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1. Introduction. The following theorem has been proved by Bielecki [1]:

Suppose that N (t, s, x) is a bounded real function defined for 0<t, s < Tand x € &
satysfying the Lipschnitz condition with respect to Xx:

(1.1) ING s x)=N(@ s, )ISL@)Ix-yl|forallx,yER

where L (t) is a non-negative locally integrable function over the interval 0 < t < T. Write
forxeC[0,T),pER:

(12) Ixllp= max_{exp [~p[L()ds]1x(0)]}

Then the equation
t

(1.3) x=G(x)+y, whereG (x)(t)= [N (s x)ds,yE€C [0,T]
0

has a unique solution, which is the limit of a uniformly convergent sequence of successive
approximations:

x (¢) = lim x, (1), where xo =y
n—-0
and
Xn (D)= (t)+sz(r, 5, X ()ds(1=1,2,..)

The proof is based on the fact that for p > 1 we have
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(1.4) G x)-G ) Ilp<{/Allx =yl ,forx,y €C[0,T]

(and could be found, for instance, in [2]).

Therefore this method makes it possible to apply the Banach fixed-point theorem
without restrictions on the modulus of the function NV (¢, s, x) of the type ,if N (1, 5, x)
is small enough...“

Inequality (4) shows that by taking p greater we obtain a faster approximation.

This theorem could be also formulated for T = + oo, in which case, instead of the
space C [0, T] we consider

Xp={x:exp [—p{rL (s)ds] 1 x (1) | < const}

fora p > 1, provided that the function L is locally intergrable for ¢ > 0.

In the present paper we shall show that the Bielecki theorem can be extended for a
class of non-linear operators acting in a Banach space. This extension will be done in two
steps: 1° we shall generalize the Bielecki theorem for functions of real variable with
values in a Banach space; 2° we shall apply the obtained theorem and properties of shifts
introduced by the present author for a general case. Examples of applications to hyper-
bolic equation and equations with transformed argument will be also given.

2. Bielecki Theorem for functions of real variable. Let £ be a Banach space with

the norm || llg. Let X = C ([a, b].E) be the Banach space of all functions determined
fora < ¢t < b and with values in £ equipped with the norm

2.1) lxli= sup llx(®)llgforx€EX
0<r<h

Theorem 2.1. Suppose that
1° the function N (t, s, u) determined and continuous for 0 <a <t,s< b, x EE and
with values in E satisfies the Lipschitz condition:

23) IN(@ssu) -N@EsVIIe<L@lNu-vligforallt,s€fa b],uvEE

where L is a locally intergrable non-negative function.
2° the function h € C [a, b) satisfies the conditions:

(2.4) h(@)=aanda<h (1)<t fort€ [a, b)

Wnie:

25 = {exp [( “”L ds }
(2.5) Wxllp = 'sup Hexpil(=p af G)as] lix @)l g}

forallx EXandpER .
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Then the equation

h(r)
26) x@="1" N(t.s,x©)ds +y @),y EX

4 .
has a unique solution which is a limit in the norm || || p of the sequence of successive
approximations:

x = lim x,, wherexy =y,

h(n
Xn+1(t) = } Nt s xp()ds+y()(n=0,1,2,..)

Proof is going on the same lines as the original Bielecki’s proof. Observe that forp = 0
Il xllo = Il x Il and all norms Il |l , for p > O are equivalent. The mapping G defined by
means of the equality:

. h(D
(02)) G)(H)= } N(t, s u(s)ds+y (), ueX
a
maps the space X into itself.
We shall show that
(2.8) I1Gm)—-G I, </Pllu-vI pforu,v€X,p>1.

Indeed, observe that the function
t
(29) Ly()=[L(s)ds
a

is non-negative. Hence for p > 0 we have

k()
uﬂijmahuﬂﬂmMm>n

and forally,v€X
lu@-v(@ONe<exp[pLi(h@)]) lu-vil,

Since Ly(t)=L (t),L, (h @)=L, (@)=0,and | —e ¥ <] foru >0, we find

exp[=pLy (RN NG @)—G W)l g =

=exp[—pLy (R ()] I h}:) IN(t, s, u(s))ds—N(t s, v(s)ds] ll g <
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<exp[—pL, (h(@)] ha}” LI u@)—v@)llegd<
hip
<exp [—pL, (h(1)] g’ L(s)exp[pLy ()] lu—-vipds<

<exp [ —pLy (h @) "j” Ay exPpln @)l vl

=(/p)exp [ —pLy (h (¢)] exp [pLy ()] 2P Nu vl g =
=(1/p)exp [ —pLy (h (1)) [exppLy (h (1)) = llu-vig=
=(1/Phu—-vil 1- e‘xp [—pL; (R(®)] <(1/Pllu-v] p-

Therefore for p > 1 the mapping G has a unique fixed point which is a limit in the
norm || 1 P of the sequence of successive approximations. But all norms || || p for
p € K, are equivalent. This finishes the proof of our theorem.

In the same manner we can consider Equation (2.6) in the spaces C(R, E),C®,E)
etc. We have only to assume that the function 4 (f) < on & (or & ,, respectively).

