LUBLIN-POLONIA

VOL.XXXIX,9

SECTIO A

1985

Department of Mathematics
Indian Institute of Technology
Kanpur
Department of Mathematics
Kakatiya University
Warangal

O.P.JUNEJA, T.R.REDDY

Mcromorphic Starlike Univalent Functions with Positive Coefficients

Funkcje meromorsiczne, gwiażdziste i jednolistne o dodatnich współczynnikach

Мероморфические эвездочные и однолистные функции с позитивными ковффициентами

1.Let S denote the class of functions of the form: $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ that are analytic in $U = \{z : |z| < 1\}$. Denote by $S^{\bullet}(\alpha)$ and $K(\alpha)$, $(0 \le \alpha < 1)$ the subclasses of functions g in S that satisfy respectively the conditions: Re $\left\{\frac{zg^{\bullet}(z)}{g(z)}\right\} > \alpha$ and Re $\left\{1 + \frac{zg^{\bullet\prime}(z)}{g^{\bullet}(z)}\right\} > \alpha$ for $z \in U$.

Let T denote the subclass of functions in S of the form: $g(z) = z - \sum_{n=1}^{\infty} b_n z^n$, $b_n \ge 0$. Also set $T^{\bullet}(\alpha) = T \cap S^{\bullet}(\alpha)$ and $C(\alpha) = T \cap K(\alpha)$. The classes $T^{\bullet}(\alpha)$ and $C(\alpha)$ possess some interesting properties and have been recently studied in detail by Silverman and others (See, e.g., [10] to [14]).

Let Σ denote the class of functions of the form:

$$h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n,$$
 (1.1)

which are regular in $D = \{z : 0 < |z| < 1\}$, having a simple pole at the origin. Let Σ_S denote the class of functions in Σ which are univalent in D and $\Sigma^{\bullet}(\alpha)$ and $\Sigma_K(\alpha)$ ($0 \le \alpha \le 1$) be the subclasses of functions f(z) in Σ satisfying respectively the conditions:

 $\operatorname{Re} \left\{ -\frac{zf'(z)}{f(z)} \right\} > \alpha \tag{1.2}$

and

Re
$$\left\{-\left(1+\frac{zf''(z)}{f'(z)}\right)>\alpha\quad\text{ for }z\in U,$$
 (1.3)

it being understood that if $\alpha = 1$ then f(z) = 1/z is the only function which is in $\Sigma^{\bullet}(1)$ and $\Sigma_{K}(1)$. Functions in $\Sigma^{\bullet}(\alpha)$ and $\Sigma_{K}(\alpha)$ are called meromorphically starlike functions of order α and meromorphically convex functions of order α respectively.

The classes $\Sigma^{\bullet}(\alpha)$ and $\Sigma_{K}(\alpha)$ have been extensively studied by P o m m ere n k e [7], Clunie [2], Kaczmarski [5], Royster [9] and others.

Since to a certain extent the work in the meromorphic univalent case has paralleled that of regular univalent case, one is tempted to search for a class of functions which are regular in D with simple pole at the origin having properties analogous to those of $T^{\bullet}(\alpha)$. To this end we introduce in this paper such a class of functions which are regular in D and which demonstrate properties similar to those of $T^{\bullet}(\alpha)$.

Let Σ_M denote the subclass of functions in Σ_S of the form:

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \quad \text{with } a_n \ge 0$$
 (1.4)

and let

$$\Sigma_{\mathcal{M}}^{\bullet}(\alpha) = \Sigma_{\mathcal{M}} \cap \Sigma^{\bullet}(\alpha).$$

In Section 2 we find necessary and sufficient condition in terms of a'_n for a function f in Σ_M to be in $\Sigma_M^*(\alpha)$. Sharp coefficient estimates are obtained, these bounds being sharper then those obtained by Pommerenke[7] and Clunie[2]. Section 3 is devoted to obtain distortion properties and radius of meromorphic convexity of order δ (0 $\leq \delta < 1$) for functions in $\Sigma_M^*(\alpha)$. In Section 4 we study integral transforms of functions in $\Sigma_M^*(\alpha)$. In Section 5 it is shown that the class $\Sigma_M^*(\alpha)$ is closed under convex linear combinations. The last section deals with certain convolution properties of functions in $\Sigma_M^*(\alpha)$.

