ANNALES UNIVERSITATIS MARLAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL.XXXIX.17

SECTIO A

1985

Instytut Matematyki Uniwersytet Marii Curie-Sklodowskiej

Z.RADZISZEWSKI

The Frame Field Along a Curve in the Space P(p,q)of p-dimensional Planes in the (p+q)-dimensional Euclidean Space

Pole reperów wzdłuż krzywej w przestrzeni P(p, q)płaszczyzn p-wymiarowych w (p + q)-wymiarowej przestrzeni euklidesowej

Поле реперов вдоль кривой в пространстве P(p,q)*р*-мерных плоскостей (p+q)-мерного эвклидового пространства

1. On the metod applied in the paper. To construct a frame field along a curve in the space P(p,q) and to obtain differential equations of it we used the method due to K.Radziszewski in [7]. The method is different from the classic Cartan's one, moreover, we have introduced a certain modification of it. That is why the applied construction should be explained in a few words.

Let (M, G) be a homogeneous space, where M is a manifold and G is a Lie group of transformations of M. Given a surface $X : \mathbb{R}^n \to M : u \mapsto X(u)$ in M. Let p_0 be an arbitrary point of M. Any function of the form $A : \mathbb{R}^n \to G : u \to A(u)$ such that $X(u) = A(u) \cdot p_0$ is called a representation of the surface X in a Lie group Gwith respect to the point p_0 .

Let R_0 be a fixed frame at p_0 . The formula $R(u) = A(u) \cdot R_0$ determines oneto-one correspondence between the representations of X with respect to p_0 and the frame fields along X. So the construction of a frame field $u \mapsto R(u)$ along X can be replaced by the construction of a representation $u \mapsto A(u)$ of X in G. K.R adziszewski has proposed in [7] the following conctruction of the representation A of X in G. We take an arbitrary representation A_0 of X with respect to the fixed point p_0 . Each representation A of X with respect to p_0 is of the form $A(u) = A_0(u) \cdot h(u)$

2.Radziszewski

for a certain function $h: \mathbb{R}^n \to H_0 \subset G$ taking its values in the isotropy group H_0 of p_0 .

Let us consider the Maurer-Cartan form $A^{-1}dA$ for the representation of the form $A = A_0h$. Let m_0 be a linear subspace of a Lie algebra \bar{q} of G such that $\bar{q} = h_0 \oplus m_0$, where \bar{h}_0 is a Lie algebra of H_0 , and let pr m_o denotes the projection onto m_0 . Then

$$\operatorname{pr}_{m_0} A^{-1} dA = \operatorname{pr}_{m_0} h^{-1} A_0^{-1} dA_0 h.$$

We want the representation A to give the form $A^{-1}dA$ that satisfies a condition:

$$\operatorname{pr}_{m_0} A^{-1} dA \subset P_0 \tag{*,1}$$

for a certain linear subspace $P_0 \,\subset \, m_0$. We choose such m_0 and P_0 that make the condition (*,1) as strong restriction for A as possible. When there exists one and only one representation $\bar{A} = A_0 h_0$ that satisfies (*,1), then the construction is finished. If not, we repeat the above process taking any representation A_1 of the property (*,1) instead of A_0 , the group $H_1 = \{h \in H_0, \text{ pr }_{m_0}(h^{-1}P_0h) \subset P_0\}$ instead of H_0 and an adequate condition (*,2) instead of (*,1). The process is finished when after a finite number k of steps we obtain the only representation $\bar{A} = A_k = A_0 h_0 h_1 \dots h_{k-1}$ that satisfies a condition:

$$\operatorname{pr}_{m_{k-1}} A_k^{-1} dA_k \subset P_{k-1}. \tag{(*.k)}$$

The form $\Phi = \overline{A}^{-1}d\overline{A}$ is invariant for X up to the transformations from G. So the coefficients of Φ in any basis of a Lie algebra \overline{q} form the complete system of invariants of X. The equation $d\overline{A} = \overline{A}\Phi$ is the equation of the constructed frame field along X.

The author of the present paper has introduced a certain modification of the above method. In the first step a general form of the representation A_0 of X was taken and then the properties of A_0 that make it satisfying the condition (*,1) were found. So was done in the next steps. This way turns out to be very convenient in a practical applications.

2. The space P(p,q) and curves in it. Given the Euclidean space $E^{p+q} = (R^{p+q}, I^{p+q}, (,))$, where I^{p+q} is the group of isometries of R^{p+q} and (,) is the scalar product.

Definition 1. A p-dimensional, passing the point x and spaned by the vectors e_1, \ldots, e_r plane in E^{p+q} is an image set $[Y] := Y(R^p)$ of a function:

$$Y: \mathbb{R}^p \to \mathbb{R}^{p+q}: (\lambda^i) \mapsto \mathbf{z} + \lambda^i e_i \quad i = 1, \dots, p.$$
 (1)

It can be assumed that $(e_i, e_j) = \delta_{ij}$.

Let P(p,q) be a set of all p-dimensional planes in E^{p+q} . I^{p+q} acts on P(p,q) by the rule:

$$g([Y]) = [gY], g \in I^{p+q}, [Y] \in P(p,q).$$

where gY is the usual composition of Y and g.

Lemma 1. $(P(p,q), I^{p+q})$ is a homogeneous space.

Proof. It is obvious that I^{p+q} acts on P(p,q) transitively, so we have only to show that the action is effective. Let f and g be two different isometries of E^{p+q} . There exists such a point $x_0 \in \mathbb{R}^{p+q}$ that $f(x_0) \neq g(x_0)$. Let $[Z] \in P(p,q)$ be any plain passing the point $g(x_0)$ that does not contain $f(x_0)$ and let $Y = g^{-1}(Z)$. Then f([Y]) = g([Y]), so f and g are different transformations of P(p,q).

Definition 2.

(a) A parametrized curve (we shall write p.c.) in P(p,q) is a function:

$$\Sigma: R \to P(p,q): t \mapsto (Y(t)) \tag{2}$$

where $Y(t): \mathbb{R}^p \to \mathbb{R}^{p+q}: (\lambda^i) \mapsto z(t) + \lambda^i e_i(t)$

- (b) A curve in P(p,q) is an image set $[\Sigma] := \Sigma(R)$
- (c) Given a p.c. Σ in P(p,q) as in (a). Any curve in E^{p+q} of the form $y(t) = x(t) + \lambda^{i}(t)e_{i}(t)$ is called the generating line both of the p.c. Σ and the curve $[\Sigma]$.

