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Another Proof of Kneser’s Theorem for Generalized Differential Equation

Inny dowéd twierdzenia Knesera dla uogélnionego réwnania rézniczkowego

It is well known that Kneser’s theorem for the differential equation x’ = f (¢, x), where
(t, x)ER X R", is equally valid for the so-called generalized equations, i.e-. Paratiflge.nt
equation (Px) (f) C F (¢, x), contingent equation (Cx) () C F (¢, x) and differcntial in-
clusion x" € F (¢, x). But in the case of generalized equations the proofs of the theorem
(cf. [3], [4], [8], [10], [11], [t5]) are by no means so clear as for ordinary diflc‘rcn-
tial equations. In the present paper we shall show that Kneser’s theorem for ge.nerallz.cd
differential equations may by proved by Miller’s method (cf. [7]), losing nothing of its

clarity.
1. Preliminaries. Let R be a real line and R™ be the euclidean n-dimensional space with
usual norm | x | = ( gxf )'’?, where x = (x,, ... ,X,). The family of all nonempty com-
i=1

pact nad convex subsets of R" is denoted by Conv R". Kx (a; r) is the ball with its center
at point x € X and a radius 7 in a given metric space X, and Ky (4, r) =aLeJA Kx (a;r) for
P+ACX

Let I = [0, 1] C R be the unit compact interval, and Cr be the Banach space of all
continuous functions v : / -+ R" with supremum norm || - || .

If p € C, then for to €I the ,,paratingent* or ,paratingent derivative* (respectively
,,contingent™ or ,contingent derivative*) of ¢ at ¢, is defined as the set of all points X €
€ R" for which there exist two sequences of values t; € I, s; € I, where t; # s;, both sc-

@ (1) — v (1)

quences convergent to fo and such thatx = |im —————— (respectively for |, contin-
f~oe t — Si

gent*, there exists a sequence of values #; € [ distinct from to convergent to ¢y and such

? (t) — 9 (to) g, .
that x = lim —% )i the paratingent (contingent) derivative of ¢ at ¢ is denot-
oo i—fo
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ed by (P ¢) (r) ((C ) (7). Having a multifunction F: I X R" > Conv R" we understand
by the paratingent equation (respectively — the contingent equation and the differential
inclusion) a relation

(Px) () CF (1, x (1) (Cx) (N C F (¢, x (1)), x" () EF (¢, x (£))).

By a solution of this paratingent (contingent) equation we understand a function ¢ € Cy
whose paratingent (contingent) at each point ¢ € [ lies in the given set F (¢, ¢ () while
a solution of a differential inclusion is an absolutely continuous function ¢ € Cy for
which ¢’ (£) € F (¢, ¢ (f)) almost everywhere on I in the sense of Lebesque measure.

- The multifunction F: I X R"™ - Conv R" is called upper semi-continuous (abbreviated
as usc) if for every (f, x) € I X R"™ and for every € > O there exists § > 0, such that F (s,
») C Kgn (F (¢, x); €) for each (s, y) € Kg1+n ((t, x); 8); if additionally the inclusion
F (t, x) C Kgn (F (s, ); €) is satisfied for each (s, ¥) € Kg 1+n ((¢, x); 8), then the multi-
function F is continuous. As Wazewski pointed out in [13] and [14], under the assum-
ed usc of F, the paratingent and contingent equations are equivalent to the differential
inclusion, i.e. a continuous function y satisfies (P ) () CF (t, o (1)) or (C ) (1) CF (¢,
¢ (¢)) if and only if it is absolutely continuous and ¢’ (f) € F (¢, ¢ (#)) a.e. on I. Therefore
every theorem concerning the properties of solutions of the paratingent (contingent)
equation is at the same time a theorem on the properties of solutions of the differential
inclusion and vice versa.

