ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL.XXXIX,11

SECTIO A

1985

Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

A.W.KEDZIERAWSKI

On a Problem of S.S Miller

O pewnym problemie S.S Millera

О некоторой проблеме С.С Милера

SanfordS.Miller([1], p.554) posed the following problem: Let w(z) be a function regular in $E = \{z \in C : |z| < 1\}$ such that w(0) = 0. Does the condition:

$$|w(z) + zw'(z) + \cdots + z^n w^{(n)}(z)| < 1, \quad z \in E,$$
 (1)

imply that |w(z)| < 1 for $z \in E$?

S.S.Miller and P.T.Mocanu[5] have shown that this implication holds for n=2. This paper contains the affirmative answer to this question in the general case. Moreover, the bound for |w(z)| in the general case obtained here is sharp and equal $\frac{1}{2}$ for $n=1,2,\ldots$ The author is grateful to Prof. J.G. Krzyż for his encouragement and advice.

Miller's problem is related to Euler's differential equation:

$$z^n w^{(n)} + \cdots + zw' + w = f(z).$$
 (2)

It is easily seen that for any function f(z) regular in E there exists a unique solution of (2) regular in E which can be obtained by comparison of Taylor coefficients of both sides.

Let B denote the family of functions regular in E of the form:

$$g(z) = b_1 z + b_2 z^2 + b_3 z^3 + \cdots$$
 (3)

which satisfy |g(z)| < 1 for $z \in E$.

The above problem may be reformulated in the following, equivalent way. Is it true that the holomorphic solution of (2) belongs to the class B if right hand side of (2) belongs to this class?

We shall need the following:

Lemma 1. We have:

$$S \stackrel{\text{def}}{=} \sum_{k=1}^{\infty} (1+k^2)^{-2} = \frac{1}{4} \left[\pi \coth \pi + \left(\frac{\pi}{\sinh \pi} \right)^2 \right] - \frac{1}{2} = 0.3068 \dots$$

Proof. The function $f(z) = (1 + z^2)^{-2}$ is meromorphic in the finite plane C and has poles i, -i none of which is an integer. Moreover, $\lim_{z\to\infty} zf(z) = 0$.

These properties of the function f(z) imply that the limit $\lim_{N\to+\infty}\sum_{k=-N}^{\infty}f(k)$ exists and equals to $-\operatorname{res}(i,\pi f(z)\cot\pi z)-\operatorname{res}(-i,\pi f(z)\cot\pi z)$. The proof can be completed by finding these residues (cf. [4], p. 69).

If $g \in B$ then obviously $\sum_{k=1}^{\infty} |b_k|^2 \le 1$. We shall prove Miller's conjecture under this weaker assumption. Then we have:

Theorem 1. If w(z) is regular in E, w(0) = 0, and (2) holds for some $n \ge 2$ and all $z \in E$ with $f(z) = \sum_{k=1}^{\infty} b_k^{(n)} z^k$ such that $\sum_{k=1}^{\infty} |b_k^{(n)}|^2 \le 1$ then:

$$|w(z)| \le S^{\frac{1}{2}} = 0.5539....$$
 (4)

The bound is sharp for n = 2 and is attained for:

$$w(z) = S^{-\frac{1}{2}} \sum_{k=1}^{\infty} (1 + k^2)^{-2} z^k , \qquad (5)$$

$$f(z) = S^{-\frac{1}{2}} \sum_{k=1}^{\infty} (1+k^2)^{-1} z^k .$$
 (6)

Proof. Suppose that $n \ge 2$ and:

$$w(z) = c_1 z + c_2 z^2 + c_3 z^3 + \cdots, \qquad z \in E$$
 (7)

$$f(z) = w(z) + zw'(z) + \dots + z^n w^{(n)}(z) = b_1^{(n)} z + b_2^{(n)} z^2 + \dots$$
 (8)

Hence, for $k \le n$ we have:

$$b_k^{(n)} = c_k[1+k+k(k-1)+k(k-1)(k-2)+\cdots+k!];$$

if k > n, then:

$$b_k^{(n)} = c_k[1+k+k(k-1)+\cdots+k(k-1)(k-2)\cdots(k-n+1)].$$

Thus in both cases:

$$|b_k^{(n)}| \ge |c_k|(1+k+k^2-k) = (1+k^2)|c_k|, \qquad k=2,3,\ldots$$
 (9)

If n = 2 then the above inequality becomes to an equality. Now we will find an estimate for the modulus of w(z). We have:

$$|w(z)| \le \sum_{k=1}^{\infty} |c_k| \le \sum_{k=1}^{\infty} (1+k^2)^{-1} |b_k^{(n)}|, \quad z \in E.$$
 (10)

Using the Schwarz-Cauchy inequality we obtain:

$$|w(z)| \le \sqrt{\sum_{k=1}^{\infty} |b_k^{(n)}|^2} \sqrt{\sum_{k=1}^{\infty} (1+k^2)^{-2}} \le \sqrt{S}, \quad z \in E.$$
 (11)

The example of functions (5) and (6) shows that the estimate (4) is sharp and this ends the proof of Theorem 1.

