
ANNALES UNIVERSITATIS MARLAE CURIE-SKLODOWSKA 

LUBLIN-POLONIA

VOL .XXXIX. 17 ________ SECTIOA________________________ 1985

Instytut Matematyki 
Uniwersytet Marii Curie-Skiodowskiej

Z.RADZISZEWSKI

The Frame Field Along a Curve In the Space P(p,q) 

of p-dlmenslonal Planes In the (p + gj-dlmenslonal 
Euclidean Space

Pole reperów wzdłuż krzywej w przestrzeni P(p, q) 
płaszczyzn p- wy miarowych w (p + q (-wymiarowej 

przestrzeni euklidesowej

Поле реперов вдоль кривой в пространстве Р(р, ę) 
р-мерных плоскостей (р + д)-мерного 

эвклидового пространства

1. On the metod applied in the paper. To construct a frame field along 
a curve in the space P(p,q] and to obtain differential equations of it we used the 
method due to K.Radaiszewski in •"]. The method is different from the classic 
Cartan’s one, moreover, we have introduced a certain modification of it. That is 
why the applied construction should be explained in a few tifords.

Let (Af, G} be a homogeneous space, where At is a manifold and G is a Lie group 
of transformations of Af. Given a surface X : Rn Af : u . X(u) in Af. Let po 
be an arbitrary point of Af. Any function of the form A : R" —+ G : u . A(u) such 
that A'(u) = A(u) • po is called a representation of the surface X in a Lie group G 
with respect to the point po

Let fto be a fixed frame at po. The formula R(u) = A(u) • Ro determines one- 
to-one correspondence between the representations of X with respect to po and the 
frame fields along X. So the construction of a frame field o i—♦ R(u) along X cat. be 
replaced by the construction of a representation u <—» A(u) of X in G. K.R adz isze- 
wsk i has proposed in (7i the following conctruction of the representation A of X in 
G, We take an arbitrary representation Ao of X with respect to the fixed point po- 
Each representation A of X with respect to po is of the form A(u) = Aq(u) -Afu)
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for a certain function h : R" — Hq C G taking its values in the isotropy group Hq 
of po-

Let us consider the Maurer-Cartan form A~ldA for the representation of the 
form A = Aoh. Let nio be a linear subspace of a Lie algebra 7 of G such that 
7 = Ao 6 mo, where Ao is a Lie algebra of Ho, and let pr mo denotes the projection 
onto mo- Then

Pr m^'ldA = pr moA_1Ao ldAoh.

We want the representation A to give the form A~ldA that satisfies a condition:

pr moA-1dA C Po (*, 1)

for a certain linear subspace Pq C ttiq. We choose such mo and Pq that make 
the condition (*,1) as strong restriction for A as possible. When there exists one 
and only one representation A = Aq/io that satisfies then the construction
is finished. If not, we repeat the above process taking any representation Ai of 
the property (*,1) instead of Ao, the group Hi = {h E Ho, pr mo(A~lPqK) C Po} 
instead of Hq and an adequate condition .(*,2) instead of (*,1). The process is 
finished when after a finite number k of steps we obtain the only representation 
A = A* = Aohohi .. .fih-i that satisfies a condition:

Pr ma.^dAk C Pi-l. (*.A)

The form $ = A~ldA is invariant for X up to the transformations from G. So 
the coefficients of $ in any basis of a Lie aigebra 7 form the complete system of 
invariants of A’. The equation dA = A$ is the equation of the constructed frame 
field along A’.

The author of the present paper has introduced a certain modification of the 
above method. In the first step a general form of the representation Ao of A' was 
taken and then the properties of Ao that make it satisfying the condition (*,1) were 
found. So was done in the next steps. This way turns out to be very convenient in 
a practical applications.

2. The space P(p,q) and curves in It. Given the Euclidean space Ep+1 = 
(Rr+1, I’’+1, ( , )), where P4-* is the group of isometries of Rp^‘l and ( , ) is the 
scalar product.

