ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

Technische Universität Dresden

E. PFEIFER

A Finite Difference Analogue to the Problem of Zofia Szmydt

Analogon problemu Zofii Szmydt w metodzie różnic skończonych

Аналог проблемы Софии Шмыдт в методе конечных разностей

In this paper we will consider a finite difference approximation of the well-known Z. Szmydt problem (cf. [3], e.g.). To do this we use an operator calculus found in [6]. This is another example for the possibility of an unified treatment of differential and difference problems proposed in [9].

1. Elements of an operator calculus. Let be given the linear spaces L^{0} and L^{1}. According to [6] we fix the following definitions and statements.

Definition 1. An operator S belonging to $L\left(L^{1}, L^{0}\right)$ with $S\left(L^{1}\right)=L^{0}$ is called an (algebraic) derivative. Each operator $T \in L\left(L^{0}, L^{i}\right)$ which satisfies $S T=$ id $\left.\right|_{L^{\circ}}$ is called an (algebraic) integral with respect to S. The operator $s=$ id $\left.\right|_{L^{\prime}}-T S$ is then the boundary condition corresponding to S and T.

Theorem 1. The differential equation problem
(1)

$$
S u=f, f \in L^{0}
$$

$$
s u=u_{0}, u_{0} \in \operatorname{Ker} S
$$

has the solution

(2)

$$
u=u_{0}+T f .
$$

We will omit examples to illustrate the notions above, they will be found in [6] or [5].
Suppose that there are given two isomorphic mappings $\psi_{0}: L^{0} \rightarrow \bar{L}^{0}$ and $\psi_{1}: L^{1} \rightarrow$ $\rightarrow \bar{L}^{1}$, where \bar{L}^{0} and \bar{L}^{1} are linear spaces, too.

Definition 2. The operator $\bar{S}=\psi_{0} S \psi_{1}^{-1}, \bar{T}=\psi_{1} T \psi_{0}^{-1}$ and $\bar{s}=\psi_{1} s \psi_{1}^{1}$ will be called equivalent derivative, integral and boundary condition with respect to S, T and s.

Theorem 2. Problem (1) is equivalent to
(3)

$$
\bar{S} \bar{u}=\bar{f}_{0} \bar{f}=\psi_{0} f \in \bar{L}^{0}
$$

$$
\bar{s} \bar{u}=\bar{u}_{0}, \bar{u}_{0}=\psi_{1} \bar{u}_{0} \in \operatorname{Ker} \bar{S} .
$$

The image of (2) with respect to ψ_{1} is the unique solution of this problem.
2. Preliminary definitions and results. Let us denote by $D\left(R^{2}\right)$ the space $C_{0}^{\infty}\left(R^{2}\right)$ with the usual topology. By $D^{\prime}\left(R^{2}\right)$ we realize the space of linear and continuous functionals on $D\left(R^{2}\right)$. The elements of $D^{\prime}\left(R^{2}\right)$ are called distributions. For details in notions and theorems see [7], e.g. We will consider the following problem: Find a distribution $u^{(h)}$ satisfying

$$
\begin{equation*}
\bar{\partial}_{\xi} \bar{\partial}_{\eta} u^{(h)}=f(\xi, \eta), f \in D^{\prime}\left(R^{2}\right) \tag{4}
\end{equation*}
$$

where the distribution $\bar{\partial}_{\xi} \bar{\partial}_{\eta} u^{(h)}$ is defined by

$$
\left(\bar{\partial} \xi \bar{\partial}_{\eta} u^{(h)}, \phi\right)=\left(u^{(h)}, \partial \xi \partial \eta \phi\right), \phi \in D\left(R^{2}\right)
$$

with $(\partial \xi \partial \eta \phi)(\xi, \eta)=\left(\phi_{h}^{h}(\xi, \eta)-\phi_{h}(\xi, \eta)-\phi^{h}(\xi, \eta)+\phi(\xi, \eta)\right) / h^{2}, h>0$ is a discretization parameter. We used the abbreviation $\phi_{k h}^{j h}(\xi, \eta)=\phi(\xi+k h, \eta+j h), j$ and k are integers.

Problem (4) is an approximation of

$$
\begin{equation*}
u_{\xi \eta}^{\prime \prime}=f(\xi, \eta) \tag{5}
\end{equation*}
$$

and must be interpreted as a suitable extension of the usual numerical problem

$$
u_{k, j}^{(h)}-u_{k-1, j}^{(h)}-u_{k, j-1}^{(h)}+u_{k-1, j-1}^{(h)}=h^{2} f(k h, j h),
$$

which is a possible discretization of (5) by backward finite difference formulaes using h as a discretization parameter for both directions. We are interested in boundary conditions assuring existence and uniqueness of solutions of (4).

Definition 3. The distribution $E^{(h)}$ will be called a fundamental solution of (4) if it satisfies the equation

$$
\bar{\delta}_{\xi} \bar{\partial}_{\eta} E^{(h)}=\delta
$$

where δ is the Dirac distribution.

The following fact is easy to show.

Theorem 3. The distribution

$$
E^{(h)}(\xi, \eta)=h^{2} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \delta(\xi-k h, \eta-j h)
$$

is a fundamental solution of (4).
In chapter 6 we will show how fundamental solutions for the operator $\bar{\partial}_{\xi} \bar{\partial}_{\eta}+\lambda^{2}$ can be constructed.

Theorem 4. If $E^{(h)}$ is a fundamental solution of (4) and if the convolution $u^{(h)}=$ $=E^{(h)} * f$ exists, then $u^{(h)}$ is a solution of (4).

