Instytut Matematyki
Uniwersytet Marii Curie-Skłodowskiej

W. ZYGMUNT

Another Proof of Kneser's Theorem for Generalized Differential Equation

Inny dowód twierdzenia Knesera dla uogólnionego równania różniczkowego

It is well known that Kneser's theorem for the differential equation $x^{\prime}=f(t, x)$, where $(t, x) \in R \times R^{n}$, is equally valid for the so-called generalized equations, i.e. paratingent equation $\left(P_{x}\right)(t) \subset F(t, x)$, contingent equation $(C x)(t) \subset F(t, x)$ and differential inclusion $x^{\prime} \in F(t, x)$. But in the case of generalized equations the proofs of the theorem (cf. [3], [4], [8], [10], [11], [15]) are by no means so clear as for ordinary differential equations. In the present paper we shall show that Kneser's theorem for generalized differential equations may by proved by Miller's method (cf. [7]), losing nothing of its clarity.

1. Preliminaries. Let R be a real line and R^{n} be the euclidean n-dimensional space with usual norm $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. The family of all nonempty compact nad convex subsets of R^{n} is denoted by Conv $R^{n} . K_{X}(a ; r)$ is the ball with its center
 $\emptyset \neq A \subset X$

Let $I=[0,1] \subset R$ be the unit compact interval, and C_{I} be the Banach space of all continuous functions $\varphi: I \rightarrow R^{n}$ with supremum norm $\|\cdot\|$.

If $\varphi \in C_{I}$, then for $t_{0} \in I$ the „paratingent" or ,"paratingent derivative" (respectively ,,contingent" or ,,contingent derivative") of φ at t_{0}, is defined as the set of all points $x \in$ $\in R^{n}$ for which there exist two sequences of values $t_{i} \in I, s_{i} \in I$, where $t_{i} \neq s_{i}$, both se. quences convergent to t_{0} and such that $x=\lim _{i \rightarrow \infty} \frac{\varphi\left(t_{i}\right)-\varphi\left(s_{i}\right)}{t_{i}-s_{i}}$ (respectively for .,contingent", there exists a sequence of values $t_{i} \in I$ distinct from t_{0} convergent to t_{0} and such that $x=\lim _{i \rightarrow \infty} \frac{\varphi\left(t_{i}\right)-\varphi\left(t_{0}\right)}{t_{i}-t_{0}}$); the paratingent (contingent) derivative of φ at t is denut-
ed by $(P \varphi)(t)((C \varphi)(t))$. Having a multifunction $F: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}$ we understand by the paratingent equation (respectively - the contingent equation and the differential inclusion) a relation

$$
(P x)(t) \subset F(t, x(t))\left((C x)(t) \subset F(t, x(t)), x^{\prime}(t) \in F(t, x(t))\right)
$$

By a solution of this paratingent (contingent) equation we understand a function $\varphi \in C_{I}$ whose paratingent (contingent) at each point $t \in I$ lies in the given set $F(t, \varphi(t))$ while a solution of a differential inclusion is an absolutely continuous function $\varphi \in C_{I}$ for which $\varphi^{\prime}(t) \in F(t, \varphi(t))$ almost everywhere on I in the sense of Lebesque measure.

The multifunction $F: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}$ is called upper semi-continuous (abbreviated as usc) if for every $(t, x) \in I \times R^{n}$ and for every $\epsilon>0$ there exists $\delta>0$, such that F (s, $y) \subset K_{R n}(F(t, x) ; \epsilon)$ for each $(s, y) \in K_{R} 1+n((t, x) ; \delta)$; if additionally the inclusion $F(t, x) \subset K_{R}{ }^{n}(F(s, y) ; \epsilon)$ is satisfied for each $(s, y) \in K_{R} 1+n((t, x) ; \delta)$, then the multifunction F is continuous. As Wazewski pointed out in [13] and [14], under the assumed usc of F, the paratingent and contingent equations are equivalent to the differential inclusion, i.e. a continuous function φ satisfies $(P \varphi)(t) \subset F(t, \varphi(t))$ or $(C \varphi)(t) \subset F(t$, $\varphi(t))$ if and only if it is absolutely continuous and $\varphi^{\prime}(t) \in F(t, \varphi(t))$ a.e. on I. Therefore every theorem concerning the properties of solutions of the paratingent (contingent) equation is at the same time a theorem on the properties of solutions of the differential inclusion and vice versa.