Definition 1. A p-dimensional, passing the point 1 and spaned by the vectors 
«1,...,«, plane in Er+g is an image set [Kj := Y(Rf) of a function:

K:P8-P’+» :(Ai)H-»x + A,e< , » = 1....... p. (1)

It can be assumed that (e,-,«y ) = 6,-y.
Let P(p,q) be a set of al! p-dimensional planes in E,+1. acts on Pip,q) 

by the rule:
[Y\EP(p,q),

where gY is the usual composition of F and g.
Lemma 1. (P[p,q), {p~Pt) it a komogeneout tpaee.
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Proof. It is obvious that /F+v acts on P(p,?) transitively, so we have only to 
show that the action is effective. Let f and g be two different isometries of Er~i. 
There exists such a point xo £ RpJ"’ that /(xo) # j(zq}- Let [Z\ £ P(p,q) be any 
plain passing the point </(xo) that does not contain /(xo) aQd l«t I
Then Z([K!) 0(iK|), so f and g are different transformations of Pip.q).

Definition 2.

(a) A parametrized curve (we shall write p.c.) in P(p,q) is a function:

£ :R - Pip,q) :t<-+iF(t)i (2)

where F(t) : Rr - Rf+1 : (A’ ) e- x(t) + A’e,(t)

(b) A curve in P(p,q) is an image set (El := E(/?)

(c) Given a p.c. S in P<p,q) as in (a)., Any curve in £’*’ of the form
j/(f) = x(t) + A'(t)«,(t) is called the. generating line both of the p.c. S and 
the curve [£].

We shall use the notation F =
dF
dt

for a derivative of a function F of one
variable. It can be easy proved the following (see (9j):

Lemma 2. Given F(f) : Rr —♦ R^'' : (A’) — x(f! — A‘e,(t) and Zit) : Rr — 
Rp~q : (/»’) — 1/(0 + p'E.(t) • If[Y(t)j = !Z(t)i for any t then:

- iin (ej,.. •, Cp, ey, .. ■, Cp) — hn (Ft,. • •, E p. Fi• • • •. Fp)

where lia (st,...,vrl denotes a vector space spaned by the vectors Vy,...,or. 
Definition 8. A p.c. in P(p,q) is called admissible (we shall write a.p.c.) if:

dim ( lin («i,...,«p,êi,...,ép)) — p + 1 . (3)

We shall prove an important property of an a.p.c. in Pip.q). 
Lemma 8. The planes [F(t)]'o/art a.p.c. E : t e-+ !F

spaned by vector fields dj,.. ,,ef of the following property:
(t)j in P(p.q) can be

dim ( Iin (ei,... ,ep,e2,...,ep)) = p . (4)

Proof. Let an a.p.c. S be given in the form: E : t »-* F(t) : (A’) >— 
x(f) — A‘Ej(t)-. Since E is admissible then there exist a pon vanishing, orthogonal to 
lin (JSi,...,Fp) vector fieid v and scalar functions fi such that the projections of 
£,• onto the orthogonal complement of (Ey,...,Er) can be expressed in the form:

F F
’ E(z-)'* >0 •

<•=1 «=1
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Any vector fields ej,...,«, spaning the planes [K(t)j are of the form e,- = bdEj 
where [fc-j is an orthogonal matrix. Therefore e, = b’Ej + bfEj, and

ii - 52(e,,e*)e* = «< - £(«,-,£*)£* =
*«=1 S=X

= b>E}- + bfa - b^E,, - bf V(Ej.EfclEk =
*=i

= b> (e, - V(Ey,E*)E^ = bffjv

If we set frj = £(/<)’
.1=1

-1/2

, then:

. I [£''■>•] -1/2

«< ~ 53 («■, «*)«*
*=i

V , for 1=1

for i > 10 ,

i.e. «,■ E lin (ei,...,e,) for » > 1.
It is obvious that in the mentioned in Lemma 3 situation we have:

dim ( lin (ei,...,6„«i)) = p + I . (5)

A vector field cj of the property (4) is determined for an a.p.c. up to the sign.
Definition 4. A vector field ei mentioned in Lemma 3 (as well as -«i) is called 

the directional vector of an a.p.c. in P(p,q).
Definition 5. An a.p.c. in P(p,q) is oriented (we shall write a.o.p.c.) if one 

of two directional vectors of it is marked out. The orienting directional vector will 
be denoted by e».