The estimate (4) is sharp in a wider class then B, but is not sharp in B, because the extremal functions (6) does not belong to B. Now, we shall give a detailed solution of the S.S Miller's original problem. First we prove:

Theorem 2. If w(z) is a function regular in E such that w(0) = 0 and $|w(z) + zw'(z)| \le 1$ for $z \in E$ then $|w(z)| < \frac{1}{2}$. This estimate is sharp.

Proof. Put:

$$zw'(z) + w(z) = [zw(z)]' = g(z)$$
,

where $g \in \mathbf{B}$. Then we have:

$$zw(z)=\int_0^zg(t)dt$$

and

$$|zw(z)| = \left| \int_0^1 g(tz)zdt \right| \le \int_0^1 |tz||z|dt = \frac{1}{2}|z|^2$$
,

The last inequality implies $|w(z)| < \frac{1}{2}z$, $z \in E$. Consider now $w(z) = \frac{1}{2}$. Then $|w(z) + zw'(z) + \cdots + z^n w^{(n)}(z)| = |z| < 1$ in E and $|w(z)| < \frac{1}{2}$ in E. This shows that the constant $\frac{1}{2}$ is best possible in case n = 1. We shall prove that it is so for $n \ge 1$ as well.

To this end we need following lemmas. A sequence (t_n) of nonnegative numbers is called a convex null sequence if $t_n \to 0$ as $n \to \infty$ and

$$t_{k-1} - t_k \ge t_k - t_{k+1}, \quad k = 2, 3, \dots$$
 (12)

Lemma 2. If $s_n = t_n^{-1}$ satisfies:

$$e_k \ge (e_{k-1}e_{k+1})^{1/2}, \qquad k = 2, 3, \dots$$
 (13)

and $\lim s_n = +\infty$ then (t_n) is a convex null sequence.

Proof. From (13) and the well-known inequality between the geometric and harmonic mean we obtain:

$$t_k^{-1} = s_k \ge (s_{k-1}s_{k+1}^{1/2}) \ge \frac{2}{(s_{k-1}^{-1} + s_{k+1}^{-1})} = \frac{2}{t_{k-1} + t_{k+1}}$$

which is equivalent to (12).

Note that the converse is false. The sequence $(\exp(-n^2))$ is a convex null sequence whereas $(\exp(n^2))$, does not satisfy (13).

Lemma 8. ([3], p. 103). Suppose (t_n) , $t_1 > 0$ is a convex null sequence. Then:

$$p(z) = \frac{t_1}{2} + \sum_{k=2}^{\infty} t_k z^{k-1}$$

satisfies Re (p(z)) > 0 for $z \in E$.

Lemma 4. Let $h_1 = 1$, h_2 , h_3 , ... be complex numbers, let $g \in \mathbf{B}$ satisfy (3) and put $T(g)(z) = \sum_{k=1}^{\infty} h_k b_k z^{k-1}$. Then $T(g) \in \mathbf{B}$ for all $g \in \mathbf{B}$ iff

$$\operatorname{Re}\left(1+2\sum_{k=2}^{\infty}h_kz^{k-1}\right)>0 \text{ for }z\in E.$$

This Lemma is a slight modification of a theorem due to Goluzin(cf.[2], p. 493). We now prove:

Theorem 8. If w(z) is regular in E, w(0) = 0 and (2) holds for some $n \ge 2$ and $z \in E$ with f belonging to the class B, then $|w(z)| < \frac{1}{2}$. The bound is sharp for all n and is attained for $w(z) \equiv \frac{1}{2}z$ and $f(z) \equiv z$.

Proof. As in Theorem 1 we put :

$$w(z) = c_1 z + c_2 z^2 + c_3 z^3 + \cdots, \quad z \in E.$$
 (14)

$$f(z) = w(z) + zw'(z) + \dots + z^n w^{(n)}(z) = b_1^{(n)} z + b_2^{(n)} z^2 + \dots$$
 (15)

We have:

$$b_k^{(n)} = c_k[1+k+k(k-1)+\cdots+k(k-1)(k-2)\cdots(k-n+1)].$$
 (16)

Let us denote:

$$t_k^{(n)} = [1+k+k(k-1)+\cdots+k(k-1)(k-2)\cdots(k-n+1)]^{-1}.$$
 (17)