Throughout this paper we shall assume that the multifunction $F: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}$ is usc and satisfies the following condition: $F(t, x) \subset K_{R^{n}}(\theta, m(t)),(t, x) \in I \times R^{n}$, where $\theta=(0, \ldots, 0)$ is an origin of R^{n} and $m: I \rightarrow[0, \infty)$ is a fixed continuous function.

The set of all the solutions of the initial value problem

$$
\begin{equation*}
x^{\prime}(t) \in F(t, x(t)), t \in I, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x(0)=x_{0}, x_{0} \in R^{n} \tag{2}
\end{equation*}
$$

will be denoted by $\&\left(F, x_{0}\right)$ (this set $\mathscr{E}\left(F, x_{0}\right)$ is called the emission of the initial point x_{0} on account of equation (1) by some authors (see [3], [9])).

Finally, let us introduce still one more designation

$$
\left.B=\overline{K_{R^{n}}\left(x_{0}, r_{0}\right)}, \text { where } r_{0}=\left|x_{0}\right|+3\right\}_{0}(m(t)+1) d t
$$

and \bar{K} denoted the closure of K.
2. Some facts from the theory of ordinary differential and paratingent equations. Below there are three theorems which will be useful in the last section of this paper.

Theorem $1\left([9\right.$, Theorème III] $) .{ }^{\prime} \mathbb{E}\left(F, x_{0}\right)$ is a nonempty compact subset of C_{I}.
Theorem 2 ([10, Lemme 2]). There exists a sequence of continuous multifunctions $F_{l}: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}, i=1,2, \ldots$, such shat

$$
\begin{array}{ll}
1^{\circ} & F_{i+1}(t, x) \subset F_{i}(t, x) \subset K_{R} n(\theta, m(t)+1),(t, x) \in I \times R^{n} \\
2^{\circ} & F(t, x) \subset F_{i}(t, x) \text { for }(t, x) \in I \times B \\
3^{\circ} & F(t, x)=\bigcap_{i=1}^{\infty} F_{i}(t, x) \text { for }(t, x) \in I \times B .
\end{array}
$$

Theorem 3 ([9, Theorème VI]). If multifunctions F_{i} are the same as in Theorcm 2. then

$$
\&\left(F_{i+1}, x_{0}\right) \subset \varepsilon\left(F_{i}, x_{0}\right)
$$

and

$$
\varepsilon\left(F, x_{0}\right)=\bigcap_{i=1}^{\infty} \&\left(F_{i}, x_{0}\right) .
$$

Now we shall recall some facts from the theory of ordinary differential equations. Bc cause at present they are sufficiently well-known we omit their detailed proofs. Thus. Ict us suppose that there is a given function $f: I \times R^{n} \rightarrow R^{n}$ which is Lebesque measurable in t for each $x \in R^{n}$ and continuous in x for each $t \in I$. This function is called a function of Caratheodory's type. Let us assume that f satisfies the inequality $|f(t, x)| \leqslant m(t)$. $(t, x) \in I \times R^{n}$. Then the initial value problem (abbreviated as ivp)

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t)), t \in I, \tag{3f}\\
x(0)=x_{0}
\end{gather*}
$$

has at least one solution defined on the whole interval I (by the solution of ivp (3f) (2) we mean every function $\varphi \in C_{I}$ such that is absolutely continuous and satisfies equation $(3 \mathrm{f})$ a.e. in I). This solution is bounded and lipschitzean and more precisely if $\varphi \in C_{l}$ is the solution of ivp (3f) (2), then
(a)

$$
\|\varphi\| \leqslant\left|x_{0}\right|+\int_{0}^{1} m(t) d t
$$

(b)

$$
|\varphi(t)-\varphi(s)| \leqslant \max _{\tau \in I} m(\tau)|t-s|, t, s \in I
$$

3. Approximation theorems. For the convenience of reader first we shall recall two theorems in the form sufficient for our considerations.

Theorem 4 (Lasota - Yorke [11]). If $f: I \times R^{n}$ is continuous, then for every $\epsilon>0$ there exists a locally lipschitzean function $f_{e}: I \times R^{n} \rightarrow R^{n}$ such that

$$
\sup _{(t, x) \in I \times R^{n}}\left|f(t, x)-f_{e}(t, x)\right|<\epsilon
$$

Theorem 5 (Alexiewicz - Orlicz [1]). If $f: I \times B \rightarrow R^{n}$ of Caratheodory's type satisfying the condition $|f(t, x)| \leqslant m(t)$ for $(t, x) \in I \times B$ then there exists a sequence of continuous functions $f_{i}: I \times B \rightarrow R^{n}$ such that $\left|f_{i}(t, x)\right| \leqslant m(t),(t, x) \in I \times B, i=1,2, \ldots$ and

$$
\lim _{i \rightarrow \infty} \sup _{x \in B}\left|f_{i}(t, x)-f(t, x)\right|=0 \text { for almost all } t \in I \text {. }
$$