Definition 6. Given an p.c. E:tw [K(t) : (A*) >-+ z(t) + A’«,(«)] in P(p,q). 
A curve:

E0’;tw[y»(t):(M‘>)^J/(t) + M-aa(t)| , a = i,...,g • (6)

in P(q,p) such that (o„,e,) = 0 for any o and » (i.e. (F(t)) and [K°’(f)j are 
orthogonal planes for any t) is called an orthogonal to E p.c. relative to the curve 
1Z: t p(t) in Ev+1.

Lemma 4. //E is an a.p.c. in P(p,q) so is any ortiogonal to E p.c. E0* in 
F(q,p). Moreover, if c\ is the directional vector, of E then the normalized projection 
of ix onto the linear orthogonal complement of lin (e1}... ,eF) is the directional 
vector oJTP*.
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Proof. In virtue of Lemma 3 it can be assumed that: «i - 5 («i,e*,e* = 0
*=1

F
and ii - \7(e,-,ct)et = 0 for i > 1 i.e. <4 is the directional vector of E. Let E°’ in' 

4=1
P(q,p) be given in the form:

E°’ : t ~ [K(t) : (M°) -* y(0 +./*°a«(0] •

a t a _

Then 7: 0 and V (e,-,iia,ao ?= 0 fort > 1 therefore 5 = 0
<» = 1 a = l o = l
5

and 5^(an,«i)ao = 0 for 1 > 1 what implies that for any o = 1,...,«/
0 = 1

»
«o - 52(®«’a*)a* =

$=i

and that these vector fields do not vanish simultaneously, so E0’ is admissible.
It can be assumed that a\ is a directional vector of E0’ from now on. Then

a a

di - 5>i,«,)a, p 0 and do - 57(da,ag)tt^ = 0 for a > 1 .
0=1 0=1

Consequently
3(ei,aO(r)#0 , 3(ai,«i0) p- 0 ,Jo »„■

7 V(c,-,aa) = 0 . V Vido,«,) = 0 ,
1 > 1 u a > 1 i

P
so (ej,ai) 0 and (e,-,co) = 0 when t > 1 or a > 1 i.e. ej - 57(tfi,e*)e* and <11 

*=1
have the same direction.

The above lemma allows us to introduce the following definition.
Definition 7. Given an a.o.p.c. E : 11-+ [Y(t) : (A’) x(t) ■+■ A’e,(t)] in Pl.p,q)

oriented with e. = ej. The induced orientation of an orthogonal to E a.p.c. E0|r in 
P(q,p) is an orientation determined by:

r \
e.-V(«.,e*)cJ . (7)

4=2 /

a. is called the normal orienting directional vector of E.
We can introduce a certain generalization of a notion of the cylindric ruled

surface in E3.
Definition 8. A parametrized curve E : t »-+ (K(t)j in P(q,p) is called r- 

cylindric (1 < r < p) if there exists an r-dimensional constant plane parallel to

-1/2

a, =
4=2
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1
-1
0

i^i; =

1^1:={

Given a p.c. E in P(p.a)

every plane (K(t)j and the dimension r is greatest possible. A p.c. E in P(p,q) 
is called orthogonally s-cylindric (l < t < q) if any orthogonal to E p.c. E°* is 
t-cylindric.

It can be shown the following (see [9]):
Lemma E. A p.c. E : ti-+ [K(t)j in P(q,p) it r-cytindric iff the planet [K(t)l 

can be tpaned by vectors ci,...,cf of the property

dim (lin (ei,...,e„«i,.= r (8)

where r it greatest possible.
Note that a p.c. in P(p,q) that is not p-cylindric need not be admissible.
8. The construction of a frame field along a curve In P(p,q). We shall 

use the following notations:

— I,...,p, ot, ft ,7 — • • • »4 5 F, J, K = l,...,p + ^ .