If k is fixed then the sequence $t_{k}^{(n)}$ is weakly decreasing and $t_{1}^{(n)} = \frac{1}{2}$ for $n \geq 2$. By the formulas (14)-(17) we have:

$$2|w(z)| = \left|\sum_{k=1}^{\infty} 2t_k^{(n)} b_k^{(n)} z^{k-1}\right| = |T(f)(z)|. \tag{18}$$

Let us consider the function:

$$p(z) = \frac{1}{4} + \sum_{k=2}^{\infty} t_k^{(n)} z^{k-1}$$
 (19)

We shall prove that for $n \geq 2$:

$$\operatorname{Re} (p(z)) > 0 \qquad \text{for } z \in E . \tag{20}$$

If n = 2, then $t_k^{(2)} = (1 + k^2)^{-1}$. Let us put $s_k = (1 + k^2)$, k = 1, 2, ... The sequence (s_k) satisfies the conditions of Lemma 2. By Lemmas 2 and 3 we obtain (20).

If n=3 then $t_k^{(3)}=(k^3-2k^2+2k+1)^{-1}$. Let us put $s_k=[t_k^{(3)}]^{-1}$, $k=1,2,\ldots$ The sequence (s_k) satisfies (13) for $k\geq 3$ and $t_1^{(3)}-t_2^{(3)}\geq t_2^{(3)}-t_3^{(3)}$. The above condition implies that sequence $(t_k^{(3)})$ is a convex null sequence. From Lemma 3 we obtain (20).

If $n \ge 4$ then

$$p(z) = \frac{1}{4} + \sum_{k=2}^{\infty} t_k^{(3)} z^{k-1} + \sum_{k=2}^{\infty} [t_k^{(n)} - t_k^{(3)}] z^{k-1}.$$
 (21)

By Lemma 3

Re
$$\left(\frac{3}{16} + \sum_{k=2}^{\infty} t_k^{(3)} z^{k-1}\right) > 0$$
 for $z \in E$. (22)

Now we will estimate a remaining term in (21):

$$\left|\sum_{k=2}^{\infty} (t_k^{(n)} - t_k^{(3)}) z^{k-1}\right| \le \sum_{k=4}^{\infty} t_k^{(4)} < \sum_{k=4}^{\infty} k^{-3} \approx 0.39 < \frac{1}{16} \quad \text{for } z \in E. \quad (23)$$

From (22) and (23) we obtain Re p(z) > 0 for $z \in E$. From the equality (20) we have:

Re
$$(4p(z))$$
 = Re $\left(1 + \sum_{k=2}^{\infty} 4t_k^{(n)} z^{k-1}\right) > 0$ for $z \in E$. (24)

Using Lemma 4 with $h_k = 2t_k^{(n)}$ and taking into account (24), (18) we verify that $T(f) \in \mathbf{B}$ and this gives an estimate $|w(z)| < \frac{1}{2}$ for $z \in E$. The example $w(z) \equiv \frac{1}{2}z$, $f(z) \equiv z$ shows that this estimate is sharp.

REFERENCES

- [1] Brannan, D. A., Clunie, J. G., Aspects of Contemporary Complex Analysis, Academic Press, New York-San Francisco 1980.
- [2] Guluzin, G., Geometric theory of functions of a complex verieble, (Russian), GITTL, Moscow 1966.
- [3] Goodman A. W., Univelent Functions, Mariner Publishing Company, Tampa 1983.
- [4] Krzyt, J. G., Problemo in Complex Variable Theory, American Elsewier Publ. Co., New York 1971.
- [5] Miller, S. S., Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 05 (1978), 269-205.

STRESZCZENIE

Praca dotyczy następującego problemu Millera ([1], str. $\delta\delta4$): "Niech w(z) będzie funkcją regularną w $E=\{z\in C:|z|<1\}$ taką, że w(0)=0. Czy warunek

$$|w(z) + zw'(z) + \cdots + z^n w^{(n)}(z)| < 1, \quad z \in E$$

implikuje zaležność |w(z)| < 1 dla $z \in E7$

W pracy wykazano, że z (1) wynika mocniejszy warunek : $|w(z)| < rac{1}{2}$ dla $z \in E$.

РЕЗЮМЕ

В данной работе рассматривается следующая проблема Милера ([1], стр.554): "Пусть w(z) обозначает функцию регулярную в $E=\{z\in C:|z|<1\}$ такую, что w(0)=0. Будет ли верно, что условне :

$$|w(z) + zw'(z) + \cdots + z^n w^{(n)}(z)| < 1, z \in E$$

влечет зависимость |w(z)| < 1 для $z \in E$!" В работе показано, что из (1) вытеклет сильнейшее условие : |w(z)| < - для всех $z \in E$.