Theorem 6. Let $f: I \times R^{n} \rightarrow R^{n}$ be a Caratheodory's type function satisfying the condition $|f(t, x)| \leqslant m(t)$ for $(t, x) \in I \times R^{n}$ and let $\varphi \in C_{I}$ be a solution of ivp (3f) (2). Then there exists a sequence of Caratheodory's type functions $f_{i}: I \times R^{n} \rightarrow R^{n}$ satisfying the condition $\left|f_{i}(t, x)\right| \leqslant 3(m(t)+1)$ such that function φ is the unique solution of ivp $\left(3_{\mathrm{f}_{\mathrm{i}}}\right)(2)$, where

$$
\begin{equation*}
x^{\prime}(t)=f_{i}(t, x(t)), t \in I, i=1,2, \ldots \tag{i}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup _{x \in B}\left|f_{i}(t, x)-f(t, x)\right|=0 \text { for almost all } t \in I \text {. } \tag{4}
\end{equation*}
$$

Proof. In view of Theorem 5 there exists a sequence of continuous functions $g_{i}: I \times$ $\times B \rightarrow R^{n}$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup _{x \in B}\left|f(t, x)-g_{i}(t, x)\right|=0 \text { for almost } t \in I \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g_{i}(t, x)\right| \leqslant m(t),(t, x) \in I \times B, i=1,2, \ldots \tag{**}
\end{equation*}
$$

Functions $g_{i}^{*}: I \times R^{n} \rightarrow R^{n}$ defined by formula

$$
g_{i}^{*}(t, x)=\left\{\begin{array}{l}
g_{i}(t, x), \text { if }|x| \leqslant r_{0}=\left|x_{0}\right|+3 \int_{0}^{1}(m(t)+1) d t \\
g_{i}\left(t, r_{0} x /|x|\right), \text { if }|x|>r_{0}
\end{array}\right.
$$

are a continuous extension of g_{i} to $I \times R^{n}$ and still satisfying the inequality (**).

From Theorem 4 it further follows that for each function g_{i} there exists a locally lipschitzean function $h_{i}: J \times R^{n} \rightarrow R^{n}$ such that

$$
\sup _{(t, x) \in \mid \times R^{n}}\left|g_{i}^{*}(t, x)-h_{i}(t, x)\right|<(1 / 2) i, i=1,2, \ldots
$$

The restriction of each h_{i} to $I \times B$, i.e. the function $h_{i \mid I \times B}$, satisfies the global Lipschitz condition with some constant L_{i}. Now we extend every restriction $h_{i \mid / X B}$, using the same technique as before, to a function $h_{i}^{*}: I \times R^{n} \rightarrow R^{n}$ and then define the function $f_{i}: I \times$ $\times R^{n} \rightarrow R^{n}$ by formula

$$
f_{i}(t, x)=h_{i}^{*}(t, x)-h_{i}^{*}(t, \varphi(t))+f(t, \varphi(t)),(t, x) \in I \times R^{n}, i=1,2, \ldots
$$

Measurability of $f(\cdot, x)$ is obvious. We have

$$
\left|f_{i}(t, x)\right| \leqslant\left|h_{i}^{*}(t, x)\right|+\left|h_{i}^{*}(t, \varphi(t))\right|+|f(t, \varphi(t))| \leqslant 3(m(t)+1) .
$$

On the other hand, h_{i}^{*} satisfies the global Lipschitz condition with constant L_{i} with respect to second variable because $|x-y| \geqslant r_{0}\left|x /|x|-y /|y|\right.$ for $x, y \notin B$ and h_{i} is lipschitzean with L_{i} constant. Thus $\left|f_{i}(t, x)-f_{i}(t, y)\right| \leqslant\left|h_{i}^{*}(t, x)-h_{i}^{*}(t, y)\right| \leqslant$ $<L_{i}|x-y|$ for $(t, x),(t, y) \in I \times R^{n}$ and therefore every $\operatorname{ivp}\left(3_{\mathrm{f}_{\mathrm{i}}}\right)(2)$ has exactly one solution. But for almost each $t \in I$

$$
f_{i}(t, \varphi(t))=h_{i}^{*}(t, \varphi(t))-h_{i}^{*}(t, \varphi(t))+f(t, \varphi(t))=\varphi^{\prime}(t)
$$