(e/,0) is an orthonormal system of coordinates in Ep+?. Cj ,Gl (I < J) are the 
matrices that form a basis of Lie algebra P+1 of P+1, where:

if a = I , 6 = J 
ifa = J , b = I
for remaining a , b from 1,.. .,p + q + 1

if a, 6 = 1....... p-t-?ora = p + 9+l
if6=p + 7+ l

+ , (9)

x(t) = 0 + xK(t)eK , ti(t) = (t)eK

and a plane [loj in P(p,q)

[yo:(A<)~0 + A’e,+,] . (10)

The isotropy group Ho of [IoI consists of the matrices of the form:

' A> 0 0‘
0 kj k<
0 0 1

where matrices pijj and li’-J are orthogonal.

A Lie algebra ho of Ho is spaned by C%, Gj+p - F°r any vector fields 
< — ao(t) = (t)eK in E”+’ such that (ao(t), a„(t)) = bap, (aa({),e;(t)) = 0, a 
function

A : R -* P+< : t ~ ] (H)
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is a representation of the p.c. £ (9) in a Lie group I,+1 with respect to the point 
fl'o) (10), since

|Y(0j=A(t)[Koj (12)

The 1-th step. Let Ao be a representation of S of the form (11) and let A(o) 
be a function of the form A(o) . R —> Hq. We set

mt = lin (Cf+J-,Ca) , P’"*'* = Ao m0 (13)

and
F„ = lin (Gj+1,C° a > l) , PQ C m0 . (14)

Then for the representation A(t) = Ao(t) • A(o)(t) we have:

pr moA~3dA = h^k*(ag,det)C“+l + [(Aa,de*)A* + (ha,dx)]Ga , (15)

where A„ = Af a^. The representation A satisfies a condition:

Pr m/" C Po (*-D

if and only if
h%kf(ap,dck) = 0 for a > 1 or I > 1 (16)

and
(Ai,de*)A* + (Ai,dx) = 0 . (17)

Easy calculation shows (see [9]) that Af and A* satisfy (16) iff Af and A* are
solutions of the following system of equations:

", -i/2

1 hiki = (ap,ik) ,
a »<

> L(*f)‘ = i. (18)

» £«)“ = >■

Lemma 6. (a) The system of equations fl8) is solvable iff the p.c. £ (9) is 
admissible.

(b) The solutions of (18) are of the form

*{ = i* , A? = if or A* = -i* , A? = -if

iff ei is one of two directional vectors and ai is one of two normal directional vectors 
ofZ.
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Proof, (a) When the system (18) is assumed to be solvable then E(ffl» > *•')2 •* ®- 
0,1

Let Af, A* be a solution of (18). For any * we have:. .

On the other hand: E = ** E^iaP ~ *Mi, where hk := E^faP 18 *
0 J 3

non vanishing vector field in virtue of (18) (2). So the vector fields ê* - EC^*»^)^'
I

are parallel to hi and they do not yanish simultaneously, i.e. E is admissible.
Let £ be assumed to be admissible now. Let ci be a directional vector of £ and

aj a normal directional vector of E. Then (ej,ai) / 0 and (e,-,ao) = 0 when a > 1 
or » > 1. In this situation the system (18) takes a form:

(ai,*i)

hi=0 for d > 1 or k > 1 (18’)

5>?)? = r, 5>î)2 = i.
fi *

It is clear that the system (18’) is solvable and its only solutions are of the form:

A* = , A? = and = -if , A? = -if .

(b) It remains to note that putting the solutions of the above form into (18) (1) 
we obtain the conditions on ei and ai to be the directional vector and the normal 
directional vector of £ respectively.