Proof. Let the convolution $u * v$ exist. Then $\bar{\partial}_{\xi}\left(u^{*} v\right)=u^{*} \bar{\partial}_{\xi} \nu=\left(\bar{\partial}_{\xi} u\right) * v$. The same equality holds if we replace the differences with respect to ξ by such ones with respect to η. Therefore,

$$
\bar{\partial}_{\xi} \bar{\partial}_{\eta}\left(E^{(h)} * f\right)=\left(\bar{\partial}_{\xi} \bar{\partial}_{\eta} E^{(h)}\right) * f=f .
$$

If $E^{(h)}$ is the fundamental solution given in Theorem 3 we get

$$
u^{(h)}(\xi, \eta)=\left(E^{(h)} * f\right)(\xi, \eta)=h^{2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} f(\xi-k h, \eta-j h) .
$$

Let $\alpha=\alpha(\xi)$ and $\beta=\beta(\eta)$ be two curves in the (ξ, η)-plane satisfying the condition

$$
\bigwedge_{\nu \in \Gamma} \bigvee_{\mu, \omega \in \Gamma} \alpha(\nu h)=\mu h, \beta(\nu h)=\omega h
$$

and let for fixed (x, y) the region

$$
\Omega_{(x, y)}^{0}=\{(\xi, \eta): \alpha(x)+h / 2<\eta \leqslant y+h / 2, \beta(\eta)+h / 2<\xi \leqslant x+h / 2\}
$$

be not empty. For the sake of simplicity we assume that $(x, y)=(K h, J h)$, where J and K are integers.

To solve our problem we define

$$
\begin{aligned}
& L^{0}=\left\{f \in D^{\prime}\left(R^{2}\right): \operatorname{supp} f \subset \Omega_{(x, y)}^{0}, f \in \mathcal{L}\left(\Omega_{(x, y)}^{0}\right)\right\} \\
& L^{1}=\left\{u \in D^{\prime}\left(R^{2}\right): \operatorname{supp} u \subset \Omega_{(x, y)}^{1}, u \in \mathcal{L}\left(\Omega_{(x, y)}^{1}\right)\right\}
\end{aligned}
$$

where $\Omega_{(x, y)}^{1}=(\xi, \eta): \alpha(x)-h / 2<\eta \leqslant y+h / 2, \beta(\eta)-h / 2<\xi \leqslant x+h / 2$.
Further, Theorem 4 suggests the following definitions:

$$
\begin{equation*}
S: L^{1} \rightarrow L^{0}, S: u \rightarrow\left(\bar{\partial}_{\xi} \bar{\partial}_{\eta} u\right) \mid \Omega_{(x, y)}^{0} \tag{6}
\end{equation*}
$$

$$
T: L^{0} \rightarrow L^{1}, T: f \rightarrow E^{(h)} * f .
$$

For $f \in L^{0}$ we have

$$
S T f=\left(\bar{\partial}_{\xi} \bar{\partial}_{\eta}\left(E^{(h)} * f\right)\right)_{\mid \Omega_{(x, y)}^{0}}^{0}=f_{i} \Omega_{(x, y)}^{0}=f .
$$

Similar like in [3] we derive a fundamental formulae.

- Theorem 5. For $u \in D^{\prime}\left(R^{2}\right) \cap \mathcal{L}\left(\Omega_{(x, y)}^{1}\right)$ the following identity holds:

$$
\begin{equation*}
\Omega_{(x, y)}^{\left\{\int_{\xi}\right.} u \partial_{\xi} \partial_{\eta} \phi d \xi d \eta-\int_{\Omega_{(x, y)} \iint_{\xi} \bar{\partial}_{\eta} u \phi d \xi d \eta=} \tag{7}
\end{equation*}
$$

$$
=-(1 / h) \int_{\alpha(x)+h / 2}^{y+h / 2} \int_{x-h / 2}^{x+h / 2} \phi_{h} \bar{\partial}_{\xi} u d \xi d \eta-(1 / h) \int_{\alpha(x)-h / 2}^{\alpha(x)+h / 2} \int_{\beta(\eta)-h / 2}^{x+h / 2} u \partial_{\xi} \phi d \xi d \eta+
$$

$$
+(1 / h) \int_{y-h / 2}^{y+h / 2} \int_{\beta(\eta)-h / 2}^{x+h / 2} u \partial_{\xi} \phi^{h} d \xi d \eta-(1 / h) \int_{\alpha(x)+h / 2}^{y+h / 2} \int_{\beta(\eta-h)+h / 2}^{\beta(\eta)+h / 2} \phi \bar{\partial}_{\xi} u^{-h} d \xi d \eta+
$$

$$
\left.+(1 / h) \int_{\alpha(x)+h / 2}^{y+h / 2} \beta(\eta)-h / 2\right) \phi \bar{\partial}_{\eta} u d \xi d \eta_{\eta}+
$$

$$
+\left(1 / h^{2}\right) \int_{\alpha(x)+h / 2}^{y+h / 2}\left(\int_{\beta(\eta)-h / 2}^{\beta(\eta)+h / 2} u^{-h} \phi d \xi-\int_{\beta(\eta-h)-h / 2}^{\beta(\eta-h)+h / 2} u^{-h} \phi d \xi\right) d \eta .
$$

By means of distributions (7) reads

$$
\begin{equation*}
\bar{\partial}_{\xi} \bar{\partial}_{\eta} u \mid \Omega_{(x, y)}^{1}-\left(\bar{\partial}_{\xi} \bar{\partial}_{\eta} u\right)_{\mid \Omega_{(x, y)}^{0}}^{0}=V(u), \tag{8}
\end{equation*}
$$

where $V(u)$ is a distribution defined by informations of u on the boundary' of $\Omega_{(x, y)}^{0}$ and given at the right-hand side of (7). If h tends to zero and if u is sufficiently smooth then (7) turns over to the fundamental formulae known from Riemann's method (cf. [3]).