hence φ is this unique solution.
There still remains to prove (4). We have

$$
\begin{gathered}
0 \leqslant \sup _{x \in B}\left|f_{i}(t, x)-f(t, x)\right| \leqslant \sup _{x \in B}\left(\left|h_{i}^{*}(t, x)-f(t, x)\right|+\right. \\
\left.+\left|h_{i}^{*}(t, \varphi(t))-f(t, \varphi(t))\right|\right)<2 \sup _{x \in B}\left|g_{i}(t, x)-f(t, x)\right|+1 / i, i=1,2 ; \ldots
\end{gathered}
$$

hence in view of condition ($\left.{ }^{*}\right) \lim _{i \rightarrow \infty} \sup _{x \in B}\left|f_{i}(t, x)-f(t, x)\right|=0$ for almost every $t \in I$ which completes the proof of the theorem.

Theorem 7. Let $f: I \times R^{n} \rightarrow R^{n}$ and $f_{i}: I \times R^{n} \rightarrow R^{n}, i=1,2, \ldots$, be Carathcodory's type functions satisfying conditions $|f(t, x)| \leqslant m(t),\left|f_{i}(t, x)\right| \leqslant 3(m(t)+1),(t, x) \in$ $\in I \times R^{n}$, and such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x \in B}\left|f(t, x)-f_{l}(t, x)\right|=0 \text { for almost every } t \in I . \tag{5}
\end{equation*}
$$

Let $\varphi_{i} \in C_{I}, i=1,2, \ldots$, be the solution of $\operatorname{ivp}\left(3_{f_{j}}\right)(2)$.
Then there exists a subsequence $\left\{\varphi_{i}\right\}$ uniformly convergent to a function $\varphi \in C_{I}$ which is the solution of $\operatorname{ivp}(3 f)(2)$.

If additionally the problem (3f) (2) has a unique solution, then the whole sequence $\left\{\varphi_{i}\right\}$ uniformly converges to φ.

Proof. The functions φ_{i} are uniformly bounded and uniformly continuous because

$$
\left|\varphi_{i}(t)\right| \leqslant\left|x_{0}\right|+3 \int_{0}^{t}(m(\tau)+1) d \tau
$$

and

$$
\left|\varphi_{i}(t)-\varphi_{i}(s)\right| \leqslant \max _{\tau \in J}(3 m(\tau)+3)|t-s|
$$

Thus there exists a subsequence $\left\{\varphi_{i j}\right\}$ uniformly convergent to some function $\varphi \in C_{I}$. We will show that φ is the solution of $\operatorname{ivp}\left(3_{f}\right)(2)$. We have

$$
\begin{gathered}
\varphi(t)-\left[x_{0}+\int_{0}^{t} f(s, \varphi(s)) d s\right]=\varphi(t)-\left[x_{0}+\int_{0}^{t}\{f(s, \varphi(s))-\right. \\
\left.\left.-f\left(s, \varphi_{i j}(s)\right)+f\left(s, \varphi_{i j}(s)\right)+f_{i_{j}}\left(s, \varphi_{i j}(s)\right)-f_{i j}\left(s, \varphi_{i j}(s)\right)\right\} d s\right]= \\
=\varphi(t)-\left(x_{0}+\int_{0}^{\alpha_{i}(t)} f_{i j}\left(s, \varphi_{i j}(s)\right) d s+\int_{0}^{t}\left[f(s, \varphi(s))-f\left(s, \varphi_{i j}(s)\right)\right] d s+\right. \\
\left.+\int_{0}^{t}\left[f_{i j}\left(s, \varphi_{i j}(s)\right)-f\left(s, \varphi_{i j}(s)\right)\right] d s\right)=\alpha_{j}(t)+\beta_{j}(t)+\gamma_{j}(t), t \in I . \\
-\gamma_{j}(t)
\end{gathered}
$$

Since $\alpha_{j}(t)=\varphi(t)-\varphi_{i j}(t)$, then $\alpha_{j}(t) \rightarrow 0$ as $j \rightarrow \infty$. Similarly, in view of the continuity of f with respect to second variable and the Lebesque's Dominated cobvergence Theorem, the value $\beta_{j}(t)$ converges to zero when $j \rightarrow \infty$.

