ANNALES UNIVERSITATIS MARLAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL.XXXIX,3

SECTIO A

1985

Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

A.MIERNOWSKI, A.BUCKI

On Normality of Almost r-paracontact Structures

O normalnosci struktur prawie r-parakontaktowych

О нормальности почти г-параконтактных структур

An almost r-paracontact structure $\Sigma = (\varphi, \xi_{(i)}, \eta^{(i)})$ $i = 1, \ldots, r$ on a manifold M is normal if and only if: $N(X, Y) = N_{\varphi}(X, Y) - 2d\eta^i(X, Y)\xi_i = 0, [2]$, where N_{φ} is the Nijenhuis tensor of φ . In this paper we give one more algebraic characterization of normal almost r-paracontact structures and define the notion of the weak-normality and give its geometric interpretation.

Definition 1. [2]. $\Sigma = (\varphi, \xi_1, \dots, \xi_r, \eta^1, \dots, \eta^r)$ on a manifold M is said to be an almost r-paracontact structure if :

 $\eta^{i}(\xi_{i}) = \delta^{i}_{i}, \quad i, j = 1, 2, \dots, r$, (1)

 $\varphi(\xi_i) = 0$, i = 1, 2, ..., r, (2)

$$\eta^i \circ \varphi = 0, \qquad i = 1, 2, \dots, r$$

$$\varphi^2 = \mathrm{Id} - \eta^i \otimes \xi \tag{4}$$

where φ is a tensor field of type (1.1); ξ_1, \ldots, ξ_r are vector fields and η^1, \ldots, η^r 1-forms on M. Put

$$\bar{N}(X,Y) = N_{\omega}(X,Y) - 2d\eta'(X,Y)\xi_i , \qquad (5)$$

$$\tilde{N}^{i}(X,Y) = (\alpha_{\varphi X}\eta^{i})(Y) - (\alpha_{\varphi Y}\eta^{i})(X) , \qquad (6)$$

 $N_i(X) = -(\alpha_{\ell i}\varphi)(X) , \qquad (7)$

$$N_i^j(X) = -(\alpha_{\ell i} \eta^j)(X) \tag{8}$$

where α_X is the Lie derivative with respect to a vector field X.

Theorem 1. [2]. An almost r-paracontact structure $\Sigma = (\varphi, \xi_{(i)}, \eta^{(i)})_{i=1,...,r}$ on M is normal if and only if N = 0. Define:

$$D^{+} = \{X; \varphi X = X\}, D^{-} = \{X; \varphi X = -X\}, D^{0} = \{X; \varphi X = 0\}.$$
(9)

We also have:

Theorem 2. [2]. An almost r-paracontact structure $\Sigma = (\varphi, \xi_{(i)}, \eta^{(i)})_{i=1,...,r}$ on M is normal if and only if $N_j^i = 0, [\xi_i, \xi_j] = 0$, i, j = 1, ..., r and the distributions: $D^+, D^-, D^+ \oplus D^0, D^- \oplus D^0$ are integrable.

Let M and \overline{M} be manifolds and $\Sigma = (\varphi, \xi_{(i)}, \eta_{i=1,...,r}^{(i)})$ and $\overline{\Sigma} = (\overline{\varphi}, \overline{\xi}_{(i)}, \overline{\eta}^{(i)})_{i=1,...,r}$ be almost r-paracontact structures on M and \overline{M} respectively. A vector field X on M will be identified with the vector field \overline{X} on $M \times \overline{M}$ as follows: $\overline{X}_{(p,\overline{p})} = X_p + O_{\overline{p}}$ for $(p,\overline{p}) \in M \times \overline{M}$, where $O_{\overline{p}}$ denotes the zero vector of \overline{M} at \overline{p} . Similary, we identify \overline{X} on \overline{M} with \overline{X} on $M \times \overline{M}$ as : $\overline{X}_{(p,\overline{p})} = O_p + \overline{X}_{\overline{p}}$. Let $\overline{X} = X + \overline{X}$ be a vector field on $M \times \overline{M}$ and put:

$$F(X+\overline{X}) = \varphi X + \overline{\eta}^{i}(\overline{X})\xi_{i} + \overline{\varphi}\overline{X} + \eta^{i}(\overline{X})\overline{\xi}_{i} .$$
(10)

It is easy to see that : $F^2 = \operatorname{Id}_{M \times M}$, so F is a tensor of an almost product structure on $M \times \overline{M}$.