2. Coefficient inequalities for the class $\Sigma_{\mathcal{M}}^{\bullet}(\alpha)$. We first obtain a sufficient condition for a function f(z) in Σ to be in $\Sigma^{\bullet}(\alpha)$.

Theorem 1 Let
$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$
 be regular in D. If

$$\sum_{n=1}^{\infty} (n+\alpha)|a_n| \le 1 - \alpha \quad (0 \le \alpha \le 1)$$
 (2.1)

then $f(z) \in \Sigma^{\bullet}(\alpha)$.

Proof: It is easy to see that (2.1) implies $f(z) \neq 0$ in D. Suppose (2.1) holds. If $\alpha = 1$ then (2.1) gives $a_n = 0$ for n = 1, 2, ... and so f(z) = 1/z is in $\Sigma^{\bullet}(1)$. For $0 \leq \alpha < 1$, consider the expression:

$$H(f,f') = |zf'(z) + f(z)| - |zf'(z) + (2\alpha - 1)f(z)|$$
 (2.2)

Replacing f and f' by their series expansions we have, for 0 < |z| = r < 1:

$$H(f,f') = \left| \sum_{n=1}^{\infty} (n+1)a_n z^n \right| - \left| 2(\alpha-1)\frac{1}{z} + \sum_{n=1}^{\infty} (n+2\alpha-1)a_n z^n \right|$$
 (2.3)

OF

$$rH(f,f') \leq \sum_{\substack{n=1\\ \infty}}^{\infty} (n+1) |a_n| r^{n+1} - 2(1-\alpha) + \sum_{n=1}^{\infty} (n+2\alpha-1) |a_n r^{n+1}|$$

$$= \sum_{n=1}^{\infty} 2(n+\alpha) |a_n| r^{n+1} - 2(1-\alpha).$$

Since this holds for all r, 0 < r < 1, making $r \longrightarrow 1$, we have:

$$H(f,f') \le \sum_{n=1}^{\infty} 2(n+\alpha)|a_n| - 2(1-\alpha) \le 0$$
 (2.4)

in view of (2.1). From (2,2), we thus have:

$$\left| \left[\frac{zf'(z)}{f(z)} + 1 \right] \left[\frac{zf'(z)}{f(z)} + (2\alpha - 1) \right]^{-1} \right| \leq 1$$

OL

$$\operatorname{Re} \left\{ -\frac{zf'(z)}{f(z)} \right\} > \alpha$$

Hence $f(z) \in \Sigma^{\bullet}(\alpha)$.

Theorem 2. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$ be regular in D. Then $f(z) \in$

 $\Sigma_{M}^{\bullet}(\alpha)$ if and only if (2.1) is satisfied.

Proof. In view of Theorem 1 it is sufficient to show the "only if" part. Let us

assume that $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$ is in $\Sigma_M^{\bullet}(\alpha)$, i.e.,

Re
$$\left\{\frac{zf'(z)}{f(z)}\right\} < -\alpha, \quad z \in D.$$
 (2.5)

Replacing f(z) and f'(z) in (2.5) by their series expansions we have:

$$\operatorname{Re} \left\{ \frac{-\frac{1}{z} + \sum_{n=1}^{\infty} n a_n z^n}{\frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n} \right\} < -\alpha \quad z \in D$$
 (2.6)

When z is real $\frac{zf'(z)}{f(z)}$ is real and since $a_n \ge 0$, making $z \longrightarrow 1$ through positive values, (2.6) becomes:

$$\frac{-1 + \sum_{n=1}^{\infty} n a_n}{1 + \sum_{n=1}^{\infty} a_n} \le -\alpha \tag{2.7}$$

Since $\left(1+\sum_{n=1}^{\infty}a_{n}\right)>0$, from (2.7) we have:

$$\sum_{n=1}^{\infty} (n+\alpha)a_n \leq 1-\alpha$$

Hence the result follows.

Corollary 1. If $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$ is in $\Sigma_{\mathbf{M}}^{\bullet}(\alpha)$, then:

$$|a_n| \le \frac{1-\alpha}{n+\alpha}, \quad n=1,2,...$$
 (2.8)

with equality, for each n, for functions of the form:

$$f_{\rm n}(z) = \frac{1}{z} + \frac{1-\alpha}{n+\alpha} z^{\rm n}.$$
 (2.9)

Remark: It was shown by Pommerenke[7] that for $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$

in $\Sigma^{\bullet}(\alpha)$, one has $|a_n| \leq \frac{2(1-\alpha)}{n+1}$. The coefficient estimates obtained in (2.8) are sharper then the above estimates.