Throughout this paper we shall assume that the multifunction F : I X R" > ConvR"
is usc and satisfies the following condition: F (¢, x) C Kgn (6, m (£)), (t, x) €I X R",
where 6 = (0, ..., 0) is an origin of R and m : [ - [0, =) is a fixed continuous function.
The set of all the solutions of the initial value problem

¢)) ) x'(H)EF(t, x (1), tEI,
Q) x (0)=x0,X0 ER",
will be denoted by & (F, xo) (this set & (F, x¢) is called the emission of the initial point
X, on account of equation (1) by some authors (see [3], [9])).
Finally, let us introduce still one more designation
B=Kgn (xo, 7o), Where ro = | xo | + 3 J (m (£) + 1) dt
0

and K denoted the closure of K.

2. Some facts from the theory of ordinary differential and paratingent equations. Be-
low there are three theorems which will be useful in the last section of this paper.

Theorem 1 ([9, Théoréme I11]). € (F, x,) is a nonempty compact subset of Cy.

Theorem 2 ([10, Lemme 2]). There exists a sequence of continuous multifunctions
Fy:IXR">ConvR",i=1,2,..., such that
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I Fis1 (4, x)CFi (t,x)CKgrn (6, m (1) +1),(t, x) EI X R",
2 F(tx)CF(t,x)for (1, x)EI X B,
P F(t,x) =i°fw] Fy(t, %) for (t, x) EI X B,

Theorem 3 ([9, Théoreme VI)). If multifunctions F; are the same as in Theorem 2,
then

& (Fis1,Xx0) C & (Fi, xo)
and

& (F, xo) = f)l & (Fi, Xo).

Now we shall recall some facts from the theory of ordinary differential equations. Be-
cause at present they are sufficiently well-known we omit their detailed proofs. Thus. lct
us suppose that there is a given function f : / X R" - R" which is Lebesque measurable
in ¢ for each x €R" and continuous in x for each ¢ € I. This function is called a function
of Caratheodory’s type. Let us assume that f satisfies the inequality | f (¢, x) | < m (2).
(t, x) €I X R™ Then the initial value problem (abbreviated as ivp)

(€3] x'()=fx @) tEL

Q) x(0)=x,

has at least one solution defined on the whole interval / (by the solution of ivp (3y) (2)
we mean every function ¢ € Cy such that is absolutely continuous and satisfies cquation

(31) a.e. in I). This solution is bounded and lipschitzean and more precisely if ¢ € Cj is
the solution of ivp (3f) (2), then

1
(a) ||~p||<|xo|+{m(l)df
(b) Iw(t)—¢(§)|<ma;<m(1)|t—s|,t,sEI.
re

3. Approximation theorems. For the convenience of reader first we shall recall two
theorems in the form sufficient for our considerations.

Theorem 4 (Lasota — Yorke [11]). If f: 1 X R™ is continuous, then for every € >0
there exists a locally lipschitzean function f, : I X R™ - R" such that
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(x,x)s;PXR" 1 flit.x)-fe (t.x)|<e.

Theorem S (Alexiewicz — Orlicz [1]).If f:1 X B = R" of Caratheodory's type satisfy-
ing the condition | f (t, x) | < m (t) for (t, x) €I X B, then there exists a sequence of con-
tinuous functions f; : I X B > R" such that | f; (t, x)| <m (t),(t, x)EIXB,i=1,2, ...
and

lim supB | fi (¢, x) = f(t,x)| = O for almost all t € I.
xE

[—=o00

Theorem 6. Let f:1 X R™ - R™ be a Caratheodory's type function satisfying the con-
dition | f (¢, x) | < m (¢) for (t, x) €1 X R" and let ¢ € Cy be a solution of ivp (3f) (2).
Then there exists a sequence of Caratheodory's type functions f; : I X R™ = R" satisfying
the condition | f; (¢, x) | < 3 (m (¢) + 1) such that function ¢ is the unique solution of ivp
(31;) (2), where

;) @W)=fi¢t,x@®),t€Li=1,2,...;

moreover

4 lim sup | fi (¢, x) —f(t.x)| =0 foralmostall t EI.
i—~e xE

Proof. In view of Theorem S there exists a sequence of continuous functions g; : I X
X B+ R" such that

*) lim sgg 1 f(t, x)—gi (¢, x) | = O for almost tEl- N
1—>e X

and

**) gt x)|<m(0),(r,x)EIXB,i=1,2,....

Functions g : / X R" = R" defined by formula
1
gt x)ifIx|<ro=Ixo|+3f (m()+1)dt,
g (t.x)= .
gi(trox/|x|),iflx|>rg

are a continuous extension of g; to/ X R" and still satisfying the inequality (**).