Remark 1. Observe that when $\overline{M} = \mathbf{R}'$, $\overline{\varphi} = 0$, $\overline{\xi}_i = \frac{d}{dt^i}$, $\overline{\eta}_i = dt^i$ the definition (10) becomes (7) from [2].

If Σ is an almost r-paracontact structure on N then we define the following tensor field ψ of type (1,2) and differential 2-forms θ' on M:

$$\psi(X,Y) = \varphi[X,Y] - [\varphi X,Y] - [X,\varphi y] + \varphi[\varphi X,\varphi Y] + + \{(\varphi X)(\eta^{i}(Y)) - (\varphi Y)(\eta^{i}(X))\} \xi_{i}, \qquad (11)$$

$$\theta^{i}(X,Y) = \eta^{i}[X,Y] - X(\eta^{i}(Y)) + Y(\eta^{i}(X)) + \eta^{i}[\varphi X,\varphi Y] .$$
(12)

Similary we define $\overline{\psi}$ and $\overline{\theta}'$ for $\overline{\Sigma}$ on \overline{M} . Now we prove the following:

I emma 1. Let Σ and $\overline{\Sigma}$ be almost r-paracontact structures on M and \overline{M} respectively. Then the induced on $M \times \overline{M}$ an almost product structure F given by (10) is integrable if and only if the following conditions are satisfied :

$$t = 0$$
 and $[\xi_i, \xi_j] = 0, \quad j = 1, 2, ..., r$, (13)

$$\overline{\psi} = 0$$
 and $[\overline{\xi}_i, \overline{\xi}_j] = 0$, $i, j = 1, 2, ..., r$. (14)

Proof. All calculations are similar to those in [1], so they are omitted. The integrability condition of the induced almost product structure F on $M \times \overline{M}$ is the following:

$$F[X + \overline{X}, Y + \overline{Y}] + F[F(X + \overline{X}), F(Y + \overline{Y})] =$$

= $[F(X + \overline{X}), Y + \overline{Y}] + [X + \overline{X}, F(Y + \overline{Y})]$. (15)

The first term of the LHS of (15) is:

$$F[X + \overline{X}, Y + \overline{Y}] = F([X, Y] + [\overline{X}, \overline{Y}]) =$$

$$\varphi[X, Y] + \overline{\eta}^{i}[\overline{X}, \overline{Y}]\xi_{i} + \overline{\varphi}[\overline{X}, \overline{Y}] + \eta^{i}[X, Y]\overline{\xi}_{i} .$$
(16)

The second term of the LHS of (15) is:

$$F[F(X + \overline{X}), F(Y + \overline{Y})] = \varphi \left[\varphi X + \overline{\eta}^{i}(\overline{X})\xi_{i}, \varphi Y + \overline{\eta}^{i}(\overline{Y})\xi_{j}\right] + \\ + \overline{\eta}^{i} \left[\overline{\varphi}\overline{X} + \eta^{j}(X)\overline{\xi}_{j}, \overline{\varphi}\overline{Y} + \eta^{j}(Y)\overline{\xi}_{j}\right] \xi_{i} + \\ + \overline{\varphi} \left[\overline{\varphi}\overline{X} + \eta^{i}(X)\overline{\xi}_{i}, \overline{\varphi}\overline{Y} + \eta^{j}(Y)\overline{\xi}_{j}\right] + \\ + \eta^{i} \left[\varphi X + \overline{\eta}^{j}(\overline{X})\xi_{j}, \varphi Y + \overline{\eta}^{j}(\overline{Y})\xi_{j}\right] \overline{\xi}_{i} + \\ + f^{i}(X, \overline{X}, Y, \overline{Y})\xi_{i} + \overline{f}^{i}(X, \overline{X}, Y, \overline{Y})\overline{\xi}_{i},$$