Because of the above lemma, the considered p.c. E must be assumed to be 
admissible from now on. Moreover, when the representation Aq itself satisfies (16) 
(A(o) = id ) it has determined two columns up to the sign. Its (q + l)-th column 
is formed by the coordinates of one of two directional vectors of £ and its 1-th 
column is formed by the coordinates of one of two normal directional vectors of £. If 
a.p.c. is oriented then the orienting directional vector e, and the normal directional 
vector a, are chosen. So the mentioned columns can be exactly determined. Let us 
consider the condition (17) after the assumption that the representation Ao satisfies 
(16). Since hi = ai and (ai,de*) = 0 for k > 1 then (17) takes the form:

(andeJA1 + (ai,dx) = 0 (19)
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Thus the coefficient k1 of A^0) is determined by the formula

M = - (ai, x) 
(ai.ci)

(20)

When the representation Ao itself satisfies (16) and (10) (A(o) = id i.e. kl = 0) 
it has partially determined the last column by the condition:

(«1,«) = 0

Finally, the representation Ao of an a.o.p.c. satisfies (*,1) iff 

«1 = e, , ai = a, , (a1,da) = 0

(21)

(22)

where bars over ei and at denote that these vectors are already determined.
The form (5i,dei) = (a,,de,) 0 is invariant for a.o.p.c. We shall use the

notation:
n := (a«,de»)/0 (23)

It can be easy verified that the group Hi = {hEH0, prmo (h~lPoh) C Po} 
is of the form Hi = G Hq , hf = , A* = 6* , k1 = 0 j, what finishes the 1-st

step.
It is clear, that the representation of E is completely determined in the first 

step, when E is an a.o.p.c. in P(l,l) or P(l,2). When p > 1 or q > 2 the process 
must be continued.

The 2-nd step. Let Ai be an assumed to satisfy (*,l) representation of the 
a.o.p.c. E and let A(i) be a function of the form : R —► Hj. We set:

”>i = lin

and
Pi= Bn (Cj+l, Ca a>l , C2‘, C£»)

For the representation A(t) = Ai(t)A(!)(t) we have:

pr m,A-1dA = hZ(ai,dafi)Cl + kf(li,det)C^^ + nC}+1+ 

+(h„,dx)Ca + [(Snde*)** + (?1,d»)lC»+1 .a,0,k,l > 1

Then A satisfies the condition:

Pr miA_1dAc Pi

(24)

(25)

(26)

(*.2)

if and only if
A^(Si, da^) = 0 for a > 2 (27, a)
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57 A*(ii,de*) = 0 for / > 2 
»>1

(27,e)

57(g»^c*)^*+ (2i»^*) - °
*>i

Let us introduce the notations:

(27,x)

< dd\ >— 5 \(diii,aa)aa ,
O>1

(28, a)

< dei >= 52(<f?1’e,')e< ’ (28,e)
i>l

and A* - b%ap, A( = A*e*. Then (27,a) and (27,e) can be written down in the 
following short form:

(A„, < d&i >) = 0 for a > 2 ,

(A/, < dci >) — 0 for I > 2 , 

If an a.o.p.c. £ is assumed to satisfy:

(29, a) 

(29,e)

< 0 ( i.e.

< dei 0 ( i.e.

< da, 0) ,

< de. ># 0) ,
(30)

then (29,a) and (29,e) determine vector fields A2 and A2

< ai >
I < 3l > I

k2
< ii >

I < «i > I

(31,a)

(31, e)

A geometrical sense of the assumption (30) is explained by the following lemma 
(proved in [9])

Lemma 7. Given an a.p.c. £ in P(p,q) with the directional vector e, and the 
normal directional vector a,. Then

< d^ >= Q iff L it (p - l)-eylindric

< da, >= 0 iff £ it orthogonally (q - \ )-cyiindric .

Thus (30) means that £ is neither (p - l)-cylindric nor orthogonally (q - 1)- 
cylindric.