We shall use the notation $F = \frac{dF}{dt}$ for a derivative of a function F of one variable. It can be easy proved the following (see [9]):

Lemma 2. Given $Y(t): \mathbb{R}^p \to \mathbb{R}^{p+q}: (\lambda^i) \to z(t) + \lambda^i e_i(t)$ and $Z(t): \mathbb{R}^p \to \mathbb{R}^{p+q}: (\mu^i) \to y(t) + \mu^i E_i(t)$. If [Y(t)] = [Z(t)] for any t then:

$$\ln (e_1, \dots, e_r, e_1, \dots, e_r) = \ln (E_1, \dots, E_r, E_1, \dots, E_r)$$

where $\lim (v_1, \ldots, v_r)$ denotes a vector space spaned by the vectors v_1, \ldots, v_r . Definition 3. A p.c. in P(p,q) is called admissible (we shall write a.p.c.) if:

dim (lin $(e_1, \dots, e_p, \dot{e}_1, \dots, \dot{e}_p)$) = p + 1. (3)

We shall prove an important property of an a.p.c. in P(p,q).

Lemma 3. The planes [Y(t)] of an a.p.c. $\Sigma : t \rightarrow [Y(t)]$ in P(p,q) can be spaned by vector fields e_1, \ldots, e_p of the following property:

dim
$$(lin (e_1, \dots, e_p, e_2, \dots, e_p)) = p$$
. (4)

Proof. Let an a.p.c. Σ be given in the form: $\Sigma : t \to [Y(t) : (\lambda^i) \to x(t) + \lambda^i E_i(t)]$. Since Σ is admissible then there exist a non-vanishing, orthogonal to lin (E_1, \ldots, E_p) vector field v and scalar functions f_i such that the projections of E_i onto the orthogonal complement of (E_1, \ldots, E_p) can be expressed in the form:

$$\dot{E}_i - \sum_{k=1}^p (\dot{E}_i, E_k) E_k = f_i v , \quad \sum_{i=1}^p (f_i)^2 > 0 .$$

Any vector fields e_1, \ldots, e_p spaning the planes [Y(t)] are of the form $e_i = b_i' E_j$ where $[b_i']$ is an orthogonal matrix. Therefore $e_i = b_i' E_j + b_i' E_j$, and

$$\dot{e}_i - \sum_{k=1}^{r} (\dot{e}_i, e_k) e_k = \dot{e}_i - \sum_{k=1}^{r} (\dot{e}_i, E_k) E_k =$$

$$= b_{i}^{j} E_{j} + b_{i}^{j} \dot{E}_{j} - b_{i}^{k} E_{k} - b_{i}^{j} \sum_{k=1}^{j} (\dot{E}_{j}, E_{k}) E_{k} =$$

$$=b_i^j\left(\dot{E}_j-\sum_{k=1}^p(\dot{E}_j,E_k)E_k\right)=b_i^jf_jv$$

If we set $b_1^j = \left[\sum_{i=1}^{p} (f_i)^2\right]^{-1/2}$, then:

$$e_i - \sum_{k=1}^{p} (e_i, e_k) e_k = \begin{cases} \left[\sum_{k=1}^{p} (f_k)^2 \right]^{-1/2} v , & \text{for } i = 1 \\ 0 , & \text{for } i > 1 \end{cases}$$

i.e. $e_i \in lin(e_1, \ldots, e_p)$ for i > 1.

It is obvious that in the mentioned in Lemma 3 situation we have:

dim
$$(lin (e_1, \dots, e_p, e_1)) = p + 1$$
. (5)

A vector field e1 of the property (4) is determined for an a.p.c. up to the sign.

Definition 4. A vector field e_1 mentioned in Lemma 3 (as well as $-e_1$) is called the directional vector of an a.p.c. in P(p,q).

Definition 5. An a.p.c. in P(p,q) is oriented (we shall write a.o.p.c.) if one of two directional vectors of it is marked out. The orienting directional vector will be denoted by e_0 .

Definition 6. Given an p.c. $\Sigma : t \mapsto [Y(t) : (\lambda^i) \mapsto x(t) + \lambda^i e_i(t)]$ in P(p,q). A curve:

$$\Sigma^{oy}: t \mapsto [Y^{oy}(t): (\mu^{\alpha}) \mapsto y(t) + \mu^{\alpha} a_{\alpha}(t)], \quad \alpha = 1, \dots, q$$
(6)

in P(q,p) such that $(a_{\alpha}, e_i) = 0$ for any α and i (i.e. [Y(t)] and $[Y^{oy}(t)]$ are orthogonal planes for any t) is called an orthogonal to Σ p.c. relative to the curve $y: t \mapsto y(t)$ in E^{p+q} .

Lemma 4. If Σ is an z.p.c. in P(p,q) so is any orthogonal to Σ p.c. Σ^{0y} in P(q,p). Moreover, if e_1 is the directional vector of Σ then the normalized projection of \dot{e}_1 onto the linear orthogonal complement of $\lim_{n \to \infty} (e_1, \ldots, e_p)$ is the directional vector of Σ^{0y} .

Proof. In virtue of Lemma 3 it can be assumed that: $\dot{e}_1 - \sum_{k=1}^{\infty} (\dot{e}_1, e_k) e_k = 0$

and $\dot{e}_i - \sum_{k=1}^{p} (\dot{e}_i, e_k) e_k = 0$ for i > 1 i.e. e_1 is the directional vector of Σ . Let Σ^{0y} in P(q, p) be given in the form:

$$\Sigma^{0 \mathbf{y}}: t \mapsto [Y(t):(\mu^{\alpha}) \mapsto y(t) + \mu^{\alpha} a_{\alpha}(t)]$$
.