$$(17)$$

where

$$\begin{split} f^{i}(X,\overline{X},Y,\overline{Y}) &= \overline{\eta}^{j}(\overline{X})\xi_{j}(\eta^{i}(Y)) + \varphi(X)(\eta^{i}(Y)) - \varphi(Y)(\eta^{i}(X)) - \overline{n}^{j}(\overline{Y})\xi_{j}(\eta^{i}(X)) \\ \overline{f}^{i}(X,\overline{X},Y,\overline{Y}) &= \eta^{j}(X)\overline{\xi}_{j}(\overline{\eta}^{i}(\overline{Y})) + \overline{\varphi}(\overline{X})(\overline{\eta}^{i}(\overline{Y})) - \overline{\varphi}(\overline{Y})(\overline{\eta}^{i}(\overline{X})) - n^{j}(Y)\overline{\xi}_{j}(\overline{\eta}^{i}(\overline{X})). \\ \end{split}$$
The first term of the RHS of (15) is :

$$[F(X + \overline{X}), Y + \overline{Y}] = [\varphi X + \overline{\eta}^{i}(\overline{X})\xi_{i}, Y] + + [\overline{\varphi}\overline{X} + \eta^{i}(X)\overline{\xi}_{i}, \overline{Y}] - \overline{Y}(\overline{\eta}^{i}(\overline{X}))\xi_{i} - Y(\eta^{i}(X))\overline{\xi}_{i}.$$
(18)

The second term of the RHS of (15) is:

$$[X + \overline{X}, F(Y + \overline{Y})] = [X, \varphi Y + \overline{\eta}(\overline{Y})\xi_i] + [\overline{X}, \overline{\varphi}\overline{Y} + \eta(Y)\overline{\xi}_i] + X(\eta(Y))\overline{\xi}_i + \overline{X}(\overline{\eta}(\overline{Y}))\xi_i .$$
⁽¹⁹⁾

Hence, (15) is equivalent to the following two identities:

$$\begin{split} \varphi[X,Y] + \varphi[\varphi X + \overline{\eta}(\overline{X})\xi_i, \varphi Y + \overline{\eta}(\overline{Y})\xi_i] + \overline{\eta}[\overline{X},\overline{Y}]\xi_i + \\ + \overline{\eta}[\overline{\varphi}\overline{X} + \eta(X)\overline{\xi}_j, \overline{\varphi}\overline{Y} + \eta^j(Y)\overline{\xi}_j]\xi_i + f^i(X,\overline{X},Y,\overline{Y})\xi_i = \\ &= [\varphi X + \overline{\eta}^i(\overline{X})\xi_i, Y] + [X, \varphi Y + \overline{\eta}^i(\overline{Y})\xi_i] + \overline{X}(\overline{\eta}^i(\overline{Y}))\xi_i - \overline{Y}(\overline{\eta}^i(\overline{X}))\xi_i \quad , \end{split}$$

$$\overline{\varphi}[\overline{X},\overline{Y}] + \overline{\varphi}[\overline{\varphi}\overline{X} + \eta^{i}(X)\overline{\xi}_{i},\overline{\varphi}\overline{Y} + \eta^{i}(Y)\overline{\xi}_{i}] + \eta^{i}[X,Y]\overline{\xi}_{i} + \eta^{i}[\varphi X + \overline{\eta}(\overline{X})\xi_{i},\varphi Y + \overline{\eta^{i}}(\overline{Y})\xi_{i}]\overline{\xi}_{i} + \overline{f}^{i}(\overline{X},Y,\overline{Y})\overline{\xi}_{i}) =$$
(21)

$$= [\overline{\varphi}\overline{X} + \eta^{i}(X)\overline{\xi}_{i},\overline{Y}] + [\overline{X},\overline{\varphi}\overline{Y} + \eta^{i}(Y)\overline{\xi}_{i}] + X(\eta^{i}(Y))\overline{\xi}_{i} - Y(\eta^{i}(X))\overline{\xi}_{i}$$

Now, putting $\overline{X} = \overline{Y} = 0$ in (20) and (21) we get:

$$\psi(X,Y) + \eta^{i}(X)\eta^{j}(Y)\overline{\eta}^{k}[\overline{\xi}_{i},\overline{\xi}_{j}]\xi_{k} = 0 , \qquad (22)$$

$$\theta^{i}(X,Y)\overline{\xi}_{i} + \eta^{i}(X)\eta^{j}(Y)\overline{\varphi}[\overline{\xi}_{i},\overline{\xi}_{j}] = 0 \quad .$$
(23)

