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Another Proof of Kneser’s Theorem for Generalized Differential Equation 

Inny dowód twierdzenia Knesera dla uogólnionego równania różniczkowego

that x = lim

It is well known that Kneser’s theorem for the differential equation x' =f (t, x), where 
(t, x)£ R X Rn, is equally valid for the so-called generalized equations, i.e. paratingent 
equation (Px) (f) C F (t, x), contingent equation (Cx) (t) C F (t, x) and differential in
clusion x S F (t, x). But in the case of generalized equations the proofs of the theorem 
(cf. [3], [4], [8], [10], [11], [15]) are by no means so clear as for ordinary differen
tial equations. In the present paper we shall show that Kneser’s theorem for generalized 
differential equations may by proved by Miller’s method (cf. [7]), losing nothing of its 
clarity.

1. Preliminaries. LetR be a real line andR" be the euclidean «-dimensional space with 
usual norm I X | = ( Sx/)1/J, wherex = (xt,... ,xn). The family of all nonempty com

pact nad convex subsets of Rn is denoted by Conv Rn. Kx (a;r) is the ball with its center 
at point x £ X and a radius r in a given metric space X, and Kx (A; r) = U Kx (a;r) for 
№ACX. aeA

Let I = [0, 1] C R be the unit compact interval, and C[ be the Banach space of all 
continuous functions «/>: I-+Rn with supremum norm || • || .

If i/3 S Cf, then for t0 £/ the „paratingent“ or „paratingent derivative“ (respectively 
„contingent or „contingent derivative“) of at t0 is defined as the set of all points x £ 
£ R” for which there exist two sequences of values £ I, s,- £ I, where =/= J/, both se

quences convergent to to and such thatx = lim —' —^-—(respectively for „contin-
tj — Sj

gent“, there exists a sequence of values £ I distinct from t0 convergent to f0 and such 

sKG)-M’(fo) „
"—“); the paratingent (contingent) derivative of /5 at t is denot

- to
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ed by (P çj) (r) ((C v?) (/)). Having a multifunction F -.1X Rn ** ConvR" we understand 
by the paratingent equation (respectively — the contingent equation and the differential 
inclusion) a relation

W (t) c F (t,x (/)) ((C*) (0 C F (f, x (/)), x' (f) G F (f, x (0)).

By a solution of this paratingent (contingent) equation we understand a function <p&Cj 
whose paratingent (contingent) at each point t GI lies in the given set F. (t, <p (f)) while 
a solution of a differential inclusion is an absolutely continuous function G Cj for 
which p (/) G F (t, p (/)) almost everywhere on I in the sense of Lebesque measure.

• The multifunction F : IX Rn -*■ Conv R” is called upper semi-continuous (abbreviated 
as use) if for every (t, x) GI X R n and for every e > 0 there exists 5 > 0, such that F (s, 
y) C Kr/i (F (/, x); e) for each (s, y) G Kr i+n ((f, x); S); if additionally the inclusion 
F (t, x) C KRn (F(s, y); e) is satisfied for each (j, y)GKrI+h ((f, x);6), then the multi
function F is continuous. As Wazewski pointed out in [13] and [14], under the assum
ed use of F, the paratingent and contingent equations are equivalent to the differential 
inclusion, i.e. a continuous function çj satisfies (P ç>) (/) C F (/, <£ (/)) or (C p) (Z) C F (t, 
p (t)) if and only if it is absolutely continuous and p' (f) G F (t, p (f)) a.e. on I. Therefore 
every theorem concerning the properties of solutions of the paratingent (contingent) 
equation is at the same time a theorem on the properties of solutions of the differential 
inclusion and vice versa.

Throughout this paper we shall assume that the multifunction F : IX Rn -+ ConvR” 
is use and satisfies the following condition: F (t, x) C K#n (0, m (f)), (r, x) G / X Rn, 
where 0 = (0, .... 0) is an origin of R n and m : I -* [0, °°) is a fixed continuous function.

The set of all the solutions of the initial value problem

(1) . x'(Z)GF(f,x(f)),ZG/,

(2) x (0) =x0, x0 GF”,

will be denoted by £ (F, x0) (this set £ (F, x0) is called the emission of the initial point 
x0 on account of equation (1) by some authors (see [3], [9])).

