Instytut Matematyczny PAN

S. ROLEWICZ

On Lipschitz Projection - a Geometrical Approach

O rzutowaniu lipszycowskim – podejście geometryczne

О липшицевой проекции - геометрический подход

Let X be a Banach space over reals. Let Y be a subspace of X. We say that M is a Lipschitz projection on Y if MX = Y, Mx = x for $x \in Y$ and

(1)
$$|| M(x_1) - M(x_2) || \leq L || x_1 - x_2 ||$$

The infimum of constants satisfying (1) is called the norm.

Lindenstrauss [1] proved that if X is a reflexive space and if there is a Lipschitz projection of norm L then there is also a linear projection of norm L. In particular it holds for all finite dimensional spaces. However, even in finite dimensional spaces the proof of Lindenstrauss is going via construction of a projection of an infinite dimensional space onto finite dimensional. In this note I shall prove the Lindenstrauss theorem for the case when X is three-dimensional space and Y is two-dimensional and for the norm equal one by a geometrical method. The proof is based on the following lemmas:

Lemma 1. Let P_0 , P_1 be convex closed figures in R^2 . We assume moreover that P_0 is centrally symmetric and that (0,0) is its center of symmetry. Then there are two possibilities either there is a translation a_0 such that

$$(2) a_0 + P_1 \subset P_0$$

or there is a translation a1 such that

(3)
$$(0,0) \in \operatorname{conv} [(a_1 + P_1) \setminus P_0]$$

Proof. Suppose that (2) does not hold. Let a_i^0 be chosen in such a way that $f(a_i^0) = \min f(a)$, where

$$f(a) = \sup_{x \in a + P_1} \inf_{y \in P_0} ||x - y||$$

be minimal. The existence of such a number follows from compactness arguments. Suppose that (3) does not hold. Hence, there is a real line L such that conv $[(a_i^0 + P_1) \setminus P_0]$ is on a one side of L and a projection P_L of direction a_L of norm one on L. This shifting P_1 into direction of projection we obtain that

$$f(a_i^0 - ta_L) < f(a_i^0)$$

for sufficiently small t and it leads to a contradiction with the choice of a_i^0 .

Lemma 2. Let X be a three-dimensional Banach space. Let H be a two-dimensional subspace in X. Let K_1 denote the unit ball in X and let K^0 be a half-ball obtained by the section of K_1 by H. If there is not a projection of norm one on H, then there is a projection P of K_1 on H such that

$$0 \in \operatorname{conv}(PK_1 \setminus K \cap H)$$
.

Proof. Let H_e be a plane parallel to H being in the distance e from H and on this same side of H as K^0 . Let K_2 denote $K_e = K \cap H_e$. Suppose that for each e there is a linear projection P_e such that P_e $K_e \subset K \cap H$. Since K_1 is convex it implies that for $\eta > e$ P_e $K_\eta \subset P_e$ K_e . Thus we obtain that $\|P_e\|$ tends to one for a tending to 0. By compactness argument we obtain in this way that there is a linear projection of norm one.

Suppose now that there is no linear projection of norm one on H. Then there is K_e such that for any projection P, PK_e is not contained in $K \cap H$. Observe that by changing of projection we are making translations of PK_e . Therefore, by Lemma 1 we can find a projection P_0 such that $(0,0,0) \in \text{conv}(P_0,K_e \setminus K \cap H)$.

Theorem ([1]). Let X be a three-dimensional space. Let Y be a two-dimensional subspace. If there is a Lipschitz projection of norm one of X onto Y, then there is a linear projection of norm one.

Proof. Suppose that there is no projection of norm one on Y. Using Lemma 2 we can find a linear projection P and points p_1 , p_2 , p_3 such that

$$p_i \in PK^0$$
, $i = 1, 2, 3$

$$p_i \notin K, i = 1, 2, 3$$

there are α_1 , α_2 , $\alpha_3 \ge 0$ such that

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 = 0$$

Take a direction p_l , for every point $a \in P^{-1}$ (0) and lying on this same side of H as K^0 we can find positive numbers t_a^i , r_a^i such that a belongs to the boundary of the ball K ($-t_a^i p_l$, r_a^i) of radius r_a^i and the center at $-t_a^i p_i$ and P^{-1} (0) is tangential to this ball. It obviously implies that

 $P(a) = 0 \in \partial P(K(-t_a^i p_i, r_a^i))$ $P(a) \notin K(-t_a^i p_i, r_a^i)$

but

It implies that

(5)
$$H \cap \bigcap_{i=1}^{3} K \left(-t_a^i p_i, r_a^i \right) = \emptyset.$$

Suppose that there is a Lipschitz projection M of norm one. Since $||a + t_a^i p_i^i|| = r_a^i$ and M is Lipschitz projection of norm one

$$M(a) \in H \cap K(-t_a^i p_i, r_a^i) i = 1, 2, 3$$

but it is impossible by (5).

REFERENCES

[1] Lindenstrauss, On non-linear projection in Banach spaces, Michigan Math. Journal, 11 (1964), 263-287.

STRESZCZENIE

Mówimy, że M jest lipszycowskim rzutowaniem o normie L przestrzeni rzeczywistej Banacha X na jej podprzestrzeń, jeśli MX = Y, Mx = x dla $x \in X$, $\|M(x_1) - M(x_2)\| \le L \|x_1 - x_2\|$, przyczym stałej L nie da się zastąpić przez liczbę mniejszą. Lindenstrauss wykazał, że dla refleksywnych przestrzeni Banacha rzutowanie M można zastąpić rzutowanie:n liniowym o normie L. W pracy podano geometryczny dowód twierdzenia Lindenstraussa w przypadku L = 1, $X = R^3$, $Y = R^2$.

РЕЗЮМЕ

Скажем, что M — липшицевая проскция с нормой L, действительного банахого пространства X на ее подпространство Y, если MX = Y, Mx = x для $x \in Y$, Mx = x, Mx