vysi.Uéebn.Zaved. 8 (111)
(1971}, 11-18.

{ Lumiste,Ju.G..Differential geometry of ruled surfsces in Rq,(Russinn) Mat.Sb. 80 (¥3) (1980), 303-

220.

Lumiste, Ju.G..Mslidimensional ruled snbspeces of exdidean space.(Russian] Mat.Sb. 80 (97) (1981),
411-420.

! Norden.A.P..Gencrslized goometry of twodimensional reled space(Russiani, Mat.Sb. 13 (60) (1948),

129-152.
Pluinjkow,l.S.,Rued Surfaces,iRusziar|, Moscow 1044,

. Radziszewski, K., MéiAode du repéve inobRe et inturiants infegranr dans sn grospe de Lie, Buil. Acad.Polon.Sci

15 (1973), 253-23C.

Raderiszawsk LK., Speigitzation of ¢ freme and s geomdrical interpretation. Ann.Polon. Math. 33
(1578), 220-243.

Badsiszcewsk K., Speadization of ¢ freme oa ¢ surface in £7, Period.Math.Hungar. 9 (1978),
To-31.

Radziszewskl 4., Specislization of a jrame slorg 4 curie (n the space L\p, q) of p-dimensioncl planes

s (prq)-dimensionci esdidean space £P7Y, (Polish), Thesis, Maria Curie - Skiodowska University,
Lublin 1983,



r0]

11|

150 Z.BRadriszewski

Seerbakow,R.N., Fosndations of &« Method of Esterior Forma end of Rued Differential Geome-
try,(Russian), Tomsk 1978.

Wagner,V.,Differestial geomdry of the famiy of Ry's in R, Mat.Sb. 10 (53) (1943), 165-309.

STRESZCZENIE

Niech P(p, q) bedzie preestrzenis jednorodna plaszceysn p-wymiarowych w p+ ¢-wymiarowe}
preestrseni euklidesowej EP+Y. W pracy edefiniowano pojecie krzywej w P(p, q) orar wyrétniono
specjalne typy kreywych: krzyvﬁ.- dopuszczalne, kreywe r-walcowe i krzywe ortogonalnie 8-
walcowe. Wprowadzone zostaly pojecia wektora kierunkowego krzywej dopuszczalnej. Nastepaie,
przy uiyciu metody opracowanej prees K.Radeiszewskiego, skonstruowano pole ortonormainych
reperéw liniowych dla szerokiej klasy kreywych w P(p,q). Uryskano zupelny uklad niezmien-
nikéw kreywejw P(p, q) oras réwnanie rétniczkowe skonstruowanego pola reperéw. Prace kodery
twierdzenie 0 wyznaczaniu kreywe] w P(p, ) prees zupelny ukiad jej nlezmiennikéw.

PE3IOME

Mycrs P(p,q) obosnauaer onmoponmoe npocTpaHCTRO P-MEPHBLIX MAOCKOCTER 8 P + ¢-
mepHoM spxaunoson npocrpancrae EPTY. B pasore onpaneneno nonstue xpusodt s P(p,q)
H BhOeAeMhl CTEUMATbHLIE THML KPHBMX: JONYCTHMbIE KPHBbIC, F-UHAMHIPUIECKHE KPHBAIE
M OPTOrOMOJILHO 8-UUAHMOPHIECKHE KpMEe. BoencHi MOMATHI MaNPARNSIOLLErO BEKTOPA M
MOPMA1EHOrO HOMPBAACI MEro BEXTOPS JONYCTHMOR KPHBOR . 38TeM, NOALSYSCh METOZOM pa-
spaorannein K.Pagsuuenckum 6bin0 CKOMCTPYHPOBAHO MOAE OPTOHOPMANBHAIX JHMAA HEIX
penepos s mupoxoro xaacca kpuskix 8 P(p,g). Monywens noanas cucrems unmapuan-
ron xpusoft 8 P(p,q) n nuddepenunassmoe ypasuenue ckoncTpynposanHoro noas pen=pos.
PaSory xomsaer reopema 06 onpeaerennio Kpueof B P(p,q) MOAMOA CHCTEMOR ee HHBAM
puanTOR \