Putting X = Y = 0 in (20) and (21) we have:

$$\overline{\theta}^{i}(\overline{X},\overline{Y})\xi_{i}+\overline{\eta}^{i}(\overline{X})\overline{\eta}^{j}(\overline{Y})\varphi[\xi_{i},\xi_{j}]=0 \quad ,$$
(24)

$$\overline{\psi}(\overline{X},\overline{Y}) + \overline{\eta}(\overline{X})\overline{\eta}(\overline{Y})\eta[\xi_i,\xi_j]\overline{\xi}_k = 0 \quad .$$
(25)

Putting $\overline{X} = Y = 0$ in (20) and (21) we have:

$$\varphi[\varphi X, \overline{\eta}^{i}(\overline{Y})\xi_{i}] + \overline{\eta}^{i}[\eta^{j}(X)\overline{\xi}_{j}, \overline{\varphi}\overline{Y}]\xi_{i} - [X, \overline{\eta}^{i}(\overline{Y})\xi_{i}] - \overline{\eta}^{j}(\overline{Y})\xi_{j}(\eta^{i}(X))\xi_{i} = 0 , (26)$$

$$\overline{\varphi}[\eta^{i}(X)\overline{\xi}_{i},\overline{\varphi}\overline{Y}] + \eta^{i}[\varphi X,\overline{\eta}^{j}(\overline{Y})\xi_{j}]\overline{\xi}_{i} - [\eta^{i}(X)\overline{\xi}_{i},\overline{Y}] + \eta^{j}(X)\overline{\xi}_{j}(\overline{\eta}^{i}(\overline{Y}))\xi_{i} = 0.$$
(27)
Inserting $X = \overline{Y} = 0$ into (20) and (21) we obtain:

$$\varphi[\overline{\eta}^{i}(\overline{X})\xi_{i},\varphi Y] + \overline{\eta}^{i}[\overline{\varphi}\overline{X},\eta^{j}(Y)\overline{\xi}_{j}]\xi_{i} - [\overline{\eta}^{i}(\overline{X})\xi_{i},Y] + \overline{\eta}^{j}(\overline{X})\xi_{j}(\eta^{i}(Y))\xi_{i} = 0, (28)$$

$$\overline{\varphi}[\overline{\varphi}\overline{X},\eta^{i}(Y)\overline{\xi}_{i}]+\eta^{i}[\overline{\eta}^{j}(\overline{X})\xi_{j},\varphi Y]\overline{\xi}_{i}-[\overline{X},\eta^{i}(Y)\overline{\xi}_{i}]-\eta^{j}(Y)\overline{\xi}_{j}(\overline{\eta}^{i}(\overline{X}))\overline{\xi}_{i}=0$$
 (29)
The system of identities: (22) through (29) is equivalent to (20), (21). We have the following identities:

$$\psi(X,\xi_i) = \varphi[X,\xi_i] - [\varphi X,\xi_i] , \quad i = 1,...,r , \quad (30)$$

 $\psi(\varphi X, Y) + \varphi \psi(X, Y) + \eta^{i}(X)\psi(\xi_{i}, \varphi Y) + \theta^{i}(X, Y)\xi_{i} = \eta^{i}(X)\eta^{j}(Y)[\xi_{i}, \xi_{j}] .$ (31)

We may write similar identities for the structure $\overline{\Sigma}$ on \overline{M} . It is easy to verify that the LHS of (26) may be expressed as:

LHS of (26) =
$$\overline{\eta}^{i}(\overline{Y})\eta^{j}(X)[\xi_{i},\xi_{j}] + \overline{\eta}^{i}(\overline{Y})\psi(\varphi X,\xi_{i})$$

and the LHS of (27) in the following way:

LHS of (27) =
$$\eta^i(X)\overline{\psi}(\overline{\xi}_i,\overline{\varphi}\overline{Y}) - \eta^i(X)\overline{\eta}^j(\overline{Y})[\overline{\xi}_i,\overline{\xi}_j]$$
. (33)