Then $\sum_{\alpha=1}^{q} (\dot{a}_1, a_\alpha) a_\alpha \neq 0$ and $\sum_{\alpha=1}^{q} (\dot{e}_i, a_\alpha) a_\alpha \neq 0$ for i > 1 therefore $\sum_{\alpha=1}^{q} (\dot{a}_\alpha, e_1) a_\alpha = 0$

and $\sum_{\alpha=1}^{q} (a_{\alpha}, e_{i})a_{\alpha} = 0$ for i > 1 what implies that for any $\alpha = 1, \ldots, q$

$$\dot{a}_{\alpha} - \sum_{\beta=1}^{1} (\dot{a}_{\alpha}, a_{\beta}) a_{\beta} = (\dot{a}_{\alpha} e_1) e_1$$

and that these vector fields do not vanish simultaneously, so Σ^{0y} is admissible. It can be assumed that a_1 is a directional vector of Σ^{0y} from now on. Then

$$\dot{a}_1 - \sum_{\beta=1}^{q} (\dot{a}_1, a_\beta) a_\beta \neq 0 \text{ and } \dot{a}_\alpha - \sum_{\beta=1}^{q} (\dot{a}_\alpha, a_\beta) a_\beta = 0 \text{ for } \alpha > 1$$

Consequently

$$\begin{array}{l} \exists \left(\dot{e}_{1}, a_{\alpha_{0}} \right) \neq 0 , \quad \exists \left(\dot{a}_{1}, e_{i_{0}} \right) \neq 0 , \\ \forall \forall \left(\dot{e}_{i_{1}}, a_{\alpha} \right) = 0 , \quad \forall \forall \left(\dot{a}_{\alpha}, e_{i} \right) = 0 \\ \exists a_{\alpha_{0}} \forall a_{\alpha_{0}} \in \left\{ \dot{a}_{\alpha_{0}}, e_{i_{0}} \right\} = 0 \end{array}$$

so $(\dot{e}_1, a_1) \neq 0$ and $(\dot{e}_i, c_\alpha) = 0$ when i > 1 or $\alpha > 1$ i.e. $\dot{e}_1 - \sum_{k=1}^{p} (\dot{e}_1, e_k) e_k$ and a_1

have the same direction.

The above lemma allows us to introduce the following definition.

Definition 7. Given an a.o.p.c. $\Sigma: t \mapsto [Y(t):(\lambda^{i}) \mapsto x(t) + \lambda^{i}e_{i}(t)]$ in P(p,q) oriented with $e_{i} = e_{1}$. The induced orientation of an orthogonal to Σ a.p.c. Σ^{0y} in P(q,p) is an orientation determined by:

$$a_{\bullet} = \left[(\dot{e}_{\bullet})^2 - \sum_{k=2}^{p} (\dot{e}_{\bullet}, e_k)^2 \right]^{-1/2} \left(\dot{e}_{\bullet} - \sum_{k=2}^{p} (\dot{e}_{\bullet}, e_k) e_k \right) .$$
(7)

a. is called the normal orienting directional vector of Σ .

We can introduce a certain generalization of a notion of the cylindric ruled surface in E^3 .

Definition 8. A parametrized curve $\Sigma : t \mapsto [Y(t)]$ in P(q,p) is called rcylindric $(1 \le r \le p)$ if there exists an r-dimensional constant plane parallel to

Z.Radsiszewski

every plane [Y(t)] and the dimension r is greatest possible. A p.c. Σ in P(p,q) is called orthogonally s-cylindric $(1 \le s \le q)$ if any orthogonal to Σ p.c. Σ^{Os} is s-cylindric.

It can be shown the following (see [9]):

Lemma 5. A p.c. $\Sigma : t \mapsto [Y(t)]$ in P(q,p) is r-cylindric iff the planes [Y(t)] can be spaned by vectors e_1, \ldots, e_p of the property

dim
$$(\lim_{e_1, \dots, e_r, e_1, \dots, e_r}) = r$$
 (8)

where r is greatest possible.

Note that a p.c. in P(p,q) that is not p-cylindric need not be admissible.

8. The construction of a frame field along a curve in P(p,q). We shall use the following notations:

$$a, b, \gamma = 1, \dots, p; \quad \alpha, \beta, \gamma = 1, \dots, q; \quad I, J, K = 1, \dots, p + q$$

 $(e_I, 0)$ is an orthonormal system of coordinates in E^{p+q} . C_J^I , C^I (I < J) are the matrices that form a basis of Lie algebra I^{p+q} of I^{p+q} , where:

 $[C_{J_{1b}^{10}}]_{b}^{a} = \begin{cases} 1 & \text{if } a = I , b = J \\ -1 & \text{if } a = J , b = I \\ 0 & \text{for remaining } a , b \text{ from } 1, \dots, p + q + 1 \end{cases}$

$$\begin{bmatrix} C^{I} \end{bmatrix}_{b}^{a} = \begin{cases} 0 & \text{if } a \ , \ b = 1, \dots, p+q \text{ or } a = p+q+1 \\ \delta^{Ia} & \text{if } b = p+q+1 \end{cases}$$

Given a p.c. Σ in P(p, a)

$$\Sigma: t \mapsto [Y(t): (\lambda^{i}) \mapsto x(t) + \lambda^{i} e_{i}(t)] , \qquad (9)$$
$$:(t) = 0 + x^{K}(t)e_{K} , \quad e_{i}(t) = e^{K}(t)e_{K}$$

and a plane $[Y_0]$ in P(p,q)

$$[Y_0:(\lambda^i)\mapsto 0+\lambda^i\varepsilon_{q+i}] \quad . \tag{10}$$

The isotropy group H_0 of $[Y_0]$ consists of the matrices of the form:

1	ha	0	0	
ł	0	k,	ki	
	0	0	1	

where matrices $|h_{\beta}^{\alpha}|$ and |k'| are orthogonal.