We also assert that $\gamma_{j}(t)$ converges to 0 as $j \rightarrow \infty$. Indeed, in virtue of the limit condition (5) we have

$$
\begin{aligned}
0 & \leqslant\left|\gamma_{j}(t)\right| \leqslant \int_{0}^{t}\left|f_{i j}\left(s, \varphi_{i j}(s)\right)-f\left(s, \varphi_{i j}(s)\right)\right| d s \leqslant \\
& \leqslant \int_{0}^{t} \sup _{x \in B}\left|f_{j}(s, x)-f(s, x)\right| d s \rightarrow 0, \text { as } j \rightarrow \infty .
\end{aligned}
$$

Therefore it must be

$$
\varphi(t)=x_{0}+\int_{0}^{t} f(s, \varphi(s)) d s, t \in I
$$

which means that φ is the solution of $\operatorname{ivp}(3 f)$ (2). If we assume now that $\operatorname{ivp}(3 f)$ (2) has exactly one solution, then every subsequenc: $\left\{\varphi_{i j}\right\}$ contains a subsequence $\left\{\varphi_{i j}\right\}$ converg.
ing to this unique solution. Thus the whole sequence $\left\{\varphi_{i}\right\}$ converges to this solution. The prcof of the theorem is completed.
5. The generalized Kneser's theorem. A function $f: I \times R^{n} \rightarrow R^{n}$ is called the selector of multifunction $F: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}$ if $f(t, x) \in F(t, x)$ for $(t, x) \in I \times R^{n}$.

Lemma 1. Let multifunction $F: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}$ be continuous and satisfy the condition $F(t, x) \subset K_{R^{n}}(\theta, m(t))$, and let $\varphi \in C_{I}$ be a solution of ivp (1) (2). Then there exists a Caratheodory's type selector f of F such that φ is the solution of ivp (3f) (2). Moreover $|f(t, x)| \leqslant m(t)$ for $(t, x) \in I \times R^{n}$.

Proof. For $(t, x) \in I \times R^{n}$ let us define

$$
f(t, x)=\left\{\begin{array}{l}
\operatorname{proj}\left(\varphi^{\prime}(t) \mid F(t, x)\right) \text { when } \varphi^{\prime}(t) \text { exists. } \\
\operatorname{proj}(\theta \mid F(t, x)) \text { when } \varphi^{\prime}(t) \text { does not exist, }
\end{array}\right.
$$

where $\operatorname{proj}(z \mid A)$ denotes the metric projection of a point $z \in R^{n}$ onto a nonempty compact convex subset A of R^{n} (in case of euclidean norm in R^{n} this projection is always a one-point set). Therefore f is a selector of F and obviously satisfies the inequality $\mid f(t$, $x) \mid \leqslant m(t)$. By Berge's theorem [2, Th 3, Chapter VI] $f(t, \cdot)$ is continuous for every $t \in I$ and by Castaing's theorem [5, Th 5.1] $f(\cdot, x)$ is measurable for every $x \in R^{n}$. Thus f is Caratheodory's type function. Moreover, for almost every $t \in I \varphi^{\prime}(t) \in F(t, \varphi(t))$, hence $\varphi^{\prime}(t)=f(t, \varphi(t))$ which completes the proof of the theorem.

Theorem 8. If multifunction $F: I \times R^{n} \rightarrow \operatorname{Conv} R^{n}$ is continuous and $F(t, x) \subset K_{R^{n}}$ $(\theta, m(t))$, then the set \& $\left(F, x_{0}\right)$ is a continuum.

Proof. We must prove only the connectedness of $\&\left(F, x_{0}\right)$ because by Theorem 1 it is nonempty and compact. Let us suppose the contrary, i.e. that $\&\left(F, x_{0}\right)$ is not connected.. Then $\&\left(F, x_{0}\right)=E_{0} \cup E_{1}$ where E_{0}, E_{1} re nonempty, disjoint closed subsets of C_{l}. Then od $\left(E_{0}, E_{1}\right)=\inf \left\{\|u-v\|: u \in E_{0}, v \in E_{1}\right\}=d>0$. Let us define the function $k: C_{I} \rightarrow R$ by formula

$$
k(u)=d\left(u, E_{0}\right)-d\left(u, E_{1}\right)
$$

where $d(u, E)=\inf \{\|u-v\|: v \in E\}$.
Moreover

$$
k(u)=\left\{\begin{array}{c}
-d\left(u, E_{1}\right)<-d, \text { if } u \in E_{0}, \\
d\left(u, E_{0}\right) \geqslant d, \text { if } u \subseteq E_{1} .
\end{array}\right.
$$

Thus if $u \in \&\left(F, x_{0}\right)$ then still $k(u) \neq 0$.