Theorem 6. Each distribution $u \in D^{\prime}\left(R^{2}\right) \cap \mathcal{L}\left(\Omega_{(x, y)}^{\prime}\right)$ can be represented as

$$
\begin{equation*}
u_{\mid} \Omega_{(x, y)}^{1}=E^{(h)} *\left(\left(\bar{\partial}_{\xi} \bar{\delta}_{\eta} u\right)_{\mid} \Omega_{(x, y)}^{0}+V(u)\right) \text {. } \tag{9}
\end{equation*}
$$

where $E^{(h)}$ is the fundamental solution defined in Theorem 3.

Proof. We have

$$
u_{\mid \Omega_{(x, y)}^{\prime}}=\delta^{*} u_{\mid \Omega_{(x, y)}^{\prime}}=\bar{\partial}_{\xi} \bar{\partial}_{\eta} E^{(h)} * u_{i} \Omega_{(x, y)}^{\prime}=E^{(h)} * \bar{\partial}_{\xi} \bar{\partial}_{\eta} u_{\mid \Omega_{(x, y)}^{\prime}} .
$$

Identity (8) finishes the proof.
3. The problem of \mathbf{Z}. Szmydt - existence, uniqueness and convergence results. Following Theorem 1 and our definitions (6) we have to define the boundary condition

$$
s u=u-T S u, u \in L^{1}
$$

In view of (9) we get

$$
s u=E^{(h)} * V(u)
$$

The question now is: Which values of u on the ,boun ary" are necessary to describe su at the point (x, y) ? To this aim we assume that there is given a function $\phi \in D\left(R^{2}\right)$ with supp $\phi \subset U(x, y)$, where U is a sufficiently small neighbourhood of (x, y). Via (7) we calculate

$$
\begin{aligned}
& (s u, \phi)=\left(E^{(h)} V(u), \phi\right)= \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \begin{cases}\alpha(x)+h / 2+j h & x+h / 2+k h \\
\int_{\alpha(x)-h / 2+j h} & \int_{\beta(\eta-j h)-h / 2+k h} u_{-k h}^{-j h} \phi d \xi d \eta+\end{cases} \\
& +\int_{\alpha(x)+h / 2+j h} \quad \beta(\eta-j h)-h / 2+k h \int_{-j h}^{-j h} \phi d \xi d \eta- \\
& y+h / 2+j h \quad \beta(\eta-j h)+h / 2+k h \\
& -\int_{\alpha(x)+h / 2+j h} \beta(\eta-h-j h)-h / 2+k h^{-h h} u_{-j h}^{-h} \phi d \xi d \eta- \\
& \begin{array}{ll}
\alpha(x)+h / 2+j h & x+3 h / 2+k h \\
-\int_{\alpha(x)-h / 2+j h} & \beta(\eta-j h)+h / 2+k h
\end{array} u_{-h-k h}^{-j h} \phi d \xi d \eta+
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& K-\beta(\alpha(x)) / h \\
& (s u)(x, y)=(s u)(K h, J h),=\quad \sum_{k=0} \quad u(x-k h, \alpha(x))+ \\
& +\sum_{j=0}^{\delta-1-\alpha(x) / h} u(\beta(y-j h), y-j h)- \\
& -\sum_{j=0}^{J-1-\alpha(x) / h} \quad \begin{array}{ll}
K-\beta(y-j h-h) / h \\
k=K-\beta(y-j h) / h
\end{array} u(x-k h, y-j h-h)- \\
& K-1-\beta(\alpha(x)) / h \\
& \sum_{k=0} \quad u(x-k h-h, \alpha(x))+ \\
& +\sum_{j=0}^{J-1-\alpha(x) / h} \quad k-1-\beta(y-j h-h) / h \quad \sum_{k=K-\beta(y-j h) / h} u(x-k h-h, y-j h-h),
\end{aligned}
$$

that is

$$
\begin{equation*}
(s u)(x, y)=u(x, \alpha(x))+h \sum_{j=0}^{J-1-\alpha(x) / h} \bar{\delta}_{\eta} u(\beta(y-j h), y-j h) . \tag{10}
\end{equation*}
$$

We are able now to formulate the problem of Z. Szmydt for the difference equation (4) and give its solution: Find a function $u^{(h)}$ satisfying the functional equation

$$
\begin{equation*}
\bar{\partial}_{\xi} \bar{\partial}_{\eta} u=f(\xi, \eta),(\xi, \eta) \in \Omega, \operatorname{supp} f \subset \Omega \tag{11}
\end{equation*}
$$

and the boundary conditions

$$
u(\xi, \eta)=g_{0}(\xi), \alpha(\xi)-h / 2<\eta<\alpha(\xi)+h / 2
$$

$$
\begin{equation*}
\bar{\partial}_{\eta} u(\xi, \eta)=g_{1}(\eta), \beta(\eta)-h / 2<\xi \leqslant \beta(\eta)+h / 2 . \tag{12}
\end{equation*}
$$

For the sake of simplicity we assume that the given $f_{,} g_{0}$ and g_{1} are at least continuous and that for every point $(\xi, \eta) \in \Omega$ the domain $\Omega_{(\xi, \eta)}^{0}$ is not empty.