Finally, let us introduce still one more designation

B = Kjtn (x0, r0). where r0 = | x0 I + 3 } (m (f) + 1) dt 
o

and K denoted the closure of K.

2. Some facts from the theory of ordinary differential and paratingent equations. Be
low there are three theorems which will be useful in the last section of this paper.

Theorem 1 ([9, Théorème 111] ). £ (F, x0) is a nonempty compact subset of Cp

Theorem 2 ([10, Lemme 2]). There exists a sequence of continuous multifunctions 
F/ :/ X F” -> Conv F", /=1,2,..., such that
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1Q F,+i (f, x) C Fj (t, x) C KRn (0, m (f) + 1), (f, x)&I X Rn, 

2° F (t, x) C F/ (t, x)for (t.x)EIX B,

3° F(t, x) = n Ft (t, x)for (t, x)eiXB.

Theorem 3 ([9, Thfeoreme VI]). If multifunctions Fj are the same as in Theorem 2, 
then

£ (^Z+l> *o) £ (Fi> *o)

and

£(F,x0) = nS(F,-,x0).
1=1

Now we shall recall some facts from the theory of ordinary differential equations. Be
cause at present they are sufficiently well-known we omit their detailed proofs. Thus, let 
us suppose that there is a given function / : I X Rn ->R" which is Lebesque measurable 
in t for each x &Rn and continuous inx for each t&I. This function is called a function 
of Caratheodory’s type. Let us assume that / satisfies the inequality | f (t, x) 1 < m (t). 
(t,x)£iy.Rn. Then the initial value problem (abbreviated as ivp)

(3f) x'(f)=/(f,x(f)),fe/,

(2) x(O) = xo

has at least one solution defined on the whole interval I (by the solution of ivp(3f) (2) 
we mean every function Cj such that is absolutely continuous and satisfies equation 
(3f) a.e. in I). This solution is bounded and lipschitzean and more precisely if C/ is 
the solution of ivp (3f) (2), then

(a) || ip It < I x0 I + f m (r) dt
0

(b) | <p (r) — <p (/) | < max m (r) 11 - s |, t, s 61.
T&I

3. Approximation theorems. For the convenience of reader first we shall recall two 
theorems in the form sufficient for our considerations.

Theorem 4 (Lasota - Yorke [11 ]). If f: I X Rn is continuous, then for every e > 0 
there exists a locally lipschitzean function fe : I X Rn -* Rn such that
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(r,x)ePx*" (t, X)l<€.

Theorem 5 (Alexiewicz - Orlicz [ 1 ]).Iff •.IXB-*Rnof Caratheodory'.s type satisfy
ing the condition \f(t,x)\<m (ft) for (t, x)EIXB, then there exists a sequence of con
tinuous functions ft : I X B -* Rn such that | ft (t, x) | < m (Z), (Z, x) €/ X B, i = 1,2,... 
and

lim sup | ft (t, x) - f (z, x) | = 0 for almost all t&I. 
i->°° x&B

Theorem C.Let f : I X Rn -+ Rn be a Caratheodorÿ s type function satisfying the con
dition | f (t, x) | < m (z) for (Z, x) GI X Rn and let \p&Cj be a solution of ivp (3f) (2). 
Then there exists a sequence of Caratheodorÿ’s type functions ft : IX Rn -+ Rn satisfying 
the condition | ft (t, x) | < 3 (m (t) + I) such that function y is the unique solution of ivp 
(3fj) (2), where

(3fi) x (z) =/,- (z, x (Z)), t eI, i = 1,2,... ;

moreover

(4) lim sup | ft (Z, x) - / ( Z, x) | = 0 for almost all t&I.
i->~ xeB

Proof. In view of Theorem 5 there exists a sequence of continuous functions gj: / X 
X B -* Rn such that

(*) lim sup |/(Z, x)-gj (t, x) | = 0 for almost t€/ i
/-*<» xEJB

and

(**) I gi (r. X) | < m (z), (z, x)G/X B, / = 1,2........