Let u^{0} and u^{1} be two solutions of ivp (1) (2) such that $u^{0} \in E_{0}$ and $u^{1} \in E_{1}$.
By Lemma ! there exist selectors $f^{0},{ }^{1} f^{1}$ of multifunction F such that u^{0} and u^{1} is the solution of $\operatorname{ivp}\left(3 f^{0}\right)^{1}(2)$ and $\left(3 f^{1}\right)$ (2) respectively. f^{0} and f^{1} are the functions of Ca ratheodory's type and satisfy the condition $\left|f^{j}(t, x)\right| \leqslant m(t), j=0,1,(t, x) \in I \times R^{n}$. Thus, in view of Theorem 6 there ex ist sequences $\left\{f_{i}^{\prime}\right\}, i=1,2, \ldots, j=0,1$ of functions $f_{i}^{j}: I \times R^{n} \rightarrow R^{n}$ such that

1) f_{i}^{j} is Caratheodory's type and satisfies the inequality $\left|f_{i}^{j}(t, x)\right| \leqslant 3(m(t)+1), i=$ $1,2, \ldots, j=0,1$,
2) u_{i}^{j} is unique the solution of $\operatorname{ivp}\left(3 f_{i}^{j}\right)(2), i=1,2, \ldots, j=0,1$,
3) $\lim _{i \rightarrow \infty} \sup _{x \in B}\left|f_{i}^{j}(t, x)-f(t, x)\right|=0$ for almost every $t \in I, j=0,1$.

For $i=1,2, \ldots$ and $\alpha \in I$ let us put

$$
f_{i}^{\alpha}(t, x)=(1-\alpha) f_{i}^{0}(t, x)+\alpha f_{i}^{1}(t, x),(t, x) \in I \times R^{n}
$$

and consider such a defined family of functions f_{i}^{α}. First of all we conclude that for arbltrarily fixed $\alpha, \beta \in I$

$$
\left|f_{i}^{\alpha}(t, x)-f_{i}^{\beta}(t, x)\right| \leqslant|\beta-\alpha|\left|f_{i}^{0}(t, x)-f_{i}^{1}(t, x)\right| \leqslant 6|\beta-\alpha|(m(t)+1)
$$

Hence

$$
\begin{equation*}
\sup _{x \in B}\left|f_{i}^{\alpha}(t, x)-f_{i}^{\beta}(t, x)\right| \leqslant 6|\beta-\alpha|(m(t)+1) \tag{6}
\end{equation*}
$$

In virtue of 3) we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup _{x \in B}\left|f_{i}^{\alpha}(t, x)-f^{\alpha}(t, x)\right|=0 \text { for almost every } t \in I \tag{7}
\end{equation*}
$$

where $f^{\alpha}=(1-\alpha) f^{0}+\alpha f^{\prime}$.
Moreover, every f_{i}^{α} satisfies the global Lipschitz condition with respect to x and with some constant L_{i}^{a} which is no large then $L_{i}=\max \left(L_{i}, L_{i}^{1}\right)$. Therefore, there exists exactly one solution u_{i}^{α} of $\operatorname{ivp}\left(3 f_{i}^{\alpha}\right)(2)$. We assert that for every fixed i the solution u_{i}^{α} continuously depends on the parameter α.

Indeed, we have

$$
\begin{aligned}
& \mid u_{i}^{\alpha}(t)- u_{i}^{\beta}(t)\left|\leqslant \int_{0}^{t}\right| f_{i}^{\alpha}\left(s, u_{i}^{\alpha}(s)\right)-f_{i}^{\beta}\left(s, u_{i}^{\beta}(s)\right) \mid d s \leqslant \\
& \leqslant \int_{0}^{t}\left|f_{i}^{a}\left(s, u_{i}^{\alpha}(s)\right)-f_{i}^{\alpha}\left(s, u_{i}^{\beta}(s)\right)\right| d s+ \\
&+\int_{0}^{t}\left|f_{i}^{\alpha}\left(s, u_{i}^{\beta}(s)\right)-f_{i}^{\beta}\left(s, u_{i}^{\beta}(s)\right)\right| d s \leqslant \\
& \leqslant L_{i}^{\alpha} \int_{0}^{t}\left|u_{i}^{\alpha}(s)-u_{i}^{\beta}(s)\right| d s \pitchfork 6|\beta-\alpha| \int_{0}^{t}(m(s)+1) d s \leqslant
\end{aligned}
$$

$$
<6|\beta-\alpha| \int_{0}^{1}(m(s)+1) d s+L_{i} \int_{0}^{t}\left|u_{i}^{\alpha}(s)-u_{i}^{\beta}(s)\right| d s, t \in I .
$$

and by Gronwall's Lemma ([7])

$$
\left\|u_{i}^{\alpha}-u_{i}^{\beta}\right\| \leqslant \sigma|\beta-\alpha| c e^{L_{i t}}, t \in I .
$$