Theorem 7. There exists a unique solution of (11), (12). Its values at the gridpoints $(\xi, \eta)=(K h, J h)$ are given by

$$
u^{(h)}(\xi, \eta)=g_{0}(\xi)+h \sum_{j=0}^{J-1-\alpha(\xi) / h} g_{1}(\eta-j h)+
$$

(13)

$$
+h^{2} \sum_{j=0}^{J-1-\alpha(\xi) / h} \quad \sum_{k=0}^{K-1-\beta(\eta-j h) / h} f(\xi-k h, \eta-j h) .
$$

Similar formulae we have for the other points of Ω.
The proof follows immediately from Theorem 1, Chapter 2 and the considerations above.

Like in the "continuous" case we can formulate some other problems resulting from the Z. Szmydt problem, namely
i) the Darboux problem

Here we set $\alpha(\xi)=\eta_{0}=\alpha h, \beta(\eta)=\xi_{0}=\beta h$ and the boundary conditions are

$$
\begin{aligned}
& u(\xi, \eta)=g_{0}(\xi), \eta_{0}-h / 2<\eta \leqslant \eta_{0}+h / 2 \\
& u(\xi, \eta)=g_{1}(\eta), \xi_{0}-h / 2<\xi \leqslant \xi_{0}+h / 2
\end{aligned}
$$

From (10) we calculate

$$
\begin{gathered}
(s u)(\xi, \eta)=u(\xi, \alpha(\xi))+\sum_{f=0}^{J-1-\alpha}(u(\beta h, \eta-j h)-u(\beta h, \eta-j h-h))= \\
=u\left(\xi, \eta_{0}\right)+u\left(\xi_{0}, \eta\right)-u\left(\xi_{0}, \eta_{0}\right) .
\end{gathered}
$$

ii) the Cauchy problem

Let us assume that $\eta=\alpha(\xi) \leftrightharpoons \xi=\beta(\eta)$ ho' 1 d . Then

$$
(s u)(\xi, \eta)=u(\xi, \alpha(\xi))+h \sum_{j=0}^{J-1-\alpha(\xi) / h} \bar{\partial}_{\eta} u\left(\xi_{j}, \alpha(\xi /)\right)
$$

where $\xi_{f}=\beta(\eta-j h)$ and we get the initial conditions

$$
\begin{gathered}
u(\xi, \eta)=g_{0}(\xi), \alpha(\xi)-h / 2<\eta \leqslant \alpha(\xi)+h / 2 \\
\bar{\partial}_{\eta} u(\xi, \eta)=g_{1}(\xi), \alpha(\xi)-h / 2<\eta \leqslant \alpha(\xi)+h / 2 .
\end{gathered}
$$

iii) the Picard problem

We set $\beta(\eta)=0$ and obtain

$$
(s u)(\xi, \eta)=u(\xi, \alpha(\xi))+u(0, \eta)-u(0, \alpha(\xi)),
$$

that means the boundary conditions are

$$
\begin{gathered}
u(\xi, \eta)=g_{0}(\xi), \alpha(\xi)-h / 2<\eta<\alpha(\xi)+h / 2 \\
u(\xi, \eta)=g_{1}(\eta),-h / 2<\xi<h / 2 .
\end{gathered}
$$

In all three cases we can state a result like in Theorem 7.
" If h tends to zero (13) gives the well-known solution formulae of the ,,continuous" problem. The corresponding operators S, T and s are the same like in [6], namely

$$
u(\xi, \eta)=u(\xi, \alpha(\xi))+\int_{\alpha(\xi)}^{\eta} u_{\eta}^{\prime}(\beta(\rho), \rho) d \rho+\int_{\alpha(\xi)}^{\eta} \int_{\beta(\rho)}^{\xi} f(\sigma, \rho) d \sigma d \rho .
$$

The conditions for the curves α and β were only restricted by the definition of $\Omega_{(x, y)}^{0}$, where, in addition, we can change the directions of the occuring inequalities. Let us consider an example of an ill-posed problem.

We are looking for a solution of

$$
\begin{align*}
\bar{\partial}_{\xi} \bar{\partial}_{\eta} u & =0 \tag{14}\\
u(\xi, \eta)=g_{0}(\xi),\left(\partial_{\eta} u\right)(\xi, \eta) & =g_{1}(\xi),-h / 2<\eta \leqslant h / 2 \tag{15}
\end{align*}
$$

Solving (14) at the gridpoints we have among others

$$
u(\xi+h, h)=-u(\xi, 0)+u(\xi, h)+u(\xi+h, 0)=h g_{1}(\xi)+g_{0}(\xi+h)
$$

that means we must have $g_{1}(\xi+h)=g_{1}(\xi)$ because of

$$
\begin{aligned}
& g_{1}(\xi+h)=(u(\xi+h, h)-u(\xi+h, 0)) / h= \\
= & \left(h g_{1}(\xi)+g_{0}(\xi+h)-g_{0}(\xi+h)\right) / h=g_{1}(\xi) .
\end{aligned}
$$

Therefore, let g_{1} be a constant. It is easy to verify that

$$
u(\xi, \eta)=F(\xi)+G(\eta)
$$

is a solution of (14) for arbitrary F and G. It we set $F(\xi)=g_{0}(\xi)$ we must have $G(0)=0$ and in view of

$$
g_{1}(\xi)=g_{1}=(G(h)-G(0)) / h
$$

we get $G(h)=h g_{1}$. For example, we can set $G(\eta)=g_{1} \eta+H(\eta)$, where $H(0)=H(h)=$ $=0$. Finally, for each function H with $H(0)=(H(0)-H(0)) / h=0$ the function

$$
u(\xi, \eta)=g_{0}(\xi)+g_{1} \eta+H(\eta)
$$

is a solution of (14) satisfying the initial conditions (15). If h tends to zero we arrive at the well-known incorrect problem