Functions#* :I X Rn -+ Rn defined by formula

(
gi (Z, x), if | x | < r0 = I *o I + 3 / (m (/) + 1) dt,

gi (z, r0 x / | x I), if | x | > r0

are a continuous extension of#,- to/ X Rn and still satisfying the inequality (**).

From Theorem 4 it further follows that for each function #,- there exists a locally lip 
schitzean function hj •. IX. R" -*Rn such that
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sup |g* (r,x)-/i/(f,x)| <(l/2)z, z = 1,2,....
(t,x)eJxRn

The restriction of each A,- to 1 X B, i.e. the function h^xB’ satisfies the global Lipschitz 
condition with some constant Now we extend every restriction hj\ixg, using the same 
technique as before, to a function h* : IX Rn -+ Rn and then define the function fi'.IX 
X Rn R" by formula

fi (r, x) = h* (f. x) - A* (t. V (/)) +/('.¥> (0), (L x) e / X /?", i = 1,2,.... 

Measurability of/(\ x) is obvious. We have

I fi (t, x) | < 1 A? (f, x) | + | A* (r, (/)) | + | f (t. (0) | < 3 (zn (0 + 1).

On the other hand, A* satisfies the global Lipschitz condition with constant /,, with re
spect to second variable because | x - y | > r0 |x/|x| — y /\y I forx, y& B and A,- is 
lipschitzean with Lj constant. Thus | /,• (f, x) — fi (t, y) | < | h* (t, x) - A* (t, y) 1 < 
< Li | x - y | for (r, x), (t, y) SIX R " and therefore every ivp (3f;) (2) has exactly one 
solution. But for almost each t&I

fi (f. (0) = K (fi (0) - (t, ifi (t)) +f(t, (0) = / (0

hence is this unique solution.
There still remains to prove (4). We have

0 < sup | f (r, x) -f(t, x) | < sup ( | h* (f, x) -f(t, x) | + 
xeB xeB

+ 1 Af* (f, (0) -f{t, y, (0) | )< 2 sup | gi (/. x) -/(/, x) | + 1//, i = 1, 2,-... 
xeB

hence in view of condition (*) Urn sup 1 fi (t, x) — f (t, x) | = 0 for almost every re/ 
. ? . /-►“ xeB

which completes the proof of the theorem.

Theorem 7. Let f :IX Rn -+ Rn and fi. IX Rn -+ Rn,i= \,2.......be Caratheodory’s
type functions satisfying conditions I /(f, x) | < m (f), | fi (f, x) | < 3 (m (t) + 1), (f, x) € 
S / X R", and such that

(5) lim sup | f (ft, x) - fi (t, x) | = 0 for almost every t&L
H-xeB

Let Ci, i- 1,2,..., be the solution of ivp (3q) (2).
Then there exists a subsequence [<Pij] uniformly convergent to a function <p€Ci which

is the solution of ivp (3f) (2).



150 W. Zygmunt

If additionally the problem (3f) (2) has a unique solution, then the whole sequence 
uniformly converges to

Proof. The functions are uniformly bounded and uniformly continuous because

I w (t) | < | x0 | + 3 / (m (t) + 1) dr 

o

and I w (t) — ip,- (s) I < max (3 m (r) + 3) 11 - s I
t6/

Thus there exists a subsequence {ç>(y} uniformly convergent to some function i/j € Cj. We 
will show that is the solution of ivp (3f)(2). We have

¥> (/) “ [*o + ff(s,<P (*)) “«#>(*) — [*o + f {/(s. ? (*)) ~0 0

-/U Wy (s)) +f(s, Wj 0)) +//y (s. Pij (s))-ft,- («. <Wy (s))} <*] = 

a/(0
f ' f

= <p (t) -(x0 +ffij (s, (sf) ds +f [/(«, <P (0) -Z(s. Wj («)) ] ds +

+ / [fif (s. Pij 0)) -/(«. Pij (sf) ] ds} = ay (z) + fly (z) + yy (z), t&I.