Example 2.1. Suppose that h € C! [a, b}, h maps the interval [a, b] onto itself, h (a) =
=g, 0<a<h(t)tand h' (t)> 0 for t € [a, b]. Suppose that the &”-valued function
N (1, s, x) is determined and continuous for 1, s € [a, ], x € &”" and satisfies the Lip-
shitz condition:

(2.10) IN@ s, u)=N(@, s, v)llagn<L@)llu-vignforu ve®
where L is a function such that the function

L@)=L )/ H (h* 1))

is a non-negative function intergrable over [a, b], where h ™! denotes the inverse func-
tion. Consider a differential equation in " with transformed argument:

2.11) x () =N [z, x (h (1))}

with the instial condition

(2.12) X (@) =x,
The system (2.11) — (2.12) is equivalent 1o an integral equation:

(2.13) x(l)=}N(s. h(s))ds +x,
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If we change variable s > h ™! (u) and we write:
Nt x)=N 0 (1),x) /K (6™ ()

we can rewrite the equation (2.13) in the form:

(2.149) x()= } N (u, x (u))du +x,

The functions h, L, N satisfy all assumptions of Theorem 2.1. We therefore conclude
that the equation (2.14), hence the initial problem (2.11) — (2.12), has a unique solution
which is a limit of the sequence of successive approximations (in the norms || || p D >1,

p=0):

x = lim x,, where

|

h(r) ~
Xpe1 (@)= j N@,x, u))du +x, forn=0,1,2, ...

3. Bielecki Theorem for .right invertible perators. Let X be alinear space (over & or
C). Let D be a linear right invertible operator defined on a linear subset dom D C X and
with the range in X such that ker D # {0}. Let R be an arbitrarily fixed right inverse of
D, i.e. DR =1 (we assume that dom R = X) and let F be an initial operator for D corres-
ponding to R, i.e. a projection onto ker D such that FR = 0. By definition,

(3.1) F=1-RD ondomD.

Let {Sb}hER be a family of induced R-shifts (cf. the author, [3]), i.e. a famxly of
linear operators defined on X with the property:

So=1
(3.2)
PO ) L
v Y SyR¥F=132 (—)——h"’/R/F
keNU {0} her =0 (k-

This family is an Abelian group (with respect to superposition of operators as a structure
operation), moreover, preserves constants, i.e.

3.3) Spz=zforallz€EkerD,hER

If R is a Volterra right inverse (i.e. the operators / — AR are invertible for all A € C)
then we can define another family of shifts, so-called D-shifts, in the following way:
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So =]

(3.4) ¥V ¥V Si(-MNR)PF=e M@I-R)'F
A€C h€ER

which has the same properties, as R-shifts (cf. the author, [3]). In general, these two
families do not coincide. However, if, for instance, X is a Banach space, R is quasi-nil-
potent then R-shifts and D-shifts coincide.

In [3] (Theorems 5.1, 5.2,5.5, 5.7) we have proved the following facts:

Let X be a complete linear metric locally convex space. Let D be a closed right invest-
ible operator, let F be a continuous initial operator for D corresponding to a continuous
right inverse. Let P (R) be the set of all generalized polynomials, i.e.

(3.5) PR)=lin{R*z:z€kerD, kENU{0}}

(resp. R is Volterra and £ (R) = lin {(1 —MR)'z:zEkerD, \E C} be the set of all
generalized exponentials).

The sets P (R) and E (R) are independent of the choice of a right inverse R. Assume
that P(R) = X (resp. E (R) = X) and the {Si} neq is a strongly continuous group of
R-shifts (resp. D-shifts). Then

1° D is an infinitesimal generator for {S,,} ne&,domD = X and Sy D = DSy on dom
D forallh €ER,;

2° the canonical mapping k = FSy which transforms elements of the space x into ker
D-valued functions kx =X (h) of a real variable A separates points, i.e.

(3.6) ; X =5if and only if x =y, where X (k) = FSj x
3° The following equalities hold:

KD = (d/dt) k., kR = | K, (KFx) (£) = (kx) (0),
(3.7) >
(Sh 1) (1) = (kx) (¢ = h)

forallx€X, h,t €ER.
This means that

GO =2 (. &) ()= £ s) as,
(3.8) o
) (1) =% (0), Shx) () =F (¢ - h)

forallx € X, h, t € K.

Theorem 3.1. Suppose that X is a Banach space, D is a closed right invertible opera-
tor, F is a bounded initial operator for D corresponding to a bounded right inverse R,
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P(R) = X (resp. R is Volterra and E (R) = X) and Sy peg is a strongly continuous
grcup of R-shifts (resp. D-shifts). Suppose, moreover, that G : X = X is a non-linear
mapping satysfying the following conditions:

39) G (FS;x)=FS;G(x)foralltER,xEX
(3.10) IGx)—GO)I<Mllx -yl forallx,y €X
Then the problem

3.11) Dx =G (x),Fx=x¢9,x90 €ED

has a unique solution, which is the limit (in norm) of sequence of successive approxima-
tions:

(3.12) x=lim xp, Xp4+1 =RG (xp) +x,(n=0,1,2,..).
X =+ oo

~
Proof. By our assumptlons properties 1°,2°, 3° holds, also we have G (x) = FS,G (x) =
=G (FS;x)=G (x) Moreover, since.