A Lie algebra h_0 of H_0 is spaned by C^a_β , C^{q+i}_{q+j} , C^{q+i} . For any vector fields $t \mapsto a_\alpha(t) = a^K_\alpha(t) \varepsilon_K$ in E^{p+q} such that $(a_\alpha(t), a_\beta(t)) = \delta_{\alpha\beta}$, $(a_\alpha(t), c_i(t)) = 0$, a function

$$A: R \to I^{p+q}: t \mapsto \begin{bmatrix} a_{\alpha}^{K}(t) & e_{i}^{K}(t) & x^{K}(t) \\ 0 & 0 & 1 \end{bmatrix}$$
(11)

is a representation of the p.c. Σ (9) in a Lie group I^{p+q} with respect to the point $[Y_0]$ (10), since

$$[Y(t)] = A(t)[Y_0]$$
(12)

The 1-th step. Let A_0 be a representation of Σ of the form (11) and let $h_{(0)}$ be a function of the form $h_{(0)}: R \to H_0$. We set

$$n_o = \lim \left(C^o_{q+j}, C^o \right) , \quad I^{p+q} = h_0 \oplus m_0 \tag{13}$$

and

$$P_{o} = \lim \left(C_{q+1}^{1}, C^{a} \ \alpha > 1 \right) , P_{0} \subset m_{0} .$$
 (14)

Then for the representation $A(t) = A_0(t) \cdot h_{(0)}(t)$ we have:

$$\operatorname{pr}_{m_{o}} A^{-1} dA = h_{\alpha}^{\beta} k_{i}^{k} (a_{\beta}, de_{k}) C_{i+1}^{\alpha} + [(h_{\alpha}, de_{k}) k^{k} + (h_{\alpha}, dx)] C^{\alpha} , \quad (15)$$

where $h_{\alpha} = h_{\alpha}^{\beta} a_{\beta}$. The representation A satisfies a condition:

$$\Pr_{m_0} A^{-1} dA \subset P_0 \tag{(*,1)}$$

if and only if

$$h_{\alpha}^{\beta}k_{l}^{*}(a_{\beta}, de_{k}) = 0 \text{ for } \alpha > 1 \text{ or } l > 1$$

$$(16)$$

and

$$(h_1, de_k)k'' + (h_1, dx) = 0 \quad . \tag{17}$$

Easy calculation shows (see [9]) that h_{α}^{β} and k_{i}^{k} satisfy (16) iff h_{1}^{β} and k_{1}^{k} are solutions of the following system of equations:

$$h_{1}^{\beta}k_{1}^{k} = \left[\sum_{\alpha,i} (a_{\alpha}, \dot{c}_{i})^{2}\right]^{-1/2} (a_{\beta}, \dot{c}_{k}) ,$$

$$\sum_{\alpha,i} (h_{1}^{\beta})^{2} = 1 ,$$

$$\sum_{k} (k_{1}^{k})^{2} = 1 .$$
(18)

Lemma 6. (a) The system of equations (18) is solvable iff the p.c. Σ (9) is admissible.

(b) The solutions of (18) are of the form

$$k_1^{k} = \delta_1^{k}$$
, $h_1^{\beta} = \delta_1^{\beta}$ or $k_1^{k} = -\delta_1^{k}$, $h_1^{\beta} = -\delta_1^{\beta}$

iff e_1 is one of two directional vectors and a_1 is one of two normal directional vectors of Σ .

Proof. (a) When the system (18) is assumed to be solvable then $\sum_{\alpha,i} (a_{\alpha}, e_i)^2 > 0$. Let h_1^{β} , k_1^{k} be a solution of (18). For any k we have:

$$\sum_{\beta} h_1^{\beta} k_1^k a_{\beta} = \frac{\sum_{\beta} (\dot{e}_k, a_{\beta}) a_{\beta}}{\sqrt{\sum_{\alpha, i} (a_{\alpha}, \dot{e}_i)^2}} = \frac{\left(\dot{e}_k - \sum_i (\dot{e}_k, e_i) e_i\right)}{\sqrt{\sum_{\alpha, i} (a_{\alpha}, \dot{e}_i)^2}}$$

On the other hand: $\sum_{\beta} h_1^{\beta} k_1^{k} a_{\beta} = k_1^{k} \sum_{\beta} h_1^{\beta} a_{\beta} = k_1^{k} h_1$, where $h_1 := \sum_{\beta} h_1^{\beta} a_{\beta}$ is a non vanishing vector field in virtue of (18) (2). So the vector fields $\dot{e}_k - \sum_i (\dot{e}_k, e_i) e_i$

are parallel to h_1 and they do not vanish simultaneously, i.e. Σ is admissible.

Let Σ be assumed to be admissible now. Let e_1 be a directional vector of Σ and a_1 a normal directional vector of Σ . Then $(e_1, a_1) \neq 0$ and $(e_i, a_\alpha) = 0$ when $\alpha > 1$ or i > 1. In this situation the system (18) takes a form:

$$h_{1}^{1}k_{1}^{1} = \frac{(a_{1}, \dot{e}_{1})}{|(a_{1}, \dot{e}_{1})|}$$

$$h_{1}^{\beta}k_{1}^{k} = 0 \quad \text{for } \beta > 1 \text{ or } k > 1$$

$$\sum_{\beta} (h_{1}^{\beta})^{2} = 1 \quad , \quad \sum_{k} (k_{1}^{k})^{2} = 1 \quad .$$
(18)

It is clear that the system (18') is solvable and its only solutions are of the form:

$$k_1^{k} = \delta_1^{k}$$
, $h_1^{\theta} = \delta_1^{\theta}$ and $k_1^{k} = -\delta_1^{k}$, $h_1^{\theta} = -\delta_1^{\theta}$

(b) It remains to note that putting the solutions of the above form into (18) (1) we obtain the conditions on e_1 and a_1 to be the directional vector and the normal directional vector of Σ respectively.

Because of the above lemma, the considered p.c. Σ must be assumed to be admissible from now on. Moreover, when the representation A_0 itself satisfies (16) $(h_{(0)} = \text{ id })$ it has determined two columns up to the sign. Its (q + 1)-th column is formed by the coordinates of one of two directional vectors of Σ and its 1-th column is formed by the coordinates of one of two normal directional vectors of Σ . If a.p.c. is oriented then the orienting directional vector e_0 and the normal directional vector a_0 are chosen. So the mentioned columns can be exactly determined. Let us consider the condition (17) after the assumption that the representation A_0 satisfies (16). Since $h_1 = a_1$ and $(a_1, de_k) = 0$ for k > 1 then (17) takes the form:

$$(a_1, de_1)k^1 + (a_1, dz) = 0$$
(19)

Thus the coefficient k^1 of $h_{(0)}$ is determined by the formula

$$k^{1} = -\frac{(a_{1}, \dot{x})}{(a_{1}, \dot{c}_{1})} \quad . \tag{20}$$

When the representation A_0 itself satisfies (16) and (19) $(h_{(0)} = \text{ id i.e. } k^1 = 0)$ it has partially determined the last column by the condition:

 $(a_1, \dot{x}) = 0$ (21)

Finally, the representation A_0 of an a.o.p.c. satisfies (*,1) iff

$$\bar{\boldsymbol{e}}_1 = \boldsymbol{e}_{\bullet} \ , \ \bar{\boldsymbol{a}}_1 = \boldsymbol{a}_{\bullet} \ , \ (\bar{\boldsymbol{a}}_1, d\boldsymbol{z}) = 0 \tag{22}$$

where bars over e1 and a1 denote that these vectors are already determined.

