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A Finite Difference Analogue to the Problem of Zofia Szmydt
Analogon problemu Zofii Szmydt w metodzie réinic skoficzonych

AHanor  mpo6nemnl Codun LIMBIOT B MeTOIE KOKeYHLIX pa3HocTeft

In this paper we will consider a finite difference approximation of the well-known
Z. Szmydt problem (cf. [3], e.g.). To do this we usc an operator calculus found in [6].
This is another example for the possibility of an unified treatment of differential and
difference problems proposed in [9].

1. Elements of an operator calculus. Let be given the linear spaces L° and L*. Accord-
ing to [6] we fix the following definitions and statements.

Definition 1. An operator S belonging to L(L*, L®) with S(L') = L° is called an (alge-
braic) derivative. Each operator T € L(L°, L‘) which satisfies ST =id | 7o is called an
(algebraic) integral with respect to S. The operators =id | £+ — TS is then the boundary
condition corresponding to S and T.

Theorem 1. The differential equation problem

Su=ffEL®
(1)
su=ug, up €EKer S
has the solution
2) u=uy +Tf

We will omit examples to illustrate the notions above, they will be fo__und in [6] or [S].
Suppose that there are given two isomorphic mappings Yo : L° = L® and ¢, L' ~
- L', where L° and L' are linear spaces, too.
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Definition 2. The operator § = Yo S¢3!, T = ¢, TYy and s = y, sy will be called
equivalent derivative, integral and boundary condition with respect to S, T and s.

Theorem 2. Problem (1) is equivalent to

Su=ff=vesel’
(€))

;u_= u_o, l;o ai lplgo EKCI’E.
The image of (2) with respect to i, is the unique solution of this problem.

2. Preliminary definitions and results. Let us denote by D(R?) the space Co (R?) with
the usual topology. By D'(R?) we realize the space of linear and continuous functionals
on D(R?). The elements of D'(R*) are called distributions. For details in notions and
theorems see [7], e.g. We will consider the following problem: Find a distribution u®
satisfying

4) 8¢ anu™ = f(&, n), fED'R?),
where the distribution 3¢ 51,140') is defined by
(3t 3nu™, ¢)= @ ®, 3t a0 ¢), 6€D(R?),

with (3¢ 3n ¢) (.m)= (@, (£, 1) — o (£, n) — ¢ (&, m) + @(E, M) / K, h > Vs a discre-
tization parameter. We used the abbreviation ¢4, (8, 1) = ¢(¢ + kh, 0 + jh), j and k are
integers.

Problem (4) is an approximation of

(%) ugn =f ()

and must be interpreted as a suitable extension of the usual numerical problem

h (h (h) () =13
u},_}- x»’u“ ug )y tu? ) =h*f(kh, jh),

which is a possible discretization of (5) by backward finite difference formulaes using h
as a discretization parameter for both directions. We are interested in boundary condi-

tions assuring existence and uniqueness of solutions of (4).

Definition 3. The distribution £ will be called a fundamental solution of (4) if it
satisfies the equation

G d, EW =5,

where 8 is the Dirac distribution.
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The following fact is easy to show.
Theorem 3. The distribution
E® @& n)=h* £ I 5@¢-khn-jh
&m=h" Z ZoC¢ n-jh)
is a fundamental solution of (4).

In chapter 6 we will show how fundamental solutions for the operator 3; 3, + A* can be
constructed.

Theorem 4. If E B s 4 fundamental solution of (4) and if rhe convolution u™ =
=M« f exists, then u™ is a solution of (4).

Proof. Let the convolution u * v exist. Then 0y (u * v)=u * 3;v = (d¢u) * v. The same
equality holds if we replace the differences with respect to & by such ones with respect
to 7. Therefore,

5 G E® =5 5, EM) e f=1
If E® is the fundamental solution given in Theorem 3 we get

u® &)= EP @ n=n* T T f(&- kh q-jh).
/=0 k=0

Let a = a(¥) and § = f(n) be two curves in the (£, n)-plane satisfying the condition

N V  a(vh) = uh, f(vh) = wh
vEl u,wer

and let for fixed (x, ) the region
Q% )= (e ) a@) +h2<n<y +h/2,6(n) +h/2<E<x +h2]

be not empty. For the sake of simplicity we assume that (x, y) = (Kh, Jh), where J and K
are integers.
To solve our problem we define

ﬂ'GD (R?*): suppfC ﬂ(x »y JE -C(Q?x,y))}
L' =3ueD'(R*): suppuC Q(lx'y). u€ f(azx,y))}»

where Q! G n):ax)-h/2<n<y+h/2,p(n) -h/2<E<Xx +h/2.