-y(S)
Since ay (Z) = <p (Z) — Wj (z), then ay (Z) -*0 as; -* Similarly, in view of the continuity 
of f with respect to second variable and the Lebesque’s Dominated cob vergence Theo
rem, the value /5y (z) converges to zero when ; -*

We also assert that yy (z) converges to 0 as ; -* Indeed, in virtue of the limit condi
tion (5) we have

0 < I 7y (Z) I < / IĄ (s, (s)) -f(s, q>i. («)) I ds <

< / sup 
o xeB

I f] (s. x) -f (s, x)\ds~* 0, as ; •*

Therefore it must be

(0 = x0 + f f(s. <p (s)) ds, t G I, 
o

which means that y, is the solution of ivp (3f) (2). If we assume now that ivp (3f) (2) has 
exactly one solution, then every subsequent {^,yj contains a subsequence {<^,y| converg
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ing to this unique solution. Thus the whole sequence converges to this solution. The 
proof of the theorem is completed.

5. The generalized Kneser’s theorem. A function/: / X Rn -+Rn is called the selector 
of multifunction F: / X ConvF” if/(f, x) £F(t, x) for (Z, x) £ / X Rn.

Lemma 1. Let multifunction F: IX Rn -» Conv Rn be continuous and satisfy the con
dition F (t, x) C Kftn (0, m (z)), and let pG Cj be a solution of ivp (1) (2). Then there 
exists a Caratheodory’s type selector f of F such that <p is the solution of ivp (3f) (2). 
Moreover | f (z, x) | < m-(t) for (t, x)&I X Rn.

Proof. For (t, x) £/ X Rn let us define

(
proj (/ (Z) 1 F (t, x)) when / (Z) exists, 

proj (0 | F (t, x)) when / (f) does not exist,

where proj (z |?1) denotes the metric projection of a point z SF” onto a nonempty com
pact convex subset A of Rn (in case of euclidean norm in A” this projection is always 
a one-point set). Therefore / is a selector of F and obviously satisfies the inequality f f(t, 
x) | < m (t). By Berge’s theorem [2, Th 3, Chapter VI] f (t, ') is continuous for every 
t £ I and by Castaing’s theorem [5, Th 5,1] f (•, x) is measurable for every x&Rn. Thus 
/ is Caratheodory’s type function. Moreover, for almost every i 6 / / (() G F (t, p (z)), 
hence ft) = fit, p (Z)) which completes the proof of the theorem.

Theorem 8. If multifunction F : I X Rn -> Conv Rn is continuous and F (t, x) C Krn 
(0, m (z)), then the set & (F, x0) is a continuum.

Proof. We must prove only the connectedness of & (F, x0) because by Theorem 1 it is 
nonempty and compact. Let us suppose the contrary, i.e. that & (F,x<f) is not connected.. 
Then & (F, x0) = Eo U £\ where Eo, Ex '■re nonempty, disjoint closed subsets of C/. 
Then od (Eo, F,) = inf {„ u - v ,| : u GEEo, rGf,} =d> 0. Let us define the function 
k-.Cj-^R by formula

k(u) = d(ft, Fo) ~d(u,Ei)

where d (u, E) = inf {|| u - v ||: v 6 Ej.
Moreover

f-d(u, Eff^-d, ifu€F0, 
k(u) = (

( d(u,E0)>d, ifueEt.

Thus if u GE & (F, x0) then still k (u) ± 0.
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Letu° and«1 be two solutions of ivp (1) (2) such that«0 €E0 andti1
By Lemma 1 there exist selectors/*,1/ of multifunction F such that u° andu1 is

the solution of ivp (3/))(2) and (3f>).(2) respectively./* and/’ hre the functions of Ca- 
ratheodory’s type and satisfy the condition | / (Z, x) | < m 0, 1, (f, x)€7 X Rn.
Thus, in view of Theorem 6 there exist sequences , i - 1, 2,... ,j = 0, 1 of functions 
//: / X A”-*/?” such that

1) // is Caratheodory’s type and satisfies the inequality |// (t, x) | < 3 (zn (z) + 1), i = 
1.2, ...,/=0, 1,

2) uj. is unique the solution of ivp (3yZ) (2), i = 1, 2....... /=0,1,
3) lim sup | /{ (Z, x) -f(t, x) | = 0 for almost every 1.