The form $(\bar{a}_1, d\bar{e}_1) = (a_{\bullet}, de_{\bullet}) \neq 0$ is invariant for a.o.p.c. We shall use the notation:

$$\Pi := (a_{\bullet}, de_{\bullet}) \neq 0 \tag{23}$$

It can be easy verified that the group $H_1 = \{h \in H_0, pr_{m_0}(h^{-1}P_0h) \subset P_0\}$ is of the form $H_1 = \{h \in H_0, h_1^\beta = \delta_1^\beta, k_1^k = \delta_1^k, k^1 = 0\}$, what finishes the 1-st step.

It is clear, that the representation of Σ is completely determined in the first step, when Σ is an a.o.p.c. in P(1,1) or P(1,2). When p > 1 or q > 2 the process must be continued.

The 2-nd step. Let A_1 be an assumed to satisfy (*,1) representation of the a.o.p.c. Σ and let $h_{(1)}$ be a function of the form $h_{(1)}$: $R \to H_1$. We set:

$$m_{1} = \lim \left(C_{q+j}^{\alpha}, C_{\beta}^{\alpha}, C_{\beta}^{1}, C_{q+j}^{q+1}, C^{q+1} \right)$$
(24)

and

$$P_{1} = \lim \left(C_{q+1}^{1}, C^{\alpha} \ \alpha > 1 \ , C_{2}^{1}, C_{q+2}^{q+1} \right)$$
(25)

For the representation $A(t) = A_1(t)h_{(1)}(t)$ we have:

$$pr_{m_1} A^{-1} dA = h^{\beta}_{\alpha}(\bar{a}_1, da_{\beta}) C^1_{\alpha} + k^{\beta}_{l}(\bar{e}_1, de_{k}) C^{q+1}_{q+l} + \Pi C^1_{q+1} + + (h_{\alpha}, dx) C^{\alpha} + [(\bar{e}_1, de_{k}) k^{\beta} + (\bar{e}_1, dx)] C^{q+1} . \alpha, \beta, k, l > 1$$
(26)

Then A satisfies the condition:

$$\operatorname{pr}_{m_1} A^{-1} dA \subset P_1 \tag{(*,2)}$$

if and only if

$$\sum_{\beta>1} h_{\alpha}^{\beta}(\bar{a}_1, da_{\beta}) = 0 \quad \text{for } \alpha > 2 \qquad (27, a)$$

Z.Badsinsewski

$$\sum_{k=1}^{l} k_l^{k}(\bar{e}_1, de_k) = 0 \quad \text{for } l > 2 \qquad (27, e)$$

$$\sum_{k>1} (\bar{e}_1, de_k) k^k + (\bar{e}_1, dx) = 0$$
 (27, x)

Let us introduce the notations:

$$\langle d\bar{a}_1 \rangle = \sum_{\alpha>1} (d\bar{a}_1, a_\alpha) a_\alpha$$
, (28, a)

$$\langle d\bar{e}_1 \rangle = \sum_{i>1} (d\bar{e}_1, e_i) e_i$$
, (28, e)

and $h_{\alpha} = h_{\alpha}^{\beta} a_{\beta}$, $k_{l} = k_{l}^{\beta} e_{k}$. Then (27,a) and (27,e) can be written down in the following short form:

$$(h_{\alpha}, \langle d\bar{a}_1 \rangle) = 0 \quad \text{for } \alpha > 2 , \qquad (29, a)$$

$$(k_l, \langle d\bar{e}_1 \rangle) = 0 \quad \text{for } l > 2 , \qquad (29, e)$$

If an a.o.p.c. Σ is assumed to satisfy:

then (29,a) and (29,e) determine vector fields h_2 and k_2

$$h_2 = \frac{\langle \hat{a}_1 \rangle}{|\langle \hat{a}_1 \rangle|}$$
(31, a)

$$k_2 = \frac{\langle \bar{e}_1 \rangle}{|\langle \bar{e}_1 \rangle|} \tag{31, c}$$

A geometrical sense of the assumption (30) is explained by the following lemma (proved in [9])

Lemma 7. Given an a.p.c. Σ in P(p,q) with the directional vector e_0 and the normal directional vector a_0 . Then

$< de_{o} >= 0$ iff Σ is (p-1)-cylindric

 $\langle da_{\bullet} \rangle = 0$ iff Σ is orthogonally (q-1)-cylindric.

Thus (30) means that Σ is neither (p-1)-cylindric nor orthogonally (q-1)-cylindric.

When the representation A_1 itself satisfies (29,a) and (29,e) (i.e. $h_{(1)} = \text{id}$) then $h_2 = a_2$ and $k_2 = e_2$. So a_2 and e_2 (i.e. the 2-nd and the (q+2)-th columns of A_1) are determined

$$\bar{a}_2 = \frac{\langle \bar{a}_1}{|\langle \bar{a}_1 \rangle|}$$
(32, a)

$$\bar{e}_2 = \frac{\langle \bar{e}_1 \rangle}{|\langle \bar{e}_1 \rangle|} \tag{32,e}$$

Since $(da_{\alpha}, \bar{e}_1) = 0$ for $\alpha > 1$, $(de_k, \bar{a}_1) = 0$ for k > 1 and because of (23), (32,a), (32,e) we have:

$$d\bar{a}_1 = -\Pi \bar{e}_1 + \omega_1^2 a_2 , \ \omega_1^2 = (d\bar{a}_1, \bar{a}_2 \neq 0 ,$$
 (33, a)

$$d\bar{e}_1 = \Pi \bar{a}_1 + \Omega_1^2 e_2 , \ \Omega_1^2 = (d\bar{e}_1, \bar{e}_2 = 0 , \qquad (35, e)$$

and

$$\bar{a}_{2} = \frac{(\bar{a}_{1} - (\bar{a}_{1}, \bar{e}_{1}) \bar{e}_{1})}{\sqrt{(\bar{a}_{1})^{2} - (\bar{a}_{1}, \bar{e}_{1})^{2}}}$$
(34, a)

$$\bar{e}_{2} = \frac{\left(\dot{\bar{e}}_{1} - \left(\dot{\bar{e}}_{1}, \bar{a}_{1}\right)\bar{a}_{1}\right)}{\sqrt{\left(\dot{\bar{e}}_{1}\right)^{2} - \left(\dot{\bar{e}}_{1}, \bar{a}_{1}\right)^{2}}}$$
(34, e)