From Theorem 4 it further follows that for each function g; there exists a locally lip-
schitzean function i;: J X R™ = R"™ such that
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su lgf (6, x)—hi(t,x)|<(/i,i=1,2,
(.S RT gi (6. x)—hi(t,x)1<(1/2

The restriction of each h; to I X B, i.e. the function hjrx g, satisfies the global Lipschitz
condition with some constant L;. Now we extend every restriction h;isx g, using the same
technique as before, to a function h," :IX R™ - R" and then define the function f; : I X
X R™ -+ R" by formula

it x)=h(t,x)—hf 6o @)+t o). (. X)EIXR™i=1,2,....

Measurability of f (¢, x) is obvious. We have

fi (6, X)I<IAS (@ x) |+ 1A (. e@) |+ [fEe@)I<3(m()+1)

On the other hand, h{ satisfies the global Lipschitz condition with constant L; with re-
spect to second variable because |x — y |27y [x/|x|—y /|y |forx,y € Bandh; is
lipschitzean with L; constant. Thus | f; (£, x) — fi (. Y) | < | h{ (¢, x) = h{ (¢, y) | <
<Lj|x -y|for(t x), (t, Y) EI X R" and therefore every ivp (31;) (2) has exactly one
solution. But for almost eachz €/

fite@) =R (te@®)—hi C.o@)+f(t.e@®)=¢ (1)

hence ¢ is this unique solution.
There still remains to prove (4). We have

0<sup |f; (&%) —f@.x) 1 <sup (I Al (6, x)—f(t,x)| +

1A e @) —fte@)])< 2:;% l&gi (¢, x)—f(@t.x)|+1hi=1,2;..

hence in view of condition (*) hm sg | fi (&, x) —f (¢, x) | = O for almost every t €[

whlch completes the proof of the theorem.

Theorem 7. Let f:IX R® >R™andfi: IXR" >R", i=1,2,..., be Carathecodory's
type functions satisfying conditions | f(t, x)|<m (D), 1 fi (¢, x) | <3 (m(¢) + 1), (¢, x)E
€I X R", and such that

(5) lim sup | £(t. x) —f; (¢, x) | = O for almost every t € 1.

i»eoxeE

Let g €Cy,i=1,2,..., be the solution of ivp (3¢) (2.
Then there exists a subsequence {vi } uniformly convergent to a function ¢ € Cr which
is the solution of ivp (3f) (2).
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If additionally the problem (3f) (2) has a unique solution, then the whole sequence
:rp,-:i uniformly converges to .

Proof. The functions ¢; are uniformly bounded and uniformly continuous because

|¢i(’)|<lxo|+3(,f'(rn(7)+l)d*r

and I%‘(f)"W(S)I<mg(3m(7)+3)|f—ﬂ

Thus there exists a subsequence { yi;} uniformly convergent to some function 9 € Cr. We
will show that y is the solution of ivp (3f) (2). We have

o ~lxo+ [ 6 0T =0 (0= xo + [ {£ 60D -

1 (s, 0i; (0) 1 6. 0i; () * £i; G5, 03 D) = £ 5. 0 )} ) =
aj(?)