=2 °

Further, Theorem 4 suggests the following definitions:



104 E. Pfeifer

g1 50 g 3 3 £
~ S:L'~>»L ,S.u"(ae anu}in“'yl

T:LO+L' T:f-EM ey
For f€ L°® we have

— (3 5 h) « ; = o =
STf=(0¢ 0n (£ fn'“(x,y) fln(-\'.?) 4

Similar like in [3] we derive a fundamental formulae.

" Theorem 5. Foru € D'(R*) N L(Q}, . ) the following identity holds:

x.»)
(7) [I udgd,¢dtdn— [f O;dnuedidn=
2 (x.y) 2 (x.y)
y+h/2 x+h /2 . a(x)+h/2 x+h/2
== (Lt a(n{h/z xirh/Z L aE ugfd gk a(x){h/Z B(‘n)f—h/Z uaE ¢dbdn+
y+h/2  x+h|2 x y+h/2  B(n)+h/2 =
+(1/h)y_fh/2 ﬁ(n)f-'l/2 udg ¢ dt dn —(1/h) m{wz B(n—jh)+h/2 $ogu " didn+

y+h[2  B(n)+h/2

+(1/h 9, udtdn +
@ )a(x')r+h/2 p(n)f_h/2 $ 8y udf dy

y+h/2  p(m)+h/2 £ B(n=h)+h/2 .
+(*y o ( f  uThedE- u~" ¢ dt)dn,
a(x)+h/2 B(n)-h/2 B(n—h)-h/[2 9

By means of distributions (7) reads
3 3 ~ (35, -
®) O onial, " Oedn)ias =V,
where V(u) is a distribution defined by informations of u on the boundary’of Q?x, ¥)

and given at the right-hand side of (7). If h tends to zero and if u is sufficiently smooth
then (7) tunis over to the fundamental formulae karown from Riemann's method (cf. [3]).

Theorem 6. Each distribution u € D' (R*) N .C(Q:x.,) ) can be represented as

) upqn! "Ew'((gcsn")mf

2%, +V(w)),

x.y )

where E thy is the fundamental solution defined in Theorem 3.
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Proof. We have

é'nk'(h)tuln, )=E(h)‘gt.a-nulﬂ'

! l ¢ (x’y (X,y) >

-
3

=§*
) Y190y

Identity (8) finishes the proof.

3. The problem of Z. Szmydt — existence, uniqueness and convergence results. Follow-
ing Theorem 1 and our definitions (6) we have to define the boundary condition

su=u—TSu u€l',
In view of (9) we get
su=E® « V(u).

The question now is: Which values of u on the ,,boun iry* are necessary to describe su
at the point (x, ¥)? To this aim we assume that there is given a function ¢ € D(R?) with
supp ¢ C U(x, y), where U is a sufficiently small neighbourhood of (x, y). Via (7) we
calculate

(u, ) =(EP * V), ¢)=
]
- -[«(x)+h/2+ih x+h/2+kh
z 2 f f
k=0 J=0 La(x)—h/2+}k B(n=M)-h/|2+kh

uh odtdn+

Y+h[2+fh  B(n—fh)+h|2+kh 3
e 0 u Ry ¢ dgdn -

a(x)+h[2+/h g(n—fh)-h[2+kh
y+h/2+4/h  p(n-jh)+h|2+kh
— ‘r f u
a(x)+h[2+/h p(n-h-Jh)-h(2+kh

a(x)+h/[2+fh x+3h/2+kh

-/ ’
5 u ¢dkdn+
(%) {|/2+,'h Bin—ihSeh 2ekh - ~H—kh tdn

y+h[2+jh  B(n-jh)+h[2+kh -
PV f u”h Ay edednb.
a(x)+h/2+jh p(n-fh—n)+h[2+kh
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Therefore,