Moreover, (26) is equivalent with (28) and (27) with (29). Now, if we assume that F is integrable, then acting with η^{\pm} on (24) and with $\overline{\eta}^{\pm}$ on (23) we obtain:

$$\theta^{i}(X,Y) = \overline{\theta}^{i}(\overline{X},\overline{Y}) = 0$$
 (34)

Hence and from (23) and (24) we get:

$$\varphi[\xi_i,\xi_j] = 0 \quad \text{and} \quad \overline{\varphi}[\xi_i,\xi_j] = 0 \quad . \tag{35}$$

Putting $X = \xi_i$, $Y = \xi_j$ in (22) and $\overline{X} = \overline{\xi}_i$, $\overline{Y} = \overline{\xi}_j$ in (25) and making use of (30) and (35) we obtain:

$$\eta^{*}[\xi_{i},\xi_{j}] = \overline{\eta}^{*}[\overline{\xi}_{i},\overline{\xi}_{j}] = 0 \quad . \tag{36}$$

Hence, from (22) and (25) we get:

$$\phi = 0 \quad \text{and} \quad \overline{\phi} = 0 \quad . \tag{37}$$

Because of (35) and (36) we obtain:

$$[\xi_i, \xi_j] = 0$$
 and $[\xi_i, \xi_j] = 0$ (38)

and this means that (13) and (14) are satisfied. Now, if (13) and (14) are satisfied, then from (31): $\theta^i = \overline{\theta}^i = 0$ and from (32) and (33) all identities (22) through (29) are fulfilled, and F is integrable.

In case of $M = \overline{M}$ and $\Sigma = \overline{\Sigma}$ we give:

Definition 2. An almost r-paracontact structure Σ on a manifold M is said to be integrable if an only if the product structure F given by (10) on $M \times \overline{M}$ is integrable. We have the following:

Theorem 3. Let $\Sigma = (\varphi, \xi_{(i)}, \eta^{(i)})_{1=1,\dots,r}$ be an almost r-paracontact structure on M. Then Σ is integrable if and only if the following conditions are satisfied:

 $\psi = 0$ and $[\xi_i, \xi_j] = 0$, i, j = 1, ..., r. (39)

Combining Lemma 1 and Theorem 3 we get:

Theorem 4. Let Σ and $\overline{\Sigma}$ be almost r-paracontact structures on M and \overline{M} respectively. Then the induced by Σ and $\overline{\Sigma}$ almost product structure F on $M \times \overline{M}$ is integrable if and only if Σ and $\overline{\Sigma}$ are both integrable.

If in Theorem 4 we take $\overline{M} = R^r$ and $\overline{\Sigma} = \left(0, \frac{d}{dt^r}, dt^r\right)$ then we get:

Theorem 5. An almost r-paracontact structure Σ on M is integrable if and only if Σ is normal.

In particular we have:

Corollary 1. An almost r-paracontact structure Σ on M is normal if and only if the condition (39) is satisfied.

Let:

$$F_1 = \varphi - \xi_i \otimes \eta' \quad , \quad F_2 = \varphi + \xi \otimes \eta' \quad ,$$

then:

$$F^2 = F^2 = \operatorname{Id}$$

Analogously as in [1] we can give the following:

Definition 8. An almost r-paracontact structure Σ on M is said to be weaknormal, if both almost product structures F_1 and F_2 are integrable. Similarly as in [1] we prove:

Theorem 6. An almost r-paracontact structure Σ on M is weak-normal if and only if:

$$\psi(\varphi X, \varphi Y) = 0 \quad , \tag{40}$$

$$(\varphi \circ \psi)(X, \xi_i) = 0$$
, $i = 1, 2, ..., r$ (41)

for any vector fields X and Y on M.

We also have:

Theorem 7. If an almost r-paracontact structure Σ on M is normal, then Σ is also weak-normal.

Now, we give geometric interpretation of weak-normality of an almost r-paracontact structure Σ .