3. Distortion properties and radius of convexity estimates.

Theorem 8. If f(z) is in $\Sigma_{M}^{\bullet}(\alpha)$, then:

$$\frac{1}{r} - \frac{1 - \alpha}{1 + \alpha} r \le |f(z)| \le \frac{1}{r} + \frac{1 - \alpha}{1 + \alpha} r \quad \text{for} \quad 0 < |z| = r < 1.$$
 (3.1)

Equality holds for the function:

$$f_1(z) = \frac{1}{z} + \frac{1-\alpha}{1+\alpha}z$$
 at $z = ir, r$. (3.2)

Proof. Since f(z) in $\Sigma_M^{\bullet}(\alpha)$ implies that $\sum_{n=1}^{\infty} (n+\alpha)a_n \leq 1-\alpha$ one has:

$$(1+\alpha)\sum_{n=1}^{\infty}a_n\leq\sum_{n=1}^{\infty}(n+\alpha)a_n\leq 1-\alpha,$$

OF

$$\sum_{n=1}^{\infty} a_n \le \frac{1-\alpha}{1+\alpha} \tag{3.3}$$

Now

$$|f(z)| = \left| \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \right| \le \left| \frac{1}{z} \right| + \sum_{n=1}^{\infty} a_n |z|^n \le \frac{1}{r} + r \sum_{n=1}^{\infty} a_n \le \frac{1}{r} + \frac{1-\alpha}{1+\alpha} ,$$

by (3.3) for 0 < |z| < 1. This gives the right side of (3.1). Also

$$|f(z)| \ge \frac{1}{r} - \sum_{n=1}^{\infty} a_n r^n \ge \frac{1}{r} - r \sum_{n=1}^{\infty} a_n \ge \frac{1}{r} - r \frac{1-\alpha}{1+\alpha}$$

which is the left side of (3.1). It can be easily seen that the function $f_1(z)$ defined by (3.2) is extremal for the theorem.

Theorem 4. If f(z) is in $\Sigma_{M}^{\bullet}(\alpha)$, then f(z) is meromorphically convex of order

$$\delta (0 \le \delta < 1) \text{ in } |z| < \gamma = \gamma(\alpha, \delta) = \inf_{n} \left[\frac{(n+\alpha)(1-\delta)}{n(n+2-\delta)(1-\alpha)} \right]^{\frac{1}{n+1}}$$

and the result is sharp for each n for functions of the form (2.9).

Proof.Let $f(z) \in \Sigma_M$. In view of (1.3) it is sufficient to show that:

$$\left|2 + \frac{zf''(z)}{f'(z)}\right| \le 1 - \delta \quad \text{for} \quad |z| < \gamma(\alpha, \beta)$$
 (3.4)

where $\gamma(\alpha, \beta)$ is as specified in the statement of the theorem; or equivalently, to show that:

$$\left|\frac{f'(z)+(zf'(z))'}{f'(z)}\right| \le 1-\delta \quad \text{for} \quad |z|<\gamma(\alpha,\beta). \tag{3.5}$$

Substituting the series for f'(z), (zf'(z))' in the left side of (3.5) we have:

$$\left| \frac{\sum_{n=1}^{\infty} n(n+1)a_n z^{n-1}}{\frac{1}{z^2} + \sum_{n=1}^{\infty} na_n z^{n-1}} \right| \le \frac{\sum_{n=1}^{\infty} n(n+1)a_n |z|^{n+1}}{1 - \sum_{n=1}^{\infty} na_n |z|^{n+1}}$$

This will be bounded by $1 - \delta$ if:

$$\sum_{n=1}^{\infty} n(n+1)a_n|z|^{n+1} \le (1-\delta) \left(1 - \sum_{n=1}^{\infty} na_n|z|^{n+1}\right)$$

OF

$$\sum_{n=1}^{\infty} \frac{n(n+2-\delta)}{1-\delta} a_n |z|^{n+1} \le 1.$$
 (3.6)

Since for $f(z) \in \Sigma_{M}^{\bullet}(\alpha)$ we have:

$$\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n \le 1$$

(3.6) will be satisfied if

$$\frac{n(n+2-\delta)}{1-\delta}|z|^{n+1}\leq \frac{n+\alpha}{1-\alpha}$$

for each n, or

$$|z| \leq \inf_{n} \left[\frac{(n+\alpha)(1-\delta)}{n(n+2-\delta)(1-\alpha)} \right]^{\frac{1}{n+1}} = \gamma(\alpha,\beta).$$

Sharpness can be verified easily.