K-pg(a(x))/h
(su) (x, y) = (su) (Kh, Jh)= IEO u (x - kh, a(x)) +

J=1-a(x)/k

z =\ - jh) —
£ Z uBO =)y k)

J-1-a(x)/h K-gy-jh-h)/h

- b, z u(Xx-kh,y-jh-nh)-—
J=0 k=K-py-jh)/h )

K—1-8(a(x)/h

- kz;.o u(x - kh-h, a(x)) +

J-1-a(x)/h K-1-(y—-th-h)/h

+ Z z u(x —kh-h,y—jh-h),
150 per-aiy—tiyn * 28 y=i-h

that is

J-1-a(x)/h
(10) (su) (x, y)=u (x, a(x)) +h ;Eo Snu B - jh),y - jh).

We are able now to formulate the probl:m of Z. Szmydt for the difference equation
(4) and give its solution: Find a function u™ satisfying the functional equation

(11) dg dnu=r(t.n), (£, n)EQ,suppfC Q

and the boundary conditions

uE,n)=gi(§).a(}) —h[2<n<a(t)+h/2
(12)
S u(E,m) =8 (). B(n) - H2<E<B(m)+h/2.

For the sake of simplicity we assume that the given f, g, and g, are at least continuous
and that for every point (¢, n) € 2 the domain Qf" 1) 15 not empty.

Theorem 7. There exists a unique solution of (11), (12). Its values at the gridpoints
(¢, n) = (Kh, Jh) are given by



A Finite Difference Analogue to the Problem of Zofia Szmydt

107

" J-1-a(t)/h
uPED=g@h  E s
(13)
J-1-a(t)/h K-1-p(n—jh)/h
tht T z f (& ~ kh, 0 = jh).

l:o k=0

Similar formulae we have for the other points of 2.

The proof follows immediately from Theorem 1, Chapter 2 and the considerations

above.

Like in the ,,continuous' case we can formulate some other problems resulting from

the Z. Szmydt problem, namely

i) the Darboux problem

Here we set a (¢) = n¢ = ah, B(n) = £, = fh and the boundary conditions are

“(E’ﬂ)'-'go (s)vﬂo —hn(ﬂ‘ﬂo +h/2

uE.n)=g (m), %o - h/2<t<¥ th/2

From (10) we calculate

J-1-o

Gu)(E.n)=u ¢ a@)+ ;:20 (u (Bh, n = jh) —u (Bh, n — jh — h)) =

=u (§,m0) +u (¢0,m) — u (£0. Mo)-

ii) the Cauchy problem
Let us assume that n=a (¢) = £ = 8 (n) ho'ds. Then

J-l—a(£)/h
() En)=uEa@)th I_EO

where ¢ = f (n - jh) and we get the initial conditions

N (IR-1() )

u(t,n)=g (¢),a@)-h2<n<a()t+h/2

dnu,n)=8 (¢).a@})-h2<n<a(f)+h/2

iii) the Picard problem
We set 8 (n) = 0 and obtain
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(su) (. n)=u(t ) +tu(0,n)-u( a(),
that means the boundary conditions are
u(,n)=go (¢),a®)-h2<n<aE)+h/2
u(k,n)=g (n),-h/2<E<h/2.
In all three cases we can state a result like in Theorem 7.

" If h tends to zero (13) gives the well-known solution formulae of the ,,continuous*
problem. The corresponding operators S, T and s are the same like in [6], namely

uEm)=ua®)+ [ uyGELp)de+ | [ f(o,p)dodp.
a(k) a(k) B(p)

The conditions for the curves a and § were only restricted by the definition of Q?x.y, ,
where, in addition, we can change the directions of the occuring inequalities. Let us con-
sider an example of an ill-posed problem.
We are looking for a solution of
(14) 0g dpu=0
(15) u (¢, n)=8go (), @n u) (£, ) =g, (¥),-h/2<n<h/2.
Solving (14) at the gridpoints we have among others
u(@+h h)y=-u(E 0 tuEh)+tuE+h 0)=hg, (§)+go (tE+ h),
that means we must have g, (¢ + 1) =g, (§) because of
grE+h)=@@@E+hh)—uE+h0)/h=
=(hg) () +8o (E+h)—go (E+h)) [ h =g, (}).
Therefore, let g, be a constant. It is easy to verify that

uEm=FE+GMm

is a solution of (14) for arbitrary F and G. It we set F (¥) =g, (£) we must have G (0) =0
and in view of