' j'-»~ xeS
Forz' = 1, 2,... and a&I let us put

/“(Lx) = (l -a)/°(Z,x)+a// (Z, x), (Z, x) GIX R n

and consider such a defined family of functions/“. First of all we conclude that for arbi
trarily fixed a, 13 GI

I /,“ (fi x) ~/f (Z, X) | < 10 - a | | /° (Z, x) -/; (Z, x) | < 6 10 - a | {m (z) + 1). 

Hence

(6) sup 1 /“ (z, x) -/f (z, x) | < 6 | 0 - a | (m (z) + 1).

In virtue of 3) we have

(7) lim sup |/? (Z, x)-/“ (Z, x) | = 0 for almost every ZG/
)-««> xeB '

where /“ = (1 -a)/° + a/1.
Moreover, every /“ satisfies the global Lipschitz condition with respect tox and with 
some constant/.“ which is no large then/.,• = max (£{*, L-). Therefore, there exists ex 
actly one solution u“ of ivp (3^) (2). We assert that for every fixed i the solution u“ 
continuously depends on the parameter a.

Indeed, we have

I(z) -«? (z) | </ |/“ (s, u‘ (s)) -/f (s, uf (s)) I ds <

< / I /“ 0, (S)) -/“ 0, (s)) I ds +

+ ( I/“ (i. (S)) ~/f (». uf (s)) 1 ds <

f |u“ (s) -u?(s)|<ft *6 |0-a 1/ (m(s) + l)cfc<
' 0 0
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< 6 | (3 - a | J (rn (s) + 1) ds + Li f | u ® (s) - u? (s) | ds, t G I,
0 0 1 1

and by Gronwall’s Lemma ([7])

II m“ - My IK 6 10-a \ceL'(, t&I.

Thus if 0 -> a then u? uniformly converges to u“. Then it follows that for i = 1,2, ... , 
k («“) is the continuous function of a. Since u° = u°, u. = iil, k (tz°) < and k («*)> 0. 
The sequence fa,-] is bounded and therefore it contains a subsequence ( a,-/; which is

convergent to a. Let us choose an arbitrary e > 0. in view of (6) and (7), for almost every 
f G / and for sufficiently large/ we have

sup I / (r, x) -fa (t, x) | < sup | /“'/ (f, x) (f, x) | +
XGB 7 XGB 7 7

+*sug|/“(f,x)-/“(f,x)l<e.

Thus it must be that

lim sup | /“'/ (f, x) (f, x) | = 0, a.e. on /. 
/-»<» xeB 7

Thus there exists a subsequence {zn} of sequence {/)•} such that the solution zz“"' of ivp 
(3f^m) (2) uniformly converges to a solution zz of ivp (3yâ) (2). Since fa (Z, x ) = (1 - 
oj/k (Z, x) + a/1 fz, x) G F (t, x) for (t, x) GI X Rn then u is the solution of ivp(l) 
(2) which means that zÏG g (F, x0).

Thus it must be that k (zz) =# 0. But for this sequence {«“'"} of solutions if is always 

£ ~ 0, m = 1,2,..., and hence lim k (zz“"') - k(u) = 0. This contradiction prov

es that £ (F, x0) is a continuum and the proof of our theorem is completed.
From the above Theorem 8, Theorems 2 and 3 and from the fact if an intersection

oo

O Cj of the decreasing sequence of continuum C,- is a continuum (cf. [6, Corollary 2,

p. 430]) the generalized Kneser’s theorem follows immediately:
If multifunction F : I X Rn -* Conv Rn is use and satisfies the condition F (t, x) C

c (0, m (/)), (Z, x) GIX Rn, then the emission £ (F, x0) is a continuum in Banach 
space Cj.
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STRESZCZENIE

Udowodniono, że zbiór rozwiązań równiania x' 6 F (t, x) spełniających warunek początkowy 
x (0) = gdzie F jest multifunkcją górnie półciągłą o wartościach zwartych i wypukłych, jest kon
tinuum w przestrzeni C/.

РЕЗЮМЕ

Доказано, что множество решений включения V £ Р (Г, х) удовлетворяющих началь
ному условию х (0) = х„, где Е полунепрерывная сверху многоз начная функция с компакт
ными выпуклыми значениями, представляет континуум, в пространстве С/.
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