Theorem 8. Let $\Sigma = (\varphi, \xi_{(i)}, \eta^{(i)})_{1=1,\dots,r}$ be an almost r-paracontact structure on M. Then the following conditions are equivalent:

- (i) Σ is weak-normal.
- (ii) The distributions D^+ , D^- , $D^+ + D^0$, $D^- + D^0$ are integrable. **Proof.** We have:

$$D^{+} = \{X; \varphi X = X\} = \{X; F_{1}(X) = X\} = D^{+F_{1}};$$

$$D^{-} = \{X; \varphi X = -X\} = \{X; F_2(X) = -X\} = D^{-F_2}$$

On account of Lemma 2 from [2] we have:

$$D^{+}+D^{0} = \{X; F_{2}(X) = X\} = D^{+F_{2}}; D^{-}+D^{0} = \{X; F_{1}(X) = -X\} = D^{-F_{1}}$$

In virtue of the definition of the weak-normality and Remark 3 from [2] both conditions are equivalent. From Theorems 2 and 8 we obtain:

Theorem 9. Weak-normal almost r-paracontact structure Σ on M is normal if and only if: $N_j = 0$ and $[\xi_i, \xi_j] = 0$, i = 1, 2, ..., r.

We also have the following:

Theorem 10. For an almost r-paracontact structure $\Sigma = (\varphi, \xi_{(i)}, \eta^{(i)})$

on M the following conditions are equivalent:

 $(i) \psi(\varphi X, \varphi Y) = 0 ,$

(ii) The distributions D^+ and D^- are integrable.

Proof. If Σ satisfies $\psi(\varphi X, \varphi Y) = 0$, then for $X, Y \in D^+$ we have:

$$0 = \psi(\varphi z, \varphi y) = \psi(X, Y) = 2(\varphi[X, Y] - [X, Y]) \text{ or } [X, Y] \in D^+$$

For $X, Y \in D^-$ we have:

$$0 = \psi(\varphi X, \varphi Y) = \psi(X, Y) = 2(\varphi[X, Y] + [X, Y])$$

which means that D^- is integrable. Conversely, let D^+ and D^- be integrable. Then for $X, Y \in D^+$, $X, Y \in D^-$ and $X \in D^+$, $Y \in D^-$ we have: $\psi(\varphi X, \varphi Y) = 0$. Now consider an almost r-paracontact ξ -structure:

 $\Sigma = \left(\operatorname{Id} - \eta^{i} \otimes \xi_{i}, \xi_{(i)}, \eta^{(i)} \right)_{1=1}$. From Theorem 12 [2] we know that Σ is normal if and only if: $d\eta^{i} = 0$ and $[\xi_{i}, \xi_{i}] = 0$, $i = 1, \ldots, r$. Now we prove the following:

Theorem 11. An almost r-paracontact ξ -structure Σ on M is weak-normal if and only if:

(i) $d\eta^i = \eta^i \wedge a^i$, for some 1-form a^i , i = 1, ..., r(ii) $[\xi_i, \xi_j] = \eta^k [\xi_i, \xi_j] \xi_k$, i = 1, ..., r

Proof. In our case: $D^+ = \{X; \eta^i(X) = 0\}; D^- = 0; D^0 = \text{Lin } \{\xi_1, \dots, \xi_r\}$. If Σ is weak-normal, then these distributions are integrable, and since D^+ is described by means of Pfaff's system $\eta^i = 0$, $i = 1, \dots, r$, then the integrability of this distribution, from Frobenius' Theorem, is equivalent to: $d\eta^i = \eta^i \wedge a^i$, for some 1-forms a^i , $i = 1, \dots, r$.

Theorem 12. For any almost r-paracontact ξ -structure Σ the following conditions are equivalent:

(i) $\psi(\varphi X, \varphi Y) = 0$, (ii) $d\eta^i = \eta^i \wedge a^i$ for some 1-forms a^i .

REFERENCES

- Buckl, A., Holubowicz, R., Miernowski, A., On integrability of almost r-personnlact arectures, Ann. Univ. Mariae Curie-Skiodowska, Sect. A, 35 (1981), 7-19.
- [3] Bucki, A., Miernowski, A., Almost r-personned structure, Ann. Univ. Mariae Curie-Skiodowska, Sect.A. (in this volume)

STRESZCZENIE

W pracy podajemy warunki algebraiczne charakteryzujące normalność struktury prawie rparakontaktowej. Ponadto wprowadamy pojęcie slabej normalności i podajemy jej interpretację geometryczną.

PE3IOME

В дынной работе введены влгебранческие условня нормальности почти 7-параконтактных структур. Введено также понятие слабой нормальности вместе с се геометрической илтерпретацией.