$$
u_{\xi \eta}^{\prime \prime}=0, u(\xi, 0)=g_{0}(\xi), u_{\eta}^{\prime}(\xi, 0)=g_{1}
$$

with the solutions

$$
u(\xi, \eta)=g_{0}(\xi)+g_{1} \eta+H(\eta)
$$

where H is an arbitrary function satisfying $H(0)=H^{\prime}(0)=0$.
4. A nonlinear problem. Using explicite finite difference formulae to calculate an approximative solution for the (nonlinear) problem

$$
\begin{gather*}
u_{\xi \eta}^{\prime \prime}=f(u) \\
u(\xi, \alpha(\xi))=g_{0}(\xi) \tag{16}\\
u_{\eta}^{\prime}(\beta(\eta), \eta)=g_{1}(\eta)
\end{gather*}
$$

we come to

$$
\begin{gather*}
\partial_{\xi} \partial_{\eta} u=f(u),(\xi, \eta) \in \Omega \tag{17}\\
u(\xi, \eta)=g_{0}(\xi), \alpha(\xi)-h / 2<\eta \leqslant \alpha(\xi)+h / 2
\end{gather*}
$$

$$
\begin{equation*}
\partial_{\eta} u(\xi, \eta)=g_{1}(\eta), \beta(\eta)-h / 2<\xi \leqslant \beta(\eta)+h / 2 \tag{18}
\end{equation*}
$$

Similar like in the preceding chapters we derive a solution formulae, namely

$$
u^{(h)}(\xi, \eta)=g_{0}(\xi)+h \sum_{j=\alpha(\xi) / h}^{J-1} g_{1}(j h)+
$$

(19)

$$
+h^{2} \sum_{j=a(\xi) / h}^{J-1} \sum_{k=\beta(j h) / h}^{K-1} f\left(u^{(h)}(k h, j h)\right),
$$

where $(\xi, \eta)=(K h, J h)$. We note that the solution of (17), (18) exists and is unique if
we demand assumptions about α and β closed to that one in Chapter 2 and if Ω is such a domain that the values of $u^{(h)}$ occuring on the right-hand side of (19) can be obtained from (17) by formulae of type (19). For our further considerations we will identify $\left.u^{(} \boldsymbol{h}\right)$ with the function which arises using linear interpolation over the gridpoint values $u(h)(\xi$, η) given by (19).

Theorem 8. Let f and g_{1} be bounded and continuous, g_{0} and α continuously differentiable. Then the sequence $\left\{u^{(h)}\right\}, h \rightarrow 0$, is compact in the space of continuous functions (with respect to any bounded subset of Ω), the limits of the converging subsequences are solutions of (16).

Proof. We have for sufficiently small h

$$
\begin{gathered}
\left|u^{(h)}\left(\xi_{1}, \eta_{1}\right)-u^{(h)}\left(\xi_{2}, \eta_{2}\right)\right| \leqslant \\
\leqslant \mid g_{0}\left(x_{1}\right)+h \sum_{j=\alpha\left(x_{1}\right) / h}^{J_{1}-1} g_{1}(j h)+h^{2} \sum_{j=\alpha\left(x_{1}\right) / h}^{J_{1}-1} \sum_{k=\beta(j h) / h}^{K_{1}-1} f\left(u^{(h)}(k h, j h)\right)- \\
-g_{0}\left(x_{2}\right)-h \sum_{j=\alpha\left(x_{2}\right) / h}^{J_{2}-1} g_{1}(j h)-h^{2} \sum_{j=\alpha\left(x_{2}\right) / h}^{J_{2}-1} \sum_{k=\beta(j h) / h}^{K_{2}-1} f\left(u^{(h)}(k h, j h)\right) \mid \leqslant \\
\leqslant C\left(\alpha, \beta, g_{0}, g_{1}, f\right) \max \left(\left|\xi_{1}-\xi_{2}\right|,\left|\eta_{1}-\eta_{2}\right|\right),
\end{gathered}
$$

where $\left(x_{i}, y_{i}\right)=\left(K_{i} h . J_{i} h\right)$ are suitable gridpoints in the neighbourhood of $\left(\xi_{i}, \eta_{i}\right), i=1,2$. Using Arzela's Theorem we have the compactness of our sequence in the maximum-norm, because the $u^{(h)}$ are equi-bounded. Taking a suitable subsequence $h \rightarrow 0$ we obtain

$$
u^{(h)}(\xi, \eta) \rightarrow u(\xi, \eta)=g_{0}(\xi)+\int_{\alpha(\xi)}^{\eta} g_{1}(\sigma) d \sigma+\int_{\alpha(\xi)}^{\eta} \int_{\beta(\sigma)}^{\xi} f(u(\rho, \sigma)) d \rho d \sigma
$$

Of course, u is a solution of (16), moreover, if f is Lipschitz continuous then u is locally unique.

Using fixed-point techniques we can discuss further questions connected with the \mathbf{Z}. Szmydt problem for finite differences.
5. Connection with the one-dimensional wave equation. A possible discretization of

$$
\begin{equation*}
\bar{u}_{t t}^{\prime \prime}(x, t)-a^{2} \bar{u}_{x x}^{\prime \prime}(x, t)=\bar{f}(x, t), t>0 \tag{20}
\end{equation*}
$$

may be

$$
\begin{equation*}
(\bar{S} \bar{u})(x, t)=\partial_{t} \bar{\partial}_{t} \bar{u}-a^{2} \partial_{x} \bar{\partial}_{x} \bar{u}=\bar{f}(x, t), t>-\tau / 2, \tag{21}
\end{equation*}
$$

where $\left(\partial_{t} \bar{\partial}_{t} \bar{u}\right)(x, t)=(\bar{u}(x, t+\tau)-2 \bar{u}(x, t)+\bar{u}(x, t-\tau)) / \tau^{2}$ and $\left(\partial_{x} \bar{\partial}_{x} \bar{u}\right)(x, t)=$ $=(\bar{u}(x+h, t)-2 \bar{u}(x, t)+\bar{u}(x-h, t)) / h^{2}$.