Let us consider the condition (27,x) for A after the assumption that the representation A₁ satisfies (27,a) and (27,e). Then the equation (27,x) can be written down in the form:

$$\Omega_1^2 k^2 = (\overline{e}_1, dx) \quad . \tag{35, } x)$$

So the coefficient k^2 of $h_{(1)}$ is determined by the formula:

$$k^2 = \frac{(\bar{\epsilon}_1, \dot{x})}{(F_1^2)}$$
, $\Omega_1^2 = F_1^2 dt$. (36, x)

When the representation A_1 itself satisfies (27,x) then

$$(\bar{\boldsymbol{e}}_1, \boldsymbol{x}) = 0 \tag{37, x}$$

It is the next after (21) condition, that partially determines the last column of A_1 . Finally, the representation of an a.o.p.c. Σ satisfies (*,2) if and only if it satisfies (22), (37,x) and its 2-nd and (q+2)-th columns are determined by (34,a) and (34,e) respectively. Note that the forms ω_1^2 and Ω_1^2 in (33,a) and (33,e) and the form $(h_2, dx) = (\bar{a}_2, dx)$ (see (26)) are invariant forms for Σ . We shall use the notation:

$$\omega^2 = (\bar{a}_2, dz) \tag{38}$$

The group H_2 obtained as the reduction of H_1 in the 2-nd step is of the form $H_2 = \{h \in H_0, h^p = b^p, k^a = b^a, k^a = 0, s = 1, 2\}$. After the 2-nd step the representation of Σ is completely determined when Σ is a neither (p-1)-cylindric nor orthogonally (q-1)-cylindric a.o.p.c. in P(p,q) for p = 1, q = 3; p = 2, q = 2; p = 2, q = 3.

Note that the written down in the formulas with symbols (a) and (e) parts of considerations in the 2-nd step were led independently. They have determined the vectors \bar{a}_2 and \bar{c}_2 respectively (i.e. the 2-nd and the (q+2)-th columns of \bar{A}) and have given us the formulas on $d\bar{a}_1$ and $d\bar{c}_1$. The results of the parts (a) and (e)

were used in the part denoted with (x) to obtain the conditions for the generating line. When p > 2 or q > 3 than the process should be continued in the steps analogous to the 2-nd one. After the assumption that the considered a.o.p.c. Σ is neither r-cylindric for any r = 1, ..., p - 1 nor orthogonally s-cylindric for any $e = 1, \dots, p - 1$, the part (a) finishes after q - 1 steps and the part (e) after p - 1steps. These parts determine vectors a1,..., a, E1,..., E, that form the columns of the representation \overline{A} of Σ except the last one. The last column of \overline{A} is completely determined in the part denoted with (z), that finishes after p steps. The part (z)gives the sequence of equations on the only generating line of Σ . The mentioned equations are following:

$$(\bar{a}_1, d\bar{z}) = 0, \quad (\bar{e}_r, d\bar{z}) = 0, \quad 1 \le r < p.$$
 (39)

Definition 9. The unique satisfying (39) generating line \bar{x} of an assumed to be neither r-cylindric nor orthogonally e-cylindric for any $r = 1, \dots, p - 1$. $e = 1, \dots, q - 1$, a.o.p.c. Σ in P(p,q) is called the striction line of Σ .

It can be easy verified that if x is an arbitrary generating line of Σ then the striction line \overline{z} of Σ can be obtained in the form:

> $\bar{z}(t) = z(t) + \lambda^{i}(t)\bar{e}_{i}(t)$ (40)

where λ' are given by the following formulas:

$$\lambda^{1} = -\frac{(\dot{x}, \bar{a}_{1})}{(\dot{\bar{c}}_{1}, \bar{a}_{1})},$$

$$\lambda^{2} = -\frac{(\dot{x}, \bar{c}_{1}) + \dot{\lambda}^{1}}{(\dot{\bar{c}}_{2}, \bar{c}_{1})}$$

$$\lambda^{k+1} = -\frac{(\dot{x}, \bar{c}_{k}) + \dot{\lambda}^{k} + \lambda^{k-1}(\dot{\bar{c}}_{k-1}, \bar{c}_{k})}{(\dot{\bar{c}}_{k+1}, \bar{c}_{k})}, \quad k = 2, \dots, p-1 \quad (\text{see } [9])$$
(41)

Note that the constructed representation \bar{A} of Σ can be understood as a linear orthonormal frame field in E^{p+q} alond the striction line of **S**. A linear orthonormal frame is not a frame in P(p,q) in the sense of Cartan but it is much more convenient in the considerations than a frame understood as a sequence of planes in P(p,q). That is why we shall call the representation \bar{A} itself a frame field along Σ .

The main results of the paper can be formulated in the following theorem. **Theorem 1.** Given an a.o.p.c. Σ in P(p,q)

$$\Sigma : t \mapsto \left[Y(t) : (\lambda^i) \mapsto z(t) + \lambda^i e_i(t) \right]$$

that is assumed to be neither r-cylindric for any $r = 1, \dots, p-1$ nor orthogonally s-cylindric for any $s = 1, \dots, q - 1$. There exists a linear orthonormal frame field in EP+1

$$A(s) = [\overline{a}_1(s), \ldots, \overline{a}_q(s), \overline{c}_1(s), \ldots, \overline{c}_p(s), \overline{z}(s)]$$

such that

A p.c.
$$\Sigma : \boldsymbol{s} \mapsto [\hat{Y}(\boldsymbol{s}) : (\lambda^{i}) \mapsto \bar{z}(\boldsymbol{s}) + \lambda^{i} \bar{c}_{i}(\boldsymbol{s})]$$
 (T1,1)

and Σ determine the same curve $[\overline{\Sigma}] = [\Sigma]$ in P(p,q).