£1§)=8:=(GCM-G () /h
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we get G (h) = hg,. For example, we canset G (n) =g, n + H (n), where H (0) = H (h) =
= 0. Finally, for each function H with i (0) = (4 (0) — H (0)) / h = 0 the function

uE,n=g (¥)tg, n+H(n)

is a solution of (14) satisfying the initial conditions (15). If & tends to zero we arrive at
the well-known incorrect problem

u"t'n = O,u (E’O) =80 (E))ujn (EIO) =&

with the solutions
u(t,n)=go (§) +&g1 n +H (n),
where H is an arbitrary function satisfying H (0) = H ' (0) = 0.

4. A nonlinear problem. Using explicite finite difference formulae to calculate an
approximative solution for the (nonlinear) problem

w'ey =f(u)
(16) uk, a() =g (%)
uy B (), n) =g ()

we come to

(17) aE aql“:f(u)’(svn)eﬂ
uE,n)=go(®), @) -h2<n<a@E)+h/2

(18)

dqu(t,n)=g: (),B(n)-h/2<E<B()+h/2
Similar like in the preceding chapters we derive a solution formulae, namely

J-1
® r oo ,
u” ¢, n=go (E)+h/=aﬁ)/h g1 (jh) +

(19)
it X-1
+h? I T f® @, ),
I=a(t)/h  k=p(h)/h

where (¢, n) = (Kh, Jh). We note that the solution of (17), (18) exists and is unique it
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we demand assumptions about a and f§ closed to that one in Chapter 2 and if £ is such
a domain that the values of u (" occuring on the right-hand side of (19) can be obtained
from (17) by formulae of type (19). For our further considerations we will identify u ()
with the function which arises using linear interpolation over the gridpoint values u (% (%,

n) given by (19).

Theorem 8. Let f and g, be bounded and continuous, g, and a continuously diffe-
rentiable. Then the sequence ut} p - 0, is compact in the space of continuous func-
tions (with respect to any bounded subset of ), the limits of the converging subsequ-
ences are solutions of (16).

* Proof. We have for sufficiently small h

lu® (En.m)—u"') 2. m) <

hrsl J, -1 K=
<lgo(x1)+h I g (h)+h* I T f® @k, ) -
J=a(x,)/h J=a(x )b k=p(/h)/h
S 7, -1 b
~8(x2)—h Z g (Gh)-h* I TSP )<
J=a(x,)/h J=a(x,)/h k=g(/h)/h

<C(a,B,8. 81, )max (1 & =& |,1n —ma D),

where (x;, yi) = (K;h. Jih) are suitable gridpoints in the neighbourhood of (;, n7),i=1,2.
Using Arzela’s Theorem we have the compactness of our sequence in the maximum-norm,
because the u (M are equi-bounded. Taking a suitable subsequence & - O we obtain

n n 3
uP g my~uE n)=go G+ [ g (0)do+ [ [ f(ulp,0))dpdo.
a(f) a(t) B(o)

Of course, u is a solution of (16), moreover, if f is Lipschitz continuous then u is locally
unique.

Using fixed-point techniques we can discuss further questions connected with the Z.
Szmydt problem for finite differences.

5. Connection with the one-dimensional wave equation. A possible discretization of
(20) upp(x, 0)—a’ uxx(x 1)=f(x,1,:>0

may be

(1) Gu)(x, 1) =03rdru-a* 3y dxu=1f(x,1),t>—1/2,
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where (3 dr ) (x, ) =@ (x, t + 1) — 2u (x, t) +u (x, t — 7))/7 and (3x Ox ) (x, 1) =
=(u@Eth t)—2u(x, t)+u(x - h, t))/h?.

We will assume that h = ar. To construct suitable initial conditions for (21) we define
the isomorphic mappings ¥, ¥, acting as follows:

fE =W DE ) =F((n-¥/2,xn+E)2a),
fxD=Wo N t)=f(~x +at, x +at)

y w ()= u)E n)=4a u((m-§)/2,(n+¥)2a+1),

ux, )=y, u)(x, £)=(1/4a*)u(—x +at - h, x +at — h).