=0 () ~(xo+ [ £y (. oy ) ds + [£6. 0 @) ~f 6. 06D ] ds +

¢
1 Uiy G5, 0 6) =f .0 ) ] d) =y )+ () + 7 ), L €L
—7j()
Since a (£) = ¢ (£) — ¢ij(t), then oy (f) >0 asj > ==, Similarly, in view of the continuity
of f with respect to second variable and the Lebesque’s Dominated cobvergence Theo-
rem, the value §; (f) converges to zero when j > e,

We also assert that y; () converges to 0 as j > ¢, Indeed, in virtue of the limit condi-
tion (5) we have

0<% (1< ] 1£; . 0 ) =16 oy () ds <

<[ sup 1) 60 ~£ (6. x) 1 ds >0, as] >
0 xe

Therefore it must be

eW=x0 + [ 6. 0@ ds. tEL

which means that ¢ is the solution of ivp (3f) (2). If we assume now that ivp (3f) (2) has
exactly one solution, then every subsequenc {«p,-,] contains a subsequence {4),-,} converg-
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ing to this unique solution. Thus the whole sequence {¢;} converges to this solution. The
prcof of the theorem is completed.

5. The generalized Kneser’s theorem. A function f: /X R" = R" is called the selector
of multifunction F : I X R™ -+ Conv R™ if £ (t, x) € F (t. x) for (t, x) EI X R".

Lemma 1. Let multifunction F : 1 X R™ - Conv R" be continuous and satisfy the con-
dition F (t, x) C Kgn (6, m (t)), and let p € Cj be a solution of ivp (1) (2). Then there
exists a Caratheodory's type selector f of F such that ¢ is the solution of ivp (3p) (2).
Moreover | f(t, x) | <m,(¢t) for (t, x) EI X R",

Proof. For (¢, x) EI X R" let us define

proj (¢’ (£) | F (¢, x)) when ¢’ (¢) exists.
fltx)= {
proj (8 | F (¢, x)) when ¢’ (£) does not exist,

where proj (z | A) denotes the metric projection of a point z €ER” onto a nonempty com-
pact convex subset 4  of R" (in case of euclidean norm in R” this projection is always
a one-point set). Therefore f is a selector of F and obviously satisfies the inequality | f (¢,
x) | < m (¢). By Berge’s theorem [2, Th 3, Chapter VI} f (¢, <) is continuous for every
t €I and by Castaing’s theorem [S, Th 5.1] £ (*, x) is measurable for every x €R". Thus
f is Caratheodory’s type function. Moreover, for almost every t € I ¢’ (f) € F (¢, ¢ (1)),
hence ¢’ (£) = f (t, ¢ (¢)) which completes the proof of the theorem.

Theorem 8. If multifunction F : I X R" - Conv R" is continuous and F (t, x) C Kgn
(8, m (1)), then the set & (F, x,) is a continuum,

Proof. We must prove only the connectedness of & (F, x,) because by Theorem 1 it is
nonempty and compact. Let us suppose the contrary, i.e. that & (F, x,) is not connected..
Then & (F, xo) = Eo U E, where Eo, E, ~re nonempty, disjoint closed subsets of Cy.
Then od (E,, E,) = inf {II u—vl|:u€E,, vGEl} =d > 0. Let us define the function
k :C;—> R by formula

k(u)=d(uoEO) -d(u'El)

whered (u, E) = inf{" u-vll :vGE}.
Moreover

[—d(u,E|)<—d, iquEo,
ku)={
d(u, Eo))d, iquEl.

Thusif u € & (F, x,) then still k (u) # 0.
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Let u® and u’ be two solutions of ivp (1) (2) such thatu® EE, and 4! €E,,

By Lemma ! there exist selectors J°,'f! of multifunction F such that u® and u! is
the solution of ivp (31°) (2) and (3f!) (2) respectively. f© and f* hre the functions of Ca-
ratheodory’s type and satisfy the condition | f/ (f, x) | <m (£),j=0, 1,(t, x) EI X R".
Thus, in view of Theorem 6 there exist sequences {f’} i=1,2,...,7=0,1 of functions
f/ :I X R" > R" such that

1) f’ is Caratheodory’s type and satisfies the inequality Ifj (t,x)I<3 (m +D,i=
1, 25 i Ol

2) u’ is unique the solution of ivp (3,1) (2),i= L J=0,1,
3) lim sug If,l (t,x) —f(t, x)| =0 for almost everyrEl,j= 0, 1.
i~ xE '

Fori=1,2,...and a €/ let us put
fE@x)=(1 —a)f) (t.x) +af} (1, x),(tx)EIXR"

and consider such a defined family of functions f*. First of all we conclude that for arbi
trarily fixed a, €/

£ @0 =ff(x)I<1B=allff (&%) =1} €.x)1<61B-al(m()+1).