4. Integral transforms. In this section we consider integral transforms of functions in $\Sigma_M^{\bullet}(\alpha)$ of the type considered by Bajpai[1] and Goel and Sohi[3].

Theorem 5. If $f(z) \in \Sigma_M^{\bullet}(\alpha)$, then the integral transform

$$F(z) = e \int_0^1 u^e f(uz) du , \quad \text{for} \quad 0 < e < \infty$$
 (4.1)

is in $\Sigma_{M}^{\bullet}(\beta)$, where

$$\beta=(\alpha,c)=\frac{(1+\alpha)(2+c)-c(1-\alpha)}{(1+\alpha)(2+c)+c(1+\alpha)}.$$

The result is sharp for the function

$$f(z) = \frac{1}{z} + \frac{1-\alpha}{1+\alpha}z.$$

Proof. Suppose

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \Sigma_M^*(\alpha) ,$$

then

$$F(z) = c \int_0^1 u^c f(uz) du = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{ca_n}{n+c+1} z^n$$

It is sufficient to show that:

$$\sum_{n=1}^{\infty} \frac{(n+\beta)ca_n}{(1-\beta)(n+c+1)} \le 1.$$
 (4.2)

Since $f(z) \in \Sigma_M^{\bullet}(\alpha)$ implies that $\sum_{n=1}^{\infty} \frac{(n+\alpha)}{1-\alpha} a_n \le 1$, (4.2) will be satisfied it

$$\frac{c(n+\beta)}{(1-\beta)(n+c+1)} \le \frac{n+\alpha}{1-\alpha} \text{ for each } n \text{ or}$$

$$\beta \le \frac{(n+\alpha)(n+c+1) - cn(1-\alpha)}{(n+\alpha)(n+c+1) + c(1-\alpha)} \tag{4.3}$$

The right side of (4.3) is an increasing function of n, therefore putting n = 1 in (4.3) we get:

 $\beta \leq \frac{(1+\alpha)(2+c)-c(1-\alpha)}{(1+\alpha)(2+c)+c(1-\alpha)}.$

Hence the theorem.

Remark. It is interesting to note that for c=1 and $\alpha=0$ Theorem 5 gives that if $f(z) \in \Sigma_M^*(\alpha)$ then $F(z) = \int_0^1 u f(uz) du$ is in $\Sigma_M^*(\frac{1}{2})$.

5. Convex linear combinations. In this section we shall prove that the class $\Sigma_M^{\bullet}(\alpha)$ is closed under convex linear combinations.

Theorem 6. Let

$$f_0(z) = \frac{1}{z}$$

$$f_n(z) = \frac{1}{z} + \frac{1 - \alpha}{n + \alpha} z^n \ (0 \le \alpha \le 1), \ n = 1, 2, \dots$$
 (5.1)

Then $f(z) \in \Sigma_{M}^{\bullet}(\alpha)$ if and only if it can be expressed in the form:

$$f(z) = \sum_{n=0}^{\infty} \lambda_n f_n(z) \text{ with } \lambda_n \ge 0 \text{ and } \sum_{n=0}^{\infty} \lambda_n = 1.$$
 (5.2)

Proof. Let

$$f(z) = \sum_{n=0}^{\infty} \lambda_n f_n(z)$$
 with $\lambda_n \ge 0$ and $\sum_{n=0}^{\infty} \lambda_n = 1$.