From Definition 2 we have for the equivalent derivative with respect to Yo, ¥
S=y, S v
and therefore (by suitable calculations)
(Su) (¢, ) = O Oy u (¢, )

where the stepsize here is 2h. We define the curves a ()= — ¢ —2h and f (n) = —n — 2h.
Knowing the integral T of S given by (6) and (13) at the gridpoints, namely

(&+n)/2h (E+n)/2h-1-/
TNE =20 I z f (& - khn - jh)
/=0 k=0

we obtain the integral T of § according to

THE D= TV Hx, 1) =

F=1 t/e—1-4
=7 I L f(x-jh+kht—(G+1)7-k7)
/=0 k=0

and changing the summation

t/r—1
(22) THE 1=k T I f(ph on),
o=0 »p

where p steps with stepsize 2 from x/h — t/r + o + 1 tox/h +t/r — a — 1. Here we took
into consideration that (x, ¢) is a gridpoint iff (£, ) is a gridpoint.
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If h =ar tends to zero we have

r x+af-ao

(23) THEN>0/2a)f [  f(p,0)dpdo.

0 Xx-at+ao

For sufficiently smooth f the integral on the right-hand side is a solution of (20).
To construct the boundary conditions for S, T we use

(£+n)/2h
(u)Em=u@E -E-20)+2r I (Oqu)(—n+2(-1)h n-2jh)
j=0

given by (10). Elementary calculations show that

(24) (su)(x, t)=u(x - at, 0) +h I (3x u) (ph, 0) + 1 X (3 u) (ph, 0),
P P

where p steps with stepsize 2 from x/h — t/7 + 1 to x/h +t/t — 1. If h tends to zero we
get now

x+at Xx+at
Gu)x, )~u@x-at,0)+1/2 { ux(p,0)dp+1/2a [ uy(p,0)dp=
x—at x-—-at
(25)
x+ar
=(u(x+at,0)+u(x —at,0))/2+1/2a [ uy(p.0)dp.
3 x—at

The last term is a solution of the homogenous equation (20). if the corresponding deriva-
tives exist.
Collecting the preceding results we have proved the following statement (cf. [1]).
Theorem 9. Equation (21 ) possesses in connection with the initial conditions
Ux, 1)=go (x),—1/2<r<1/2
Sru(x, 1)=g, (x),—7/2<1<1/2
a unique solution u M p = az, given at the gridpoints by (22), (24) and

a M )= (5a™ y(x, 1)+ ThHx, 1)

If h approaches zero the sequence u® (x, 1) converges for each (x, t) to the solution of
(20) given by (23), (25) with the initial conditions
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u (x, 0)=go (x)
u_:‘ (x' 0) =El (X),
if the right-hand sides f, g, and g, are sufficiently smooth (cf. [3]).

6. The construction of fundamental solutions for d; 3, + A*. In connection with Du-
finition 3 we are looking for a solution £ (¥ satisfying

(26) g d, EM + 2 EW =5,
Applying the Fourier transformation given by the formulae (cf. {2])
FED, Fo)= 2y E™). )

(Fo) (s, 1) = Jf €' ¢ (¢, n)dE dn, d ED(R?),
RI

on both sides of (26) we obtain the problem
v2)) PW (s, ) FEW = |,

where

(l _ei'lS)(l _el'ht) . ).2 :

hz

PM (s, 1)=

Equation (27) possesses the formal solution FE M = /P””. Because 2" vanishes for
certain s, ¢ we have to interpret 1/P( in a suitable way. We will do this in an analoguous
manner like in [9], the main idea can be found for example in (4], where fundamental
solutions for differential operators are constructed.

We assume for a moment that X is a positive real number.