$$\begin{split} \bar{z}_{1} &= e_{\bullet} \text{ is the orienting directional vector of } \Sigma \\ \bar{a}_{1} &= a_{\bullet} \text{ is the normal orienting directional vector of } \Sigma \\ \bar{a}_{2} &= \frac{\dot{z}_{1} - (\dot{z}_{1}, \dot{a}_{1}) \ddot{a}_{1}}{\sqrt{(\dot{z}_{1})^{2} - (\dot{z}_{1}, \dot{a}_{1})^{2}}} \\ \bar{a}_{2} &= \frac{\dot{a}_{1} - (\dot{a}_{1}, \dot{z}_{1}) \dot{z}_{1}}{\sqrt{(\dot{a}_{1})^{2} - (\dot{a}_{1}, \dot{z}_{1})^{2}}} \\ \bar{e}_{i} &= \frac{\dot{z}_{i-1} - (\dot{z}_{i-1}, \dot{z}_{i-2}) \ddot{z}_{i-2}}{\sqrt{(\dot{z}_{i-1})^{2} - (\dot{z}_{i-1}, \ddot{z}_{i-2})^{2}}}, \quad i = 3, \dots, p \\ \bar{a}_{\alpha} &= \frac{\dot{a}_{\alpha-1} - (\dot{a}_{\alpha-1}, \dot{a}_{\alpha-2}) \dot{a}_{\alpha-2}}{\sqrt{(\dot{a}_{\alpha-1})^{2} - (\dot{a}_{\alpha-1}, \ddot{a}_{\alpha-2})^{2}}}, \quad \alpha = 3, \dots, q \end{split}$$

I is the striction line of Σ . The equations of the linear orthonormal frame field \overline{A} are of the form:

$$\dot{\bar{e}}_{1} = \bar{a}_{1} + F_{1}^{2} \bar{e}_{2}$$

$$\dot{\bar{e}}_{k} = F_{k}^{k-1} \bar{e}_{k-1} + F_{k}^{k+1} \bar{e}_{k+1}, \quad k = 2, \dots, p-1$$

$$\dot{\bar{e}}_{p} = F_{p}^{p-1} \bar{e}_{p-1}$$

$$F_{k+1}^{k+1} = -F_{k+1}^k$$

$$a_{1} = -\epsilon_{1} + f_{1}a_{2}$$

$$a_{0} = f_{\beta}^{\beta-1}a_{\beta-1} + f_{\beta}^{\beta+1}\bar{a}_{\beta+1}, \quad \beta = 2, \dots, q-1$$

$$a_{q} = f_{q}^{q-1}\bar{a}_{q-1}$$

$$f_{\beta}^{\beta+1} = -f_{\beta+1}^{\beta}$$

$$z = f^{\alpha}\bar{a}_{\alpha} + F\bar{c}_{\beta}, \quad \alpha = 2, \dots, q$$

$$(z = F\bar{c}_{p} \text{ when } q = 1)$$

where

$$(d\bar{e}_{1},\bar{a}_{1}) = \Pi = : de \quad (i.e. \ (\bar{e}_{1}(e),\bar{a}_{1}(e) = 1)$$

$$F_{i}^{i+1}(e) = -F_{i+1}^{i}(e) := (\bar{e}_{i}(e),\bar{e}_{i+1}(e)), \quad i = 1,...,p-1$$

$$F_{i}^{i+1}(e) > 0 \text{ for } i = 1,...,p-2$$

$$f_{\gamma}^{\gamma+1}(e) = -f_{\gamma+1}^{\gamma}(e) := (\bar{a}_{\gamma}(e),\bar{a}_{\gamma+1}(e)), \quad \gamma = 1,...,q-1$$

$$f_{\gamma}^{\gamma+1}(e) > 0 \text{ for } \gamma = 1,...,q-2$$

$$f^{\gamma}(e) := (\bar{z}(e),\bar{a}_{\gamma}(e)), \quad \gamma = 2,...,q$$

$$F(e) := (\bar{z}(e),\bar{e}_{p}(e)).$$

(T1, 2)

(T1, 3)

are invariants of Σ .

Definition 10. (a) The vectors \bar{e}_i (i = 1, ..., p) and \bar{a}_{α} $(\alpha = 1, ..., q)$ determined in (T1,2) we shall call the *i*-th directional vector and the α -th normal directional vector of Σ respectively.

(b) The appearing in (T1,3) scalar functions we shall call as follows:

$$F_i^{i+1} > 0$$
 $(i = 1, ..., p-2)$ the *i*-th curvature of Σ
 F_{p-1}^{p} the torsion of Σ
 $f_{\gamma}^{\gamma+1} > 0$ $(\gamma = 1, ..., q-2)$ the γ -th normal curvature of Σ
 f_{q-1}^{q} the normal torsion of Σ
 f_{γ}^{γ} $(\gamma = 2, ..., q)$ the γ -th strictional curvature of Σ

F the strictional torsion of Σ .

Theorem 2. Given scalar functions (of the class C^{∞}) of the parameter $s \in R$

$$F_{i}^{i+1} : \bullet \mapsto F_{i}^{i+1}(\bullet) , \quad i = 1, ..., p-1$$

$$F_{j}^{j+1}(\bullet) > 0 \quad \text{for } j = 1, ..., p-2$$

$$f_{\alpha}^{\alpha+1} : \bullet \mapsto f_{\alpha}^{\alpha+1}(\bullet) , \quad \alpha = 1, ..., q-1$$

$$f_{\beta}^{\beta+1}(\bullet) > 0 \quad \text{for } \beta = 1, ..., q-2$$

$$f^{\gamma} : \bullet \mapsto f^{\gamma}(\bullet) , \quad \gamma = 2, ..., q$$

$$F : \bullet \mapsto F(\bullet)$$

Then the system of equations of the form (e) (a) (x) from (T1,3) determines: (T2,1): A linear orthonormal frame field in E^{p+q}

$$A(s) = [a_1(s), \dots, a_n(s), c_1(s), \dots, c_n(s), x(s)]$$

up to the isometry in E^{p+9}.