Since

$$\sum_{n=0}^{\infty} \lambda_n f_n(z) = \lambda_0 f_0 + \sum_{n=0}^{\infty} \lambda_n f_n(z) =$$

$$= (1 - \sum_{n=1}^{\infty} \lambda_n) f_0(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z) =$$

$$= (1 - \sum_{n=1}^{\infty} \lambda_n) \frac{1}{z} + \sum_{n=1}^{\infty} \lambda_n (\frac{1}{z} + \frac{1 - \alpha}{n + \alpha}) =$$

$$= \frac{1}{z} + \sum_{n=1}^{\infty} \lambda_n \frac{1 - \alpha}{n + \alpha} z^n$$

and

$$\sum_{n=1}^{\infty} \lambda_n + \frac{1-\alpha}{n+\alpha} \frac{n+\alpha}{1-\alpha} = \sum_{n=1}^{\infty} \lambda_n = 1 - \lambda_0 \le 1,$$

the coefficients of f(z) satisfy the coefficient inequality (2.1). Thus from Theorem 2, $f(z) \in \Sigma_M^{\bullet}(\alpha)$.

Conversely, suppose $f(z) \in \Sigma_{\mathcal{M}}^{\bullet}(\alpha)$. Since

$$a_n \leq \frac{1-\alpha}{n+\alpha}$$
 for $n=1,2,\ldots,$ setting $\lambda_n = \frac{n+\alpha}{1-\alpha}a_n, n=1,2,\ldots$ and $\lambda_0 = 1-\sum_{n=1}^{\infty}\lambda_n$,

it follows that

$$f(z) = \sum_{n=0}^{\infty} \lambda_n f_n(z) .$$

This completes the proof of the theorem.

6. Convolution properties of functions in $\Sigma_M^{\bullet}(\alpha)$. It was shown by Robertson [8] that if

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$
 and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$

are in Es then so is their convolution

$$f(z) * g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n$$
.

For functions in $\Sigma_{\mathcal{M}}^{\bullet}(\alpha)$ much more can be said.

Theorem 7. If

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$
, $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$

are elements of $\Sigma_{M}^{\bullet}(\alpha)$, then

$$h(z) = f(z) * g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n$$

is an element of

$$\Sigma_M^*(\frac{2\alpha}{1+\alpha^2})$$
.

The result is best possible.

Proof. Since f(z) and g(z) are in $\Sigma_M^*(\alpha)$, (2.1) gives

$$\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n \le 1 \tag{6.1}$$

and

$$\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} b_n \le 1. \tag{6.2}$$

Since f(z) and g(z) are regular in $D = \{z : 0 < \{z\} < 1\}$, so is f(z) * g(z). Further,

$$\sum_{n=1}^{\infty} \frac{n + \frac{2\alpha}{1 + \alpha^2}}{1 - \frac{2\alpha}{1 + \alpha^2}} a_n b_n = \sum_{n=1}^{\infty} \frac{n(1 + \alpha^2) + 2\alpha}{(1 - \alpha)^2} a_n b_n \le$$

$$\leq \sum_{n=1}^{\infty} \frac{n+\alpha^2}{(1-\alpha)^2} a_n b_n \leq \left(\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n \right) \left(\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} b_n \right) \leq 1$$

in view of (6.1) and (6.2). Thus, by Theorem 1,

$$h(z) \in \Sigma_{\mathcal{M}}^{\bullet}(\frac{2\alpha}{1+\alpha^2})$$
 .

The result is sharp with equality for

$$f(z) = g(z) = \frac{1}{z} + \frac{1-\alpha}{1+\alpha}z$$
.

Remark. If f(z) and g(z) are in $\Sigma_{M}^{\bullet}(0)$, then, according to above theorem, f(z)*g(z) is also in $\Sigma_{M}^{\bullet}(0)$, the result being best possible. This is in sharp contrast with corresponding result for $T^{\bullet}(0)$ (cf. Remark following Theorem 1 of Schild and Silverman [10]).

Theorem 8. If $f(z) \in \Sigma_{\mathcal{M}}^{\bullet}(\alpha)$ and $g(z) \in \Sigma_{\mathcal{M}}(\gamma)$ then

$$f * g \in \Sigma_M^*(\frac{\alpha + \gamma}{1 + \alpha \gamma})$$
;

the result being best possible.