Thus if $\beta \rightarrow \alpha$ then u_{i}^{β} uniformly converges to u_{i}^{α}. Then it follows that for $i=1,2, \ldots$, $k\left(u_{i}^{\alpha}\right)$ is the continuous function of α. Since $u_{i}^{0}=u^{0}, u_{i}^{1}=u^{1}, k\left(u^{0}\right)<$ and $k\left(u^{1}\right)>0$. The sequence $\left\{\alpha_{i}\right\}$ is bounded and therefore it contains a subsequence $\left\{\alpha_{i_{j}}\right\}$ which is convergent to $\bar{\alpha}$. Let us choose an arbitrary $\epsilon>0$.? n view of (6) and (7), for almost cvery $t \in I$ and for sufficiently large j we have

$$
\begin{gathered}
\sup _{x \in B}\left|f_{i_{j}}^{\alpha_{i j}}(t, x)-f^{\bar{\alpha}}(t, x)\right| \leqslant \sup _{x \in B}\left|f_{i j}^{\alpha_{i j}}(t, x)-f_{i j}^{\bar{\alpha}}(t, x)\right|+ \\
+\sup _{x \in B}\left|f_{i_{j}}^{\bar{\alpha}}(t, x)-f^{\bar{\alpha}}(t, x)\right|<\epsilon .
\end{gathered}
$$

Thus it must be that

$$
\lim _{j \rightarrow \infty} \sup _{x \in B}\left|f_{i_{j}}^{\alpha_{i j}}(t, x)-f^{\bar{\alpha}}(t, x)\right|=0 \text {, a.e. on } I \text {. }
$$

Thus there exists a subsequence $\{m\}$ of sequence $\left\{i_{j}\right\}$ such that the solution $u_{m}^{\alpha_{m}}$ of ivp (3 f_{m}) (2) uniformly converges to a solution \bar{u} of $\operatorname{ivp}(3 f \bar{\alpha})(2)$. Since $f^{\bar{\alpha}}(t, x)=(1-$ Q) $f^{\circ}(t, x)+\bar{\alpha} f^{1}(t, x) \in F(t, x)$ for $(t, x) \in I \times R^{n}$ then \bar{u} is the solution of $\operatorname{ivp}(1)$ (2) which means that $\bar{u} \in \&\left(F, x_{0}\right)$.

Thus it must be that $k(\bar{u}) \neq 0$. But for this sequence $\left\{u_{m}^{\alpha_{m}}\right\}$ of solutions it is always $k\left(u_{m}^{\alpha_{m}}\right)=0, m=1,2, \ldots$, and hence $\lim _{m \rightarrow \infty} k\left(u_{m}^{\alpha} m\right)=k(\bar{u})=0$. This contradiction prov. es that $\&\left(F, x_{0}\right)$ is a continuum and the proof of our theorem is completed.

From the above Theorem 8, Theorems 2 and 3 and from the fact if an intersection $\bigcap_{i=1}^{\infty} C_{i}$ of the decreasing sequence of continuum C_{i} is a continuum (cf. $\{6$, Corollary 2 , p. 430]) the generalized Kneser's theorem follows immediately:

If multifunction $F: I \times R^{n} \rightarrow$ Conv R^{n} is usc and satisfies the condition $F(t, x) \subset$ $\subset K_{R} n(\theta, m(t)),(t, x) \in I \times R^{n}$, then the emission \& $\left(F, x_{0}\right)$ is a continuum in Banach space C_{I}.