We will assume that $h=a \tau$. To construct suitable initial conditions for (21) we define the isomorphic mappings ψ_{0}, ψ_{1} acting as follows:

$$
\begin{gathered}
f(\xi, \eta)=\left(\psi_{0}^{-1} \bar{f}\right)(\xi, \eta)=\bar{f}((\eta-\xi) / 2,(\eta+\xi) / 2 a), \\
\bar{f}(x, t)=\left(\psi_{0} f\right)(x, t)=f(-x+a t, x+a t)
\end{gathered}
$$

and

$$
\begin{aligned}
& \left.u(\xi, \eta)=\left(\psi_{1}^{-1} \bar{u}\right)(\xi, \eta)=4 a^{2} \bar{u}((\eta-\xi) / 2,(\eta+\xi) / 2 a+\tau)\right), \\
& \bar{u}(x, t)=\left(\psi_{1} u\right)(x, t)=\left(1 / 4 a^{2}\right) u(-x+a t-h, x+a t-h) .
\end{aligned}
$$

From Definition 2 we have for the equivalent derivative with respect to ψ_{0}, ψ_{1}

$$
S=\psi_{1} \bar{S} \psi_{0}^{1}
$$

and therefore (by suitable calculations)

$$
(S u)(\xi, \eta)=\bar{\delta}_{\xi} \bar{\delta}_{\eta} u(\xi, \eta)
$$

where the stepsize here is $2 h$. We define the curves $\alpha(\xi)=-\xi-2 h$ and $\beta(\eta)=-\eta-2 h$. Knowing the integral T of S given by (6) and (13) at the gridpoints, namely

$$
(T f)(\xi, \eta)=(2 h)^{2} \sum_{j=0}^{(\xi+\eta) / 2 h} \quad \sum_{k=0}^{(\xi+\eta) / 2 h-1-j} f(\xi-k h, \eta-j h)
$$

we obtain the integral \bar{T} of \bar{S} according to

$$
\begin{gathered}
(\bar{T} \bar{f})(x, t)=\left(\psi_{1} T \psi_{0}^{-1} \bar{f}\right)(x, t)= \\
=\tau^{2} \sum_{f=0}^{\bar{f}=1} \sum_{k=0}^{t / r-1-f} f(x-j h+k h, t-(j+1) \tau-k \tau)
\end{gathered}
$$

and changing the summation

$$
\begin{equation*}
(\bar{T} \bar{\jmath})(x, t)=(h \tau) / a \sum_{\sigma=0}^{t / \tau-1} \sum \bar{f}(\rho h, \sigma \tau), \tag{22}
\end{equation*}
$$

where ρ steps with stepsize 2 from $x / h-t / \tau+\sigma+1$ to $x / h+t / \tau-\sigma-1$. Here we took into consideration that (x, t) is a gridpoint iff (ξ, η) is a gridpoint.

If $h=a \tau$ tends to zero we have

$$
(\bar{T} \bar{f})(x, t) \rightarrow(1 / 2 a) \int_{0}^{t} \int_{x-a t+a \sigma}^{x+a t-a \sigma} \bar{f}(\rho, \sigma) d \rho d \sigma .
$$

For sufficiently smooth \bar{f} the integral on the right-hand side is a solution of (20).
To construct the boundary conditions for \bar{S}, \bar{T} we use

$$
(s u)(\xi, \eta)=u(\xi,-\xi-2 h)+2 h \sum_{j=0}^{(\xi+\eta) / 2 h}\left(\bar{\partial}_{\eta} u\right)(-\eta+2(j-1) h, \eta-2 j h)
$$

given by (10). Elementary calculations show that

$$
\begin{equation*}
(\bar{s} \bar{u})(x, t)=\bar{u}(x-a t, 0)+h \sum_{\rho}\left(\partial_{x} \bar{u}\right)(\rho h, 0)+\sum_{\rho}\left(\bar{\partial}_{t} \bar{u}\right)(\rho h, 0), \tag{24}
\end{equation*}
$$

where ρ steps with stepsize 2 from $x / h-t / \tau+1$ to $x / h+t / \tau-1$. If h tends to zero we get now

$$
\begin{equation*}
(\bar{s} \bar{u})(x, t) \rightarrow \bar{u}(x-a t, 0)+1 / 2 \int_{x-a t}^{x+a t} \bar{u}_{x}^{\prime}(\rho, 0) d \rho+1 / 2 a \int_{x-a t}^{x+a t} \bar{u}_{t}^{\prime}(\rho, 0) d \rho= \tag{25}
\end{equation*}
$$

$$
=(\bar{u}(x+a t, 0)+\bar{u}(x-a t, 0)) / 2+1 / 2 a \int_{x-a t}^{x+a t} \bar{u}_{t}^{\prime}(\rho, 0) d \rho .
$$

The last term is a solution of the homogenous equation (20). if the corresponding derivatives exist.