Proof. The lines of proof are the same as thoses of Theorem 7. In fact:

$$\sum_{n=1}^{\infty} \frac{n + \frac{\alpha + \gamma}{1 + \alpha \gamma}}{1 - \frac{\alpha + \gamma}{1 + \alpha \gamma}} a_n b_n = \sum_{n=1}^{\infty} \frac{n(1 + \alpha \gamma) + (\alpha + \gamma)}{(1 - \alpha)(1 - \gamma)} a_n b_n \le$$

$$\leq \sum_{n=1}^{\infty} \frac{(n+\alpha)(n+\gamma)}{(1-\alpha)(1-\gamma)} a_n b_n \leq \left(\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n\right) \left(\sum_{n=1}^{\infty} \frac{n+\gamma}{1-\gamma} b_n\right) \leq 1$$

since $f(z) \in \Sigma_M^*(\alpha)$ and $g(z) \in \Sigma_M^*(\gamma)$. Thus

$$f * g \in \Sigma_M^* \left(\frac{\alpha + \gamma}{1 + \alpha \gamma} \right)$$
.

The result is best possible for

$$f(z) = \frac{1}{z} + \frac{1-\alpha}{1+\alpha}z$$
, $g(z) = \frac{1}{z} + \frac{1-\gamma}{1+\gamma}z$.

Theorem 9. 1/

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \Sigma_M^{\bullet}(\alpha) \text{ and } g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ with } |b_n| \le 1 \text{ for } n = 1, 2, \dots$$

then $f * g \in \Sigma_M^*(\alpha)$.
Proof.

$$\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} |a_n b_n| = \sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n |b_n| \le \sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n \le 1.$$

Hence by Theorem 1, $f * g \in \Sigma^*(\alpha)$.

Here it may be noted that g(z) need not even be univalent. For example, if $g(z) = \frac{1}{z} - \frac{2}{3}z^2$, then $\left| -\frac{2}{3} \right| < 1$, but $g'(z) = -\frac{1}{z^2} - \frac{4}{3}z = -\frac{1}{z^2}\left(1 + \frac{4}{3}z^3\right) = 0$ for $z = \left(-\frac{3}{4}\right)^{1/3}$ which lies inside D.

$$f(z) \in \Sigma_{\mathcal{M}}$$
 and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$

with $0 \le b_n \le 1$, for n = 1, 2, ..., then $f * g \in \Sigma_M^*(\alpha)$.

Theorem 10. If f(z) and g(z) are in $\Sigma_{M}^{n}(\alpha)$ for $3-2\sqrt{2} \leq \alpha \leq 1$, then

$$h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) z^n \in \Sigma_M^* \left(\frac{4\alpha - (1-\alpha)^2}{4\alpha + 3(1-\alpha)^2} \right).$$

The result is sharp for the functions

$$f(z) = \frac{1}{z} + \frac{1-\alpha}{1+\alpha}z = g(z).$$

Proof. Since $f(z) \in \Sigma_{M}^{\bullet}(\alpha)$ we have:

$$\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n \le 1,$$

therefore

$$\sum_{n=1}^{\infty} \left(\frac{n+\alpha}{1+\alpha} \right)^{\frac{\alpha}{2}} a_n^{\frac{\alpha}{2}} \leq \left(\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha} a_n \right)^{\frac{\alpha}{2}} \leq 1.$$

Similarly

$$\sum_{n=1}^{\infty} \left(\frac{n+\alpha}{1-\alpha}\right)^2 b_n^2 \le 1;$$

hence

$$\sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{n+\alpha}{1-\alpha} \right)^2 \left(a_n^2 + b_n^2 \right) \le 1.$$
 (6.3)

We want to find largest $\beta = \beta(\alpha)$ such that

$$\sum_{n=1}^{\infty} \frac{n+\beta}{1-\beta} \left(a_n^2 + b_n^2 \right) \le 1. \tag{6.4}$$

On comparing this with (6.3) we see that (6.4) is satisfied if

$$\frac{n+\beta}{1-\beta} \le \frac{1}{2} \left(\frac{n+\alpha}{1-\alpha} \right)^2$$

OF

$$\beta \leq \frac{\left(\frac{n+\alpha}{1-\alpha}\right)^2 - 2n}{\left(\frac{n+\alpha}{1-\alpha}\right)^2 + 2} \quad \text{for } n = 1, 2, \dots$$
 (6.5)

The right side of (6.5) is an increasing function of n, hence the minimum value is obtained by setting n = 1. This gives

$$\beta \leq \beta(\alpha) = \frac{\left(\frac{1+\alpha}{1-\alpha}\right)^2 - 2}{\left(\frac{1+\alpha}{1-\alpha}\right)^2 + 2} = \frac{4\alpha - (1-\alpha)^2}{4\alpha + 3(1-\alpha)^2}.$$

Remark. It may be noted that the quantity $\frac{4\alpha - (1-\alpha)^2}{4\alpha + 3(1-\alpha)^2}$ is negative for $0 \le \alpha < 3 - 2\sqrt{2}$ (compare with Theorem 8 of Schildand Silverman [10]).