Hence

(6) sup |f (6, %) A x)I<61B-al(m(@) +1).
X

In virtue of 3) we have

@) lim su | £ (2, x) —f*(t, x) =0 for almost every t €I

]—s o0

where f*=(1 —a)f° + af!.
Moreover, every f° satisfies the global Lipschitz condition with respect to x and with
some constant L}‘ which is no large then L; = max (L, L‘) Therefore, there exists ex-
actly one solution u of ivp (37%) (2). We assert that for every fixed i the solution ug
continuously depends on the parameter a.

Indeed, we have

{

g ) =uf 1< 17 G, uf ) = £F 6, uf @) I ds <
STUEGuf ) ~f7 G uf (o) s +
1
H{ 7 Guf @) =1F Guf @) 1ds <

<Lef1ug @) —ub 6)1ds w6 1f-alf (m) ¥ )as<
4]
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¢
<61B-alf (m(s) +1)ds+L;f1u®(@) —ul (s) | ds, (EL,
0 o >
and by Gronwall’s Lemma ([7])
Nuf - uf|l<6 IB-alcelit ter

Thus if § > a then u uniformly converges to ui Then it follows that fori = 1,2, ...,
k (u) is the continuous function of a. Since u? =u® u =a', k(m®)< andk(u')>0.
The sequence fa,'l is bounded and therefore it contams a subsequence [ a,!i which is

convergent to &. Let us choose an arbitrary € > 0.7n view of (6) and (7), for almost cvery
t €1 and for sufficiently large j we have

sup | £, (¢, x) —f (¢, x)i<SUp LX) ~ £ (e x) | +
x€B ‘] x€B ' ]

+5up 1f5 (60 ~f2 (L x)L<e
xXE )
Thus it must be that

lim suglff"j(t x) f"(t x)|=0,ae. onl

J—*> xE

Thus there exists a subsequence {m} of sequence {i;} such that the solution u ™ of ivp
(3fam) (2) uniformly converges to a solution u of ivp (35z) (2) Since f°‘ (t, x) =(1 -
?’ ¢ x)+afll, x) € F (1, x) for (t, x) €I X R™ then u is the solution of ivp (1)
(2) which means thatu € & (F, x,).
Thus it must be that k (u) # 0. But for this sequence {u"‘"’} of solutions it is always
k (u:'m) =0,m=1,2,...,and hence lim & (u"'") k (u) = 0. This contradiction prov-
n-see
esthat & (F, x,) is a continuum and the proof of our theorem is completed.
From the above Theorem 8, Theorems 2 and 3 and from the fact if an intersection

191 Ci of the decreasing sequence of continuum Cj is a continuum (cf. {6, Corollary 2

p. 430}) the generalized Kneser’s theorem follows immediately:
If multifunction F :/ X R™ = Conv R" is usc and satisfies the condition F (¢, x) C

C Kgn (6, m (1), (t, x) €I X R", then the emission & (F, x¢) is a continuum in Banach
space C.
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STRESZCZENIE
Udowodniono, ie zbidr rozwiszan réwniania x' € F (¢, x) spetniajacych warunek poczatkowy
x (0) = x,,8dzic F jest multifunkcja gérnic pdtciagts o wartosciach zwartych i wypuktych, jest kon-
tinuum w przestrzeni CJ.
PE3IOME
Jloxa3aHo, YTO MHOXeCTBO pellcHUA BKMoveHus ¥ € F (1, x.) YOOBNETBOPAIOUMX HaYanL-

HoMy ycnoBup x (0) =x,, rae £ nonyMcnpcpelBHag CBepXy MHOINOS HayHas GYHKUHA ¢ KOMNAKT-
HbIMH BBIMYKNBIMK 3HaYCHHAMM, NPEACTaBNACT KOHTHHYYM, B npocTpaKcTBe Cy,
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