When the representation itself satisfies (29,a) and (29,e) (i.e. A(i) — id ) 
then A2 — a2 and A2 = e^. So a2 and e2 (i.e. the 2-nd ai i the (q+2)-th columns 
of Ai) are determined

(32,a)
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< ft > . ,
"2 “ i<ft >1 ’e

Since (dao,ft) = 0 for a > 1 , (de>,âi) = 0 for k > 1 and because of (23), 
(32,a), (32,e) we have:

dâi — -Tlêi + w2a2 , w2 = (d&x,&2 0 ,

and

ddj = Iltti + n|c2 , O2 — (dëi,S2 — 0 

(ft - (ft,ft) êi)
ft =

ft

\/(âi) - (at,ft)2 

(ft - (ft.ft)ft)

V (ft)2 ~ (ft-ft)2

(33,a) 

(35,e)

(34, a)

(34, e)

Let us consider the condition (27,x) for A after the assumption that the repre­
sentation Ai satisfies (27,a) and (27,e). Then the equation (27,x) can be written 
down in the form:

Q2*2 = (ft,<iz) . (35,z)

So the coefficient k2 of is determined by the formula:

*2=^’ ai=Ftdt ■ (3<M)

When the representation Ai itself satisfies (27,x) then

(ft, x) = 0 (37, z)

It is the next after (21) condition, that partially determines the last column 
of A\. Finally, the representation of an a.o.p.c. £ satisfies (*,2) if and only if it 
satisfies (22), (37,x) and its 2-nd and (q+2)-th columns are determined by (34,a) 
and (34,e) respectively. Note that the forms and f2j in (33,a) and (33,e) and 
the form (/i2,dx) = (d2,dx) (see (26)) are invariant forms for E. We shall use the 
notation:

w2 = (i2,dz) (38)

The group Hi obtained as the reduction of Hy in the 2-nd step is of the form 
Hz — {h <= Hq , , k* = 6* , k* = 0 , » = 1,2} . After the 2-nd step the
representation of S is completely determined when S is a neither (p - l)-cylindric 
nor orthogonally (q - l)-cylindric a.o.p.c. in P(p,q) for p = 1, g = 3 ; p = 2, g = 2 
; p = 2, g = 3 .

Note that the written down in the formulas with symbols (a) and (e) parts of 
considerations in the 2-nd step were led independently. They have determined the 
vectors ft and ft respectively (i.e. the 2-nd and the (q+2)-th columns of A) and 
have given us the formulas on diti and di\. The results of the parts (a) and (e)
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were used in the part denoted with (x) to obtain the conditions for the generating 
line. When p > 2 or q > 3 than the process should be continued in the steps 
analogous to the 2-nd one. After the assumption that the considered a.o.p.c. E 
is neither r-cylindric for any r = l,._.,p - 1 nor orthogonally «-cylindric for any 
» = - 1, the part (a) finishes after q - 1 steps and the part (e) after p - 1
steps. These parts determine vectors 3i,...,3f , ci,...,cr that form the columns 
of the representation A of E except the last one. The last column of A is completely 
determined in the part denoted with (x), that finishes after p steps. The part (x) 
gives the sequence of equations on the only generating line of E. The mentioned 
equations are following:

(&i,d£) = 0, (c,,dl) = Q, l<r<p. (39)

Definition 9. The unique satisfying (39) generating line x of an assumed 
to be neither r-cylindric nor orthogonally «-cylindric for any r = l,...,p - 1, 
» = l,...,q- 1, a.o.p.c. E in P(p,q) is called the striction line of E.

It can be easy verified that if x is an arbitrary generating line of E then the 
striction line 2 of E can be obtained in the form:

f(t) = x(t) + A'(t)e,-(t)

where A* are given by the following formulas:

i _ (x,at)

(Mi) + A*

(40)

A’ = -
(«S,«l) («)

= J = ,....... ,-,(„,(»])
(«4+1,5»)

Note that the constructed representation Â of E can be understood as a linear 
orthonormal frame field in E**1 alond the striction line of E. A linear orthonormal 
frame is not a frame in P(p, q) in the sense of Cartan but it is much more convenient 
in the considerations than a frame understood as a sequence of planes in P(p,q). 
That is why we shall call the representation Â itself a frame field along E.