(T2,2): An a.o.p.c. $\Sigma : e \mapsto [Y(e) : (\lambda^i) \mapsto z(e) + \lambda^i e_i(e)]$ in P(p,q) (up to the isometry) that is neither r-cylindric for each $r = 1, \ldots, p-1$ nor orthogonally e-cylindric for each $e = 1, \ldots, q-1$, and

1. e_1 is the 1-th orienting directional vector of Σ

2. e_j (j = 2, ..., p) is the j-th directional vector of Σ

3. a_1 is the 1-th normal orienting directional vector of Σ

4. a_{$$\beta$$} ($\beta = 2, ..., q$) is the β -th normal directional vector of Σ

5. z is the striction line of Σ

0. F^{i+1}_{i} (i = 1, ..., p - 2) is the i-th curvature of Σ

- 7. F_{-1}^{\prime} is the torsion of Σ
- 8. $f_{\alpha}^{\alpha+1}$ ($\alpha = 1, ..., q-2$) is the α -th normal curvature of Σ
- 9. \int_{a-1}^{q} is the normal torsion of Σ
- 10. f^{γ} ($\gamma = 2, ..., q$) is the γ -th strictional curvature of Σ
- 11. F is the strictional torsion of Σ .

Proof. It is well known that the system of differential equations (T1,3) has the unique solution $A(s) = [a_1(s), \ldots, a_q(s), e_1(s), \ldots, e_p(s), x(s)]$ with the initial condition $A(s_0) = A^0 = [a_1^0, \ldots, a_q^0, e_1^0, \ldots, e_p^0, x^0]$. Because of the skewsymmetricity of the matrices of parts (e) and (a) of the system (T1,3), if A^0 is an orthonormal frame in E^{p+q} so is A(s) for each s. Since A^0 is an arbitrary orthonormal frame then A is determined up to the isometry. (T2.2) is a direct consequence of the properties of solutions of (T1,3). Thus dim ($\ln(e_1, \ldots, e_p, \dot{e}_1, \ldots, \dot{e}_p)$) = p + 1 and dim ($\ln(e_1, \ldots, e_p, \dot{e}_1, \ldots, \dot{e}_p$)) = p then Σ is admissible and e_1 is the 1-th

orienting directional vector of Σ . Moreover, $\dot{e}_1 - \sum_{i=1}^{n} (\dot{e}_1, e_i) e_i = a_i$ than a_i is the

1-th normal orienting directional vector of Σ . Easy calculations show that solutions e_2, \ldots, e_p , a_2, \ldots, a_q of (e) and (a) must be of the form (T1.2) then they are succesive the directional vectors and the normal directional vectors of Σ respectively. Since $F_k^{k+1} \neq 0$ for $k = 1, \ldots, p-1$ and $f_{\beta}^{\beta+1} \neq 0$ for $\beta = 1, \ldots, q-1$ Σ is neither k-cylindric nor orthogonally β -cylindric. Because of (T1.3) (x) we have $(x, a_1) = 0$ and $(\dot{x}, e_i) = 0$ for $i = 1, \ldots, p-1$ so x is the striction line of Σ . The names of the functions F_i^{i+1} , $f_{\alpha}^{\alpha+1}$, f^{γ} , F are suitable because of Definition 10.

REFERENCES

- Berezina, L.Ju., Manifolds of straight line planes in En. (Russian) Izv. Vysš. Ućebn. Zaved. 8 (111) (1971), 11-15.
- [2] Lumiste, Ju.G., Differential geometry of ruled surfaces in R4, (Russian) Mat.Sb. 50 (92) (1960), 303-220.
- [8] Lumiste, Ju.G. Multidimensional ruled subspaces of endidean space, (Russian) Mat.Sb. 50 (97) (1981), 411-420.
- 4! Norden, A.P., Generalized geometry of twodimensional ruled space, (Russian), Mat.Sb. 18 (60) (1946), 180-152.
- [5] Plužnikow, I.S., Ruled Surfaces, Russian, Moscow 1964.
- Badziszewski, K., Méthode du repére mobile et inturiants intégraux dans an groupe de Lie, Bull. Acad. Polon. Sci 18 (1970), 257-230.
- [7] Radziszewski, K., Specialization of a frame and its geometrical interpretation, Ann. Polon. Math. 35 (1:78), 220-243.
- [8] Badziazewski, K., Specialization of a frame on a surface in E', Period. Math. Hungar. 9 (1978), 79-91.
- Radziszewski, L., Specialization of a frame along a curve in the space P(p, q) of p-dimensional planes in (p+q)-dimensional endidean space E^{p+4}, (Polish), Thesis, Maria Curle - Skiodowska University, Lublin 1963.

- [10] Scerbakow, R.N., Foundations of a Method of Exterior Forms and of Ruled Differential Geometry, (Russian), Tomsk 1978.
- [11] Wagner, V., Differential geometry of the family of Re's in Rn, Mat.Sb. 10 (52) (1942), 165-209.

STRESZCZENIE

Niech P(p,q) będzie przestrzenia jednorodna plaszczysn p-wymiarowych w p+q-wymiarowej przestrzeni euklidesowej E^{p+q} . W pracy zdefiniowano pojęcie krzywej w P(p,q) oraz wyróżniono specjalne typy krzywych: krzywe dopuszczalne, krzywe r-walcowe i krzywe ortogonalnie swalcowe. W prowadzone zostały pojęcia wektora kierunkowego krzywej dopuszczalnej. Następnie, przy użyciu metody opracowanej przez K.Radziszewskiego, skonstruowano pole ortonormalnych reperów liniowych dla szerokiej klasy krzywych w P(p,q). Uzyskano zupelny układ niezmienników krzywej w P(p,q) oraz równanie różniczkowe skonstruowanego pola reperów. Pracę kończy twierdzenie o wyznaczaniu krzywej w P(p,q) przez zupelny układ jej niezmienników.

PE310ME

Пусть P(p,q) обозначает однородное пространство *p*-мерных плоскостей в p + qмерном заклидовом пространстве E^{p+q} . В работе определено понятие кривой в P(p,q)и выделены специальные типы кривых: допустимые кривые, *r*-цилиндрические кривые и ортогонольно *s*-цилиндрические кривые. Введены понятия направляющего вектора и нормального ноправлеющего вектора допустимой кривой. Затем, пользуясь методом разработанным К.Радзишевским было сконструировано поле ортонормальных линей ных реперов для широкого класса кривых в P(p,q). Получена полная система инвариантов кривой в P(p,q) и дифференциальное уравнение сконструированного поля реперов. Работу кончает теорема об определению кривой в P(p,q) полной системой ее инвариантов.