Theorem 10. The distribution FE (%) defined by

dt

F joptki
(28) FEM, Fg)= ff (Fo) (s +io 1 +io)
R* PP (s +io, t +i0)

with o = g(h) from et =1+ M, is a solution of (27) and, therefore, £ " is @ solution
of (26). If h tends to zero Eh) converges to a fundamental solution E of the correspond-
ing differential operator 9% / 3y 3, + \*. o
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Proof. By suitable calculations we obtain

1+ M - ey (1 +n - eiht 1
( )( N+ ———),

PM (s +ig, t +i0)| =
| (s )= 1+ Ny A2 L+ Ny

that means, (28) defines a distribution acting on F¢. Because P (s +io, t +io) tends to

P (s + i\ t +iX)= — (s +i\) (t + iX) + A\? if h approaches zero we can use Lebesgue’s
Theorem get

(Fo) (s +i\, t +iN) def
FE®, Fg)— dsdt = (FE, F¢).
( 9 ,{f P(s+i\ t +i)) e ¢

In view of the continuity of the inverse Fourier transformation we have £ WLE
Further,

P FEM, Fg)y= FE®, P® Fo) = [f (Fo) (s +io, t +io)ds dt = (1, F¢),
R!

that is (27). Similar considerations show that the distribution FE satisfies (— is) (— it)
FE + \? FE = 1. Therefore, E(") and E are the desired fundamental solutions.

Theorem 13. The fundamental solution E Ul given in (28) has the form

EM@En=Z% T ci/6(t—khn—jh
_(En)k=00kl (¢ n - jh)

l'
where
k
G ckj=h* T G DT ™ (122 p2) =k L
m=
If h = 0 we have

EM @)~E@ = 2 1em) D" Q)" Y OO Y@
(Y is the Heaviside unit function). £ is the fundamental solution found in [8].

Proof. Formulac (28) shows that FE™ js a periodic distribution with period T =
= (2 n/h, 2 a/h). That means (cf. [7]) that

EM ¢ 0 =k=2— 1"}:—- Ckj 8 (¢ - kh, n - jh),

where the c; are the generalized Fourier coefficients of 1/p'M given by
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h? 2n/h 2n/h e—lkh(s+io)e—l/h(t+io)

Ckj = f ofi == ds dt.
1= @n? + - PO (s+iot +io)
The substitution u = e~ 6+0) y = p=ih(t+io) o, 4c 44
h? u®
ckj= $ $ du dv

S @MYy lhe ysche (- ug () (v - vo) (1 +A7 KY)

v—1
an
v(1+A2h?) -1

with ug(v) =

dvg = Iflv]=e°" =1+ M, then

1+2\ A2

(30) lug G)F< 1+ A RN et
u 4 = o
° [vI(1+N k) -1 ¢

In accordance to (30) we calculate fork > Qandj =0

i V-1
Ckf = $ dv =
2 m IVl=¢°h (v L vo)k‘Pl (l +A2 hZ) k"l
=i} e mer . B r=1%n_. .
k! (] +X2 hz)k"’l m=0 (m) dvm /V‘P‘ dvk—m ( ) ,” v,
This is already (29) because cxj = ¢jx and
h? ;J : 1 d—k-l : 1 )
Ck’ = - "
2 mi |V|=¢°h (V A Vo) (l + AZ hZ) (—k—l)! du-k— 1 u- uo(v) ¢
+ uo(n)*)dv =0
fork<0.

To show the covergence of E ®) 1o E we pay attention to

(E® 9)= T T cxj¢(khjh)~ If E¢didn=(E. ¢).
k=0 l=0 R?

We notice that (29) defines a fundamental solution of g 3, + A for every complex

number A such that 1 + A% A2 does not vanish.
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STRESZCZENIE

W pracy tej znajduje si¢ przyblizone rozwiszanie problemu Z. Szmydt przy pomocy réwnan 162-
nicowych. W tym celu stosuje si¢ formalizm uZyty w monografii Bittnera [6]. Jest to dalszy przy-
ktad anaiogii pomig¢dzy réwnaniami ré2nicowymi i rézniczkowymi.

PE3IOME

B 310R paboTe maeTcs NpHGnHXeHHoe pelieHie 3anayu C. IIMBLIOT NpH HCOONEIOBAHHH PasROCT-
HBIX ypaBHeHMA. JL1A 3TOA ue/M HCNONBIOBaH QpopManuim H3 MoHorpaduu P. BurrHepa [ 6]. 310
CYXHT OYepe/IHbIM NPHMEPOM @HAMOTHH MEXIY Pa3HOCTHEIMH H IHGepeMUMANLHEIMH ypaBHe-
HHAMH .