The main results of the paper can be formulated in the following theorem.
Theorem 1. Given an a.o.p.c. E in P(p,q)

t>-> [K(t) : (A1) n-, x(t) + A'e,(t)]

that is assumed to be neither r-cylindric for any r = — 1 nor orthogonally
s-eylindrie for any » = - 1. There exists a linear orlhonormal frame field
in E>+'

= |d)(«),.. ., (f) , £}(«),..., 3p(f) , £(«)]

such that
A p.c. £:»►-♦ [£(») : (A‘) j(») + A’g,(»)l (Tl.l)
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andE determine the same curve [E] = [E] in P(p,q).

h = e« is the orienting directional vector ofE

3i = a« is the normal orienting directional vector ofE

gf _--------------—_----
(*l.al)2 

a2 = a* ~ (ai»8*)gl 

^(ai)J - (ai,gi)2

. a,-i - (a.-i,a«-2)8,-2 . ,
«. = —7========= , » = 3,... ,p

v(a<-i) “ (*»'-1 >*•-»)

ao_i - (ao_i,aQ_2)ao_2 
*<» = r-7=-- 2 . 2 . o=3,...,?

1) - (a„-i>aa—2)
2 1« the slrietion line ofE.

The equations of the linear orthonormal frame field A are of the form:

(Tl,2)

(e) .

«1 =a1 + F12a2
e* = F*-18*_j + F* + 1a*+i , A = 2,...,p-1

a, = f;-1«,-!

3j = -2i + ffat

F*+1 = -Fi*+l

(Tl,3)
(a) +/a+1^+i ’ £ = 2»...,?-l

a, =Z»-la»-‘

(x)

where

rA+l _ p
J» ~ '0+1

2 =/<‘ao+F2, , o = 2....... ..

(i = Fif when ? = 1)

(de^aj = n = : dt (i.e. (<Ti(»),aj(») = I) 

Fi+1(s) = -Fj+l(.) : = (*(»), 8,+l(»)) , i = l....... p - 1
F/+1(s) > 0 fort = 1..........P-2

Z7+ (*) = —/7+j (•) •= (^(*1»4^+1 («)), 7 = 1,...,?—1

z?+1(s) > 0 for 7 = 1,...,? — 2 

p(«) := (2(»),a-,(t)) , 7 = 2,...,?

F(s) : = (>(•), «,(•)).
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are invariants of £.
Definition 10. (a) The vectors ê, (» — l,...,p) and &a (a = l,...,g) de­

termined in (Tl,2) we shall call the »‘-th directional vector and the a-th normal 
directional vector of £ respectively.

(b) The appearing in (Tl,3) scalar functions we shall call as follows:

Fj'+1 >0 (s = l,...,p - 2) the »-th curvature of £

F^_1 the torsion of £

y+l >o (7 = l,.,., ç - 2) the 7-th normal curvature of £ 

the normal torsion of E

f'1 (7 = 2,... ,7) the 7-th strictionai curvature of £

F the strictionai torsion of £.

Theorem 2. Given scalar functions (of the class C°°) of the parameter t £ R

Fi+l \ , i=l,...

F)+l(s) > 0 for f = 1,

/:+1 : »~/o’+1(*) , 0 = 1,..

z;+i(») > 0 for 0=1,

r : e^r(e) , 7 =

F : ti-iF(t)

Then the system of equations of the form (e) (a) (x) from (Tl,3) determines: 
(T2,l): A linear orthonormal frame field in

A(s) - , ex («),...,«,(») , x(»)j

up to the isometry in E^1.
(T2,2): An a.o.p.c. £:«•-» [Y(«) : (A’) >-» x(s) + A’«,(»)] in P(p,q) (up to 
the isometry) that is neither r-cylindric for sack r = 1,... ,p — 1 nor orthogonally 
»-cylindric for each 1 = 1,... ,q - 1, and