REFERENCES

- [1] Bajpal, S.K., A note on a class of meromorphic univolent functions, Rev.Roumanie Math.Pures Appl. 22(1977) 296-297
- [2] Clunie, J., On meromorphic Schlicht functions, J.London Math. Soc. 34(1989) 215-216
- [3] Goel, R.M., Sohi, N.S., On a cless of meromorphic functions, Glasnik Matematicki 17(1981) 19-28
- [4] Goodman, A. W., Univalent Functions Vol. II, Mariner Publishing Company, Inc., Tampa, Florida 1963
- [6] Kacamaraki, J., On the coefficients of some classes of startike functions, Bull.Acad.Polon.Sci. Ser.Sci.Math.Astronom.Phys. 17(1989) 495-501
- 6 Libera, R. J., Meromorphic dose-to-convex functions, Duke Math. J. 32(1965) 121-128

- [7] Pommerenke, Ch., On meromorphic starlike functions, Pacific J.Math. 18(1982) 221-235
- [8] Robertson, M.S., Convolutions of Schlicht functions, Proc. Amer. Math. Soc 18(1962) 585-589
- [9] Royster, W.C., Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107(1963) 200-202
- [10] Schild, A., Silverman, H., Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect A 29(1975) 99-107
- [11] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. \$1(1975) 109-116
- [12] Silverman, H., Extreme points of univalent functions with two fixes points, Trans. Amer. Math. Soc. 219(1976) 287-295
- [13] Silverman, H., Silvia, E.M., Prestarlike functions with negative coefficients, Internat. J.Math. and Math. Sci. 2(1979) 427-439
- [14] Silverman, H., Silvia, E.M., Fixed coefficients for exbelasses of startike functions, Houston J.Math. 7(1981) 129-130

STRESZCZENIE

Niech
$$\Sigma$$
 oznacza klasę funkcji $f(z)=rac{1}{z}+\sum_{n=1}^{\infty}a_{n}z^{n}$, regularnych w $D=\{z:0<$

<|z|<1}. Przez $\Sigma^*(\alpha),\ 0\le \alpha\le 1$ oznacza się podklasę tej klasy, składająca się z funkcji f, spełniających warunek:

$$\operatorname{Re}\left\{-\frac{zf'(z)}{f(z)}\right\}>\alpha,\quad z\in D,$$

a przez $\Sigma_M^{\bullet}(\alpha)$ podklasą klasy $\Sigma^{\bullet}(\alpha)$ składająca się z funkcji o nieujemnych współczynnikach. W pracy podano warunek konieczny i wystarczający na to, aby funkcja $f \in \Sigma$ należała do klasy $\Sigma_M^{\bullet}(\alpha)$. Wykorzystując ten warunek otrzymano twierdzenie dotyczące oszacowania współczynników, twierdzenie o zniekształceniu i wypukłości funkcji $f \in \Sigma_M^{\bullet}(\alpha)$ oraz pewne rezultaty dotyczące kombinacji liniowych i spłotu Hadamarda funkcji klasy $\Sigma_M^{\bullet}(\alpha)$.

PE310ME

Пусть
$$\Sigma$$
 обозначает класс функций $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}a_nz^n$, регулярных в $D=\{z:0<|z|<1\}$, в $\Sigma^{\bullet}(\alpha), 0\leq\alpha\leq 1$ класс функций f таких, что
$$\mathbb{R}e\left\{-\frac{zf'(z)}{f(z)}\right\}>\alpha,\ z\in D.$$
 Через $\Sigma_{M}^{\bullet}(\alpha)$ обозначим подкласс класса $\Sigma^{\bullet}(\alpha)$ состоящий из функций с позитивными коэффициентами. В работе рассматривлется конечное и достаточное условие на то, чтобы функция из Σ принадлежала к классу $\Sigma_{M}^{\bullet}(\alpha)$. Авторы получают оценки коэффициентов, теоремы о деформировке и выпуклости функций из $\Sigma_{M}^{\bullet}(\alpha)$ и другие результаты.