Collecting the preceding results we have proved the following statement (cf. [1]).
Theorem 9. Equation (21) possesses in connection with the initial conditions

$$
\begin{gathered}
\bar{u}(x, t)=\bar{g}_{0}(x),-\tau / 2<t \leqslant \tau / 2 \\
\bar{\partial}_{i} \bar{u}(x, t)=\bar{g}_{1}(x),-\tau / 2<t \leqslant \tau / 2
\end{gathered}
$$

a unique solution $\bar{u}^{(h)}, h=a \tau$, gisen at the gridpoints by (22), (24) and

$$
\bar{u}^{(h)}(x, t)=\left(\bar{s} \bar{u}^{(h)}\right)(x, t)+(\bar{T} \bar{f})(x, t) .
$$

If h approaches zero the sequence $\bar{u}^{(\hat{h})}(x, t)$ conterges for each (x, t) to the solution of (20) given by (23), (25) with the initial conditions

$$
\begin{aligned}
\bar{u}(x, 0) & =\bar{g}_{0}(x) \\
\bar{u}_{i}^{\prime}(x, 0) & =\bar{g}_{1}(x),
\end{aligned}
$$

if the right-hand sides $\bar{f}_{1} \bar{g}_{0}$ and \bar{g}_{1} are sufficiently smooth (cf. [3]).
6. The construction of fundamental solutions for $\bar{\partial}_{\xi} \bar{\partial}_{\eta}+\lambda^{2}$. In connection with $D_{\text {s }}$ finition 3 we are looking for a solution $E^{(h)}$ satisfying

$$
\begin{equation*}
\bar{\partial}_{\xi} \bar{\partial}_{\eta} E^{(h)}+\lambda^{2} E^{(h)}=\delta . \tag{26}
\end{equation*}
$$

Applying the Fourier transformation given by the formulae (cf. [2])

$$
\begin{gathered}
\left(F E^{(h)}, F \phi\right)=(2 \pi)^{2}\left(E^{(h)}, \phi\right) \\
(F \phi)(s, t)=\iint_{R^{2}} e^{l(s \xi+t \eta)} \phi(\xi, \eta) d \xi d \eta, \phi \in D\left(R^{2}\right)
\end{gathered}
$$

on both sides of (26) we obtain the problem

$$
\begin{equation*}
P^{(h)}(s, t) F E^{(h)}=1 \tag{27}
\end{equation*}
$$

where

$$
P^{(h)}(s, t)=\frac{\left(1-e^{i h s}\right)\left(1-e^{i h t}\right)}{h^{2}}+\lambda^{2}
$$

Equation (27) possesses the formal solution $F E^{(h)}=1 / P^{(h)}$. Because $P^{(h)}$ vahishes for certain s, t we have to interpret $1 ; P(h)$ in a suitable way. We will do this in an analoguous manner like in [9], the main idea can be found for example in [4], where fundamental solutions for differential operators are constructed.

We assume for a moment that λ is a positive real number.
Theorem 10. The distribution FE(h) defined by

$$
\begin{equation*}
\left(F E^{(h)}, F \phi\right)=\iint_{R^{2}} \frac{(F \phi)(s+i \sigma, t+i \sigma)}{P^{(h)}(s+i \sigma, t+i \sigma)} d s d t \tag{28}
\end{equation*}
$$

with $\sigma=\sigma(h)$ from $e^{\sigma h}=1+N_{1}$, is a solution of (27) and, therefore, $E^{(h)}$ is a solution of (26). If h tends to zero $E^{(h)}$ converges to a fundamental solution E of the corresponding differential operator $\partial^{2} / \partial_{\xi} \partial_{\eta}+\lambda^{2}$.

Proof. By suitable calculations we obtain

$$
\left|P^{(h)}(s+i 0, t+i \sigma)\right|=\left|\frac{\left(1+\lambda h-e^{i h s}\right)\left(1+\lambda t-e^{i h t}\right)}{(1+\lambda t)^{2} h^{2}}+\lambda^{2}\right| \geqslant \lambda^{2}\left(1+\frac{1}{(1+\lambda h)^{2}}\right)
$$

that means, (28) defines a distribution acting on $F \phi$. Because $P^{(h)}(s+i \sigma, t+i \sigma)$ tends to $P(s+i \lambda t+i \lambda)=-(s+i \lambda)(t+i \lambda)+\lambda^{2}$ if h approaches zero we can use Lebesgue's Theorem get

$$
\left(F E^{(h)}, F \phi\right) \rightarrow \iint_{R^{2}} \frac{(F \phi)(s+i \lambda, t+i \lambda)}{P(s+i \lambda, t+i \lambda)} d s d t \stackrel{\text { def }}{=}(F E, F \phi)
$$

In view of the continuity of the inverse Fourier transformation we have $E^{(h)} \rightarrow E$. Further,

$$
\left(P^{(h)} F E^{(h)}, F \phi\right)=\left(F E^{(h)}, P^{(h)} F \phi\right)=\iint_{R^{2}}(F \phi)(s+i \sigma, t+i \sigma) d s d t=(1, F \phi)
$$

that is (27). Similar considerations show that the distribution $F E$ satisfies (- is) (- it) $F E+\lambda^{2} F E=1$. Therefore, $E(h)$ and E are the desired fundamental solutions.