(3.13) NSpxll<Ce | x| forallh€ER, xEX

(cf. [3], Theorem 5.8), we find

(B.14)  IkGE)—kGOWI=IGCE)-GOI<CMIFleIx -yl

forx,y€X
Indeed, || kG (x) — kG M) 1 =1IG ®)—~G P) I =1l G (FS, x) - G(FSxy)l|<MIIFSrX—
—F.S‘,yII<CM||F||e|”IIx >l

Observe that the function
(3.15) LA)=CM||Flle'"' (teR)

is a non-negative locally integrable function of real variable.
On the other hand the problem (3.11) is equivalent to the equation
(316) x=RG (X)+x°, Xo € ker D

Apply to both sides of Equation (3.16) the canonical mapping k. Then by our assump-
tions and Formulae (3.7), (3.8), (3.14) we get
t
% ()= FS; RG (x) + FS; xo = { FS, G (x)dr + Fx, =
0

= G (Fs, x)dr +xo -=f G (1)) dr +xo
[\]
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where xo = x (0). All assumptions of Theorem (2.1) (withh (¢/) =t anda = 0, N = kG
are satisfied. We therefore conclude that the equation

(3.17) @)= of' & () dr +x,

has a unique solution which is the limit (in norm) of the sequence of successive approxi-
mations:

A {
(3.18)  X=lim X, where Xp+1 (£) = f (5p (1)) dr +x0 (1 =0, 1,2, ..))
n-—+m= 0

fort € [0, T], where T'> 0 is arbitrarily fixed.
But the canonical mapping separates points. This means that Equation (3.16), hence

also the problem (3.11), we started with, has a unique solution, which is the limit (in
norm) of a sequence of successive approximations:

(3.19) x = lim x,,wherex,+] =RG (x;)+xo(n=0,1,2,...).

n—+oo

Example 3.1. Consider a non-linear problem of the Darboux type:

2

(3.20) TxX09) G s xts)in0=[0.] X [0, 5]
ot ds

(3.21) x(t,0)=0(r),x (0,5) =w(s)fort € [0,a],s € [0, b]

where the function G (¢, s, x) determined for ¢, s € £, x belonging to a Banach space £
satisfies the Lipschitz condition:

3.22) NGt s, x)-GsYIESL(@)Ix-yl| g forx,y€EE,

L is a non-negative, locally integrable function, 0 € C ([0,a],E),wE C([0,b},E)and
0(0)=w(0)=0.

The operator D = 3%/3t ds is right invertible and closed in the space. C (§2). The con-
ditions (3.21) induce an initial operator F of the form

(3.23) (Fx)(t,s)=x(2,0) +x (0,s) --x (0, 0)

ts
corresponding to a Volterra right inverse R = [ f. Since C (£2) is a Banach space and R is

1}
quasi-nilpotent we can consider only a family of R-shifts, which is a strongly continuous
group and
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(3.24) NSpxli<Ce™|x|forxEX hER. -

(cf. Theorem 5.8 in {3]).
We may write (cf. Example 4.7 in [3]):

(3.25) S;,F=exp(t‘1f)F;+exp(sf)fer
)

where (F, x) (2, s) =x (¢, 0), (F, x) (2, s) =x (0, 5), for x € C ().

All assumption of Theorem 3.1 are satisfied. We therefore conclude that the problem
(3.20) — (3.21) has a unique solution which is a limit of a sequence of successive approxi-
mations:

x = lim x,,wherex, (2, s) =0 (t) + w(5)

A=em=

t
Xn+1 (1. S)=({{’G(u, v, X (u, V))dvdu + =g, forn=0,1,2, ..
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STRESZCZENIE

W pracy tej podano pewne uogdlnienie klasycznego jui twierdzenia Bieleckiego z 1956 r., znacznic

. rozszerzajgcego zakres stosowalnosci metody Banacha-Caccioppoli-Tichonowa. Podano réwniez za-

stosowanie uogélnionego twierdzenia Bieleckicgo do réwnan hiperbolicznych oraz réwnas z przesu-
nigtym argumentem.

PE3IOME

B paGote faeTca HexoTopoe 0606LUEHHE, KRCWRCKOR - yxke TeopeMbl A. Bencukoro 3 1956 r.,
IHaUMTENBHO PACIUMpAIOLUIHE 06NACTE MPUMEHHUMOCTH MeTofla Banaxa-Kauionnonu-Thxotoa. Onso-
BPEMEHHO MPHBOARATCA HEXOTOPBIE MPHMEHCHHA 0GOGLICHHOR TEOPEMBbI K rHIOepGONHYCCKHM ypab-
HEHHAM H YPaBHEHHAM C OTKJIOHSIOUIMMCS 8PTYMEHTOM.