REFERENCES

[1] Alexiewicz, A., Orlicz, W., On a theorem of C. Caratheodory, Ann. Polon. Math., 1 (2), (1955), 413-417.
[2] Berge, Cl., Topological Spaces, Oliver \& Boyd, Edinburgh and London 1963.
[3] Bielecki, A., Kluczny, Cz., Sur une generalisation d'un theoreme de H. Kneser, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 14 (1960), 111-116.
[4] Bridgland, T. G. Jr., Contributions to the theory of generalized differential equations i and II, Math. System Theory, 3 (1959), 17-50 and 156-165.
[5] Castaing, Ch., Sur les multiapplications measurables, Revue d'Inf. et de Rech. Op., 1 (1967), 91-126.
[6] Engelking, R., Topologia ogolna, PWN Warszawa 1975 (in polish).
\{7\} Hartman, Ph., Ordinary Differential Equations, J. Willey \& Sons, New York - London - Sydney 1964.
[8] Kikuchi, N., On control problems for functional-differential equations, Funkcial. Ekvac., 14 (1971), 1-23.
[9] Krzyzowa, B., Sur les families de solutions des equations au paratingent a argument retarde, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 17 (1963), 19-24.
[10] Krzyżowa, B., Sur une generalisatiol: d'une theoreme de H. Kneser, Ann. Univ. Mariae CurieSklodowska, Sectio A, 17 (1963), 25-34.
[11] Krbec, P., Kurzweil, J., Kneser's theorem for multivalued differential delay equations, Casopis pest. mat. 104 (1979), 1-8.
[12] Lasota, A., Yorke, J., The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations, 13 (1973), 1-11.
[13] Ważewski, T., Sur une condition equivalente a l'equation au contingent, Bull. Acad. Polon. Sci. ser. sci. math. et phys., 9 (1961), 865-867.
[14] Wazewski, T., On a optimal control problem (in connection with the theory of orientorfields of A. Marchoud and S. K. Zaremba), Proceedings of the Conference held in Prague in September 1962 (Praga 1963), 229-242.
[15]Zaremba, S. K., O rownaniach paratyngensowych, Ann. Soc. Polon. Math., Suppl. 9 (1935) (in polish).

STRESZCZENIE

Udowodniono, że zbiór rozwiązań równiania $x^{\prime} \in F(t, x)$ spełniających warunek poczatkowy $x(0)=x_{0}$. \&dzic F jest multifunkcja górnic półciagłą o wartościach zwartych i wypukłych, jest kontinuum w przestrzeni C_{l}.

РЕЗЮME

Доказано, что множество рсшсний включения $x^{\prime} \in F(f, x)$ удовлетворяюших начальному условию $x(0)=x_{0}$, где E полунепрерывная сверху мнопов начная функиия с компакткыми выпуклыми значениями, представляет континуум, в пространстве C_{I}.

Nakład 600 egz. +25 nadb. Ark. wyd. 8,5, ark. druk. $10,75+1$ whl. Papier offsel. kl. IJ, B1, 71 g. Oudano do składu w styczniu 1985 r., wydrukowano w maju 1986 r. Sklad wykonanu w Zakladzie Poligrafii UMCS na IBM Composer. Cena zl 170, -

ANNALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA		
LUBLIN-POLONIA		
VOL. XXXVI/XXXVII	SECTIOA	$1982 / 1983$

1. J. M. Anderson, J. Clunie: Polynomial Density in Certain Spaces of Analytic Functions.
2. T. E. Armstrong, M. O. Reade: On Functions of Bounded Boundary Rotation.
3. R. W. Barnard: Criteria for Local Variation for Slit Mappings.
4. L. Brickman, Y. J. Leung, D. R. Wilken: On Extreme Points and Support Points of the Class S.
5. P. Duren, G. Schober: Nonvanishing Univalent Functions. II.
6. P. J. Eenigenburg, J. Waniurski: On Subordination and Majorization.
7. W. K. Hayman, A. A. Hinkkanen: Distortion Estimates for Quasisymmetric Functions.
8. J. A. Hummel: The Marx Conjecture for Starlike Functions. II.
9. J. J. Jenkins: On a Problem of A. A. Goldberg.
10. Z. Lewandowski: Some Remarks on Univalence Criteria.
11. R. J. Libera, E. Zlotkiewicz: A Property of Convex Mappings.
12. T. H. MacGregor: Growth of the Derivatives of Univalent and Bounded Functions.
13. E. P. Merkes: Starlike Continued Fractions and Zeros of Polynomials.
14. Ch. Pommerenke: On the Becker Univalence Criterion.
15. Q. I. Rahman: An Inequality for Asymmetric Entire Functions.
16. M. O. Reade, H. Silverman: Univalent Taylor Series with Integral Coefficients.
17. St. Ruscheweyh, P. Schwittek: On Real Function of Bounded Variation and an Application to Geometric Function Theory.
18. T. J. Suffridge: Analytic Functions with Univalent Derivatives.
19. A. Szynal, J. Szynal: The Generalization of Jenkins Inequality.
20. O. Tammi: On Maximizing Certain Fourth-Order Functionals of Bounded Univalent Functions.