Theorem 13. The fundamental solution $E^{(h)}$ given in (28) has the form

$$
E^{(h)}(\xi, \eta)=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} c_{k j} \delta(\xi-k h, \eta-j h)
$$

where

$$
\begin{equation*}
c_{k j}=h^{2} \sum_{m=0}^{k}\left(\frac{f}{m}\right)\binom{k}{m}(-1)^{m}(\lambda h)^{2 m}\left(1+\lambda^{2} h^{2}\right)^{-1-k-1} \tag{29}
\end{equation*}
$$

If $h \rightarrow 0$ we have

$$
E^{(h)}(\xi, \eta) \rightarrow E(\xi, \eta)=\sum_{m=0}^{\infty} 1 /(m!)^{2}(-1)^{m}\left(\lambda^{2} \xi \eta\right)^{m} Y(\xi) \otimes Y(\eta)
$$

(Y is the Heaviside unit function). E is the fundamental solution found in [8].
Proof. Formulac (28) shows that $F E^{(h)}$ is a periodic distribution with period $T=$ $=(2 \pi / h, 2 \pi / h)$. That means (cf. [7]) that

$$
E^{(h)}(\xi, \eta)=\sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} c_{k j} \delta(\xi-k h, \eta-j h)
$$

where the c_{k} are the generalized Fourier coefficients of $1 / P^{(h)}$ given by

$$
c_{k j}=\frac{h^{2}}{(2 \pi)^{2}} \int_{0}^{2 \pi / h} \int_{0}^{2 \pi / h} \frac{e^{-i k h(s+i \sigma)} e^{-i j h(t+i \sigma)}}{P(h)(s+i \sigma, t+i \sigma)} d s d t .
$$

The substitution $u=e^{-i h(s+i \sigma)}, v=e^{-i h(t+i \sigma)}$ leads to

$$
c_{k j}=\frac{h^{2}}{(2 \pi i)^{2}} \oint_{|v|=e^{h o}}^{h_{0}} \oint_{|u|=e^{h}} \frac{u^{k} v^{\prime}}{\left(u-u_{0}(v)\right)\left(v-v_{0}\right)\left(1+\lambda^{2} h^{2}\right)} d u d v
$$

with $u_{0}(v)=\frac{v-1}{v\left(1+\lambda^{2} h^{2}\right)-1}$ and $v_{0}=\frac{1}{1+\lambda^{2} h^{2}}$. If $|v|=e^{o h}=1+\lambda h$, then

$$
\begin{equation*}
\left|u_{0}(v)\right| \leqslant 1+\frac{\lambda^{2} h^{2}|v|}{|v|\left(1+\lambda^{2} h^{2}\right)-1}<1+\lambda h=e^{o h} . \tag{30}
\end{equation*}
$$

In accordance to (30) we calculate for $k \geqslant 0$ and $j \geqslant 0$

$$
\begin{gathered}
c_{k j}=\frac{h^{2}}{2 \pi i} \oint_{|\nu|=e^{\sigma h}} \frac{v^{j}(v-1)^{k}}{\left(v-v_{0}\right)^{k+1}\left(1+\lambda^{2} h^{2}\right)^{k+1}} d v= \\
=h^{2} \frac{1}{k!} \frac{1}{\left(1+\lambda^{2} h^{2}\right)^{k+1}} \sum_{m=0}^{k}\binom{k}{m} \frac{d^{m}}{d v^{m}} \nu^{j} / v=v_{0} \frac{d^{k-m}}{d v^{k-m}}(v-1)^{k / v=v_{0}} .
\end{gathered}
$$

This is already (29) because $c_{k j}=c_{j k}$ and

$$
\begin{array}{r}
c_{k \mid}=\frac{h^{2}}{2 \pi i} \oint_{|v|=e^{\sigma h}} \frac{v^{f}}{\left(v-v_{0}\right)\left(1+\lambda^{2} h^{2}\right)}\left(\frac{1}{(-k-1)!} \frac{d^{-k-1}}{d u^{-k-1}}\left(\frac{1}{u-u_{0}(v)}\right)_{i u=u_{b}^{+}}+\right. \\
\left.+\left(u_{0}(v)\right)^{k}\right) d v=0
\end{array}
$$

for $k<0$.
To show the covergence of $E^{(h)}$ to E we pay attention to

$$
\left(E^{(h)}, \phi\right)=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} c_{k /} \phi(k h, j h) \rightarrow \iint_{R^{2}} E \phi d \xi d \eta=(E, \phi) .
$$

We notice that (29) defines a fundamental solution of $\bar{\delta}_{\xi} \bar{\partial}_{\eta}+\lambda^{2}$ for every complex number λ such that $1+\lambda^{2} h^{2}$ does not vanish.

REFERENCES

[1] Courant, R., Friedrichs, K., Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), 32-74.
[2] Shilov, G. E., Mashematical Analysis, (in Russian), Nauka, Moscow 1965.
[3] Kizyżaniski, M., Parrial Differential Equarions of Second Order, vol. II, PWN Warszawa 1971.
[4] Maurin, K., Methods of Hilbert Spaces, PWN Warszawa 1972.
[5] Przeworska-Rolewicz, D., Equations with Transformed Argument, PWN, Warszawa 1973.
[6] Bittner, R., Opemfional Calculus in Linear Spaces, (in Polish), PWN, Warszawa 1973.
[7] Bladimirov, V. S., Generalized Function in Mathemarical Physics, (in Russian), Nauka, Moscow 1979.
[8] Ortner, N., Regularisierte Faltungen von Distributionen, Teil 2, Z. Angew. Math. Phys. 31/1 (1980), 155-173.
(9) Pfeifer, E., Rauhöft, A., Über Grundlösungen fur Differenzenoperatoren, Zeitschrift für Analysis und ihre Anwendungen (to appear).

STRESZCZENIE

W pracy tej znajduje się przyblizone rozwiązanie problemu Z. Szmydt przy pomocy równań rózznicowych. W' tym celu stosuje się formalizm użyty w monografii Bittnera [6]. Jest to dalszy przykład anaiugii pomiędzy równaniami różnicowymi i różniczkowymi.

PЕЗЮME

В этой работе дается приближенное решение задачи С. 山мыдт при использованни разностных уравнения. Для этой цели использован формализм из монографии Р. Биттнера [6]. Это служит очередным примером аналогии между разностными и дифференииальными уравнениями.