1. ej is the 1-th orienting directional vector ofE

£. ej (j = 2,...,p) is the j-th directional vector ofT,

S. aj is the 1-th normal orienting directional vector ofE

4- ag (0 = 2,...,q) is the 0-th normal directional vector ofE

S. x is the striction line of E

tf. F?+1 (i = l,...,p - 2) is the i-th curvature ofE
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7- is the torsion of El

8. fa+l (a = I,... ,q - 2) is the a-th normal curvature of E

9. /*_i is the normal torsion ofE

10. f1 ft = 2....,q) is the 'f-th strictional curvature of E

12. F is the strictional torsion of El. x

Proof. It is well known that the system of differential equations (T 1,3 ) has the 
unique solution A(«) = [ai(«),..., ag(«) , ei(«),..., «,(»), i(»)J with the initial 
condition A(«o) = A° = [a°,...,a° , e^,...,e^ , x°]. Because of the skewsymme- 
tricity of the matrices of parts (e) and (a) of the system (Tl,3), if A° is an ortho- 
normal frame in E9’*'* so is A(») for each ». Since A° is an arbitrary orthonormal 
frame then A is determined up to the isometry. (T2.2) is a direct consequence of the 
properties of solutions of (Tl,3). Thus dim ( lin (ej,...,ep , iy,..., êp)) = p + 1
and dim ( lin eF , ê2,...,êF)) = p then E is admissible and ci is the I-th

v
orienting directional vector of E. Moreover, «i - (êi,e,)e,- = a,- than a,- is the

1-th normal orienting directional vector of E. Easy calculations show that solutions 
e<i,...,ev , d2,...,«< of (e) and (a) must be of the form (T1.2) then they are suc- 
cesive the directional vectors and the normal directional vectors of E respectively.
Since F%+1 0 for A = 1,....p - 1 and /^+1 0 for d = 1,... ,q - 1 E is neither
A-cyiindric nor orthogonally /1-cylindric. Because of (Tl,3) (x) we have (z,ai) = 0 
and (i, <s,) = 0 for i = 1,... ,p - 1 so x is the striction line of E. The names of the

' functions Fi’+l, /“+1, f'1, F are suitable because of Definition 10.
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STRESZCZENIE

Niech P[p,q) będzie przestrzenią jednorodna płaszczyzn p-wymiarowych w p-t-7-wy miarowej 
przestrzeni eukUdesowej Ep+ł. W pracy zdefiniowano pojęcie krzywej w P(p, 7) oraz wyróżniono 
specjalne typy krzywych: krzywe dopuszczalne, krzywe r-waicowe i krzywe ortogonalnie »- 
walcowe. Wprowadzone zoetaty pojęcia wektora kierunkowego krzywęj dopuszczalnej. Następnie, 
przy użyciu metody opracowanej przez K.Radziszewskiego, skonstruowano pole ortonormalnyeh 
reperów liniowych dla szerokiej klasy krzywych w P(p,q). Uzyskano zupełny układ niezmien­
ników krzywej w P(p, 7) oraz równanie różniczkowe skonstruowanego pola reperów. Pracę kończy 
twierdzenie o wyznaczaniu krzywęj w P(p, q) przez zupełny układ jęj niezmienników.

РЕЗЮМЕ

Пусть P(p,q) обозначает однородное пространство р-мерных плоскостей в р ■+• 7- 
мерном эвклидовом пространстве Е**1. В работе определено понятие кривой в P(p,q) 
и выделены специальные типы кривых: допустимые кривые, Г-цилиндрические кривые 
и ортогонольно (-цилиндрические кривые. Введены понятия направляющего вектора и 
нормального ноправлеющего вектора допустимой кривой. Затем, пользуясь методом ра­
зработанным К.Радзишевским было сконструировано поле ортонормальных линейных 
реперов для широкого класса кривых в P(p,q). Получена полная система инвариан­
тов кривой в Р(р, 7) и дифференциальное уравнение сконструированного поля реперов. 
Работу кончает теорема об определению кривой в P(p,q) полной системой ее инва­
риантов. \

\


