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1. Introduction. In the paper there has been presented an attempt of applying the
methods of complex analysis and optimal control to investigations of extremal problems
for holomorphic and univalent functions in a half-plane. The expedience of investigating
extremal problems in the space of such functions is justified, among other things, by their
importance in questions of the mechanics of continuous media.

2. Preliminary notes. Let A stand for a class of functions f holomorphic and univalent
in the upper half-plane P7 = §z : Imz> 0} which transform this half-plane onto domains
contained in the half-plane Pw w:lmw> 02 Besides, these functions are normalized
by the condition

(1.1) im [fz)-2z] =0

Pisz—em

The class H! is not empty since the identity function belongs to it. In the paper [S] it
was proved that H' is connected in P7 and is not a compact class.

In the paper [2] a possibility of using the variational-parametric method to the exami-
nation of extremal problems in the class /' was shown. The idea of the method rests
upon a simultaneous examination of two differential equations satisficd by some function
F(w, 7) which is strictly connected with an extremal function f corresponding to the
problem considered. In one of these equations there occurs the derivative of the function
F with respect to the variable w, while in the other equation — the derivative of F with
respect to a real parameter T € [0, t,] where t, is some fixed number. The first equation
is obtained on the basis of the variational method, the other — on the basis of Lowner’s
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parametric theory [6] applied to functions of class H'. Hence we derive the name of the
variational-parametric method.

In papers {1], [3] and [5] the variational-parametric method is applied to investigat-
ing extremal problems in some subclasses of functions of class A* .

Let H} denote the set of all functions f € H' for which the complement of f(P7) to
Py, is bounded. In virtue of the Schwarz symmetry principle each function f € H', has
an analytic continuation in Pz = {z :Imz < 0_} according to the formula f(2) =f(2),z €
P;. Moreover, by continuity, the function f€ H} is uniquely continuable onto the entire
real axis 3P7 ={z : Im z = O} , with the exception of some bounded part of 3P7. The func-
tion f thus continued is holomorphic in some ring

Kr=§2:R<|z|<=R>0}.

Expanding fin Kg in a Laurent series, we shall obtain

(1.2) f(z)=z+k‘2.3:ck *

where all the coefficients cx are real numbers.

Let ﬁ}_ stand for the set of all functions f € H} , each of which transforms the half-
-plane P; onto a domain G, = f(P7) of the complex plane Cy . obtained form the half-
-plane Py by the removal of a finite number of pairwise disjoint Jordan arcs. One can
prove that the class # | is non-empty and is dense in H} in the sense of the topology
of uniform convergence inside Pz. One can also prove (cf. {2] or [3]):

Theorem A. Let f belong to H' (or to H} or H l). Then there exist three classess
{fk (z, r_;} (k = 1. 2. 3) of functions fx(z, t) of class H' (or of H} or ﬁi, respectively)
depending on a real parameter t and having, with z € P; and with small t > 0, the repre-
sentation

Sk D=f@2)+10k(z,N*o(2,0),k=1,2,3,
where
£'¢)
Ve

Qz.N=

A A
2 N=0-f; S T e
Q. N=0:2 1 wo) f(z) =W f(z) — W,

2 N=0:(.f; 'Z(v,.". + ——.
QEN=0: i fEN+S () Fe -5 Torc-on
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A and ¢ are arbitrary complex numbers (¢ € P1), w, is any point from the half-plane Py,
external for the domain Gy = f(Pz), X is an arbitrary real number, o(z, t) is a holomor-
phic function in P3 such that t™' o(z, t) = O uniformly inside P and in the neighbour-
hood of infinity as t - 0. 1

In particular, if f is any function of class A i then, to this class, also belongs a func-
tion given by the formula

A

A
L@l T,

).

This formula is used to some characterization of the set G according to theorem A.

Theorem B. For any function f € ﬁ,'_, f(z) # z, z € P;, there exist:a number t, > 0,
real functions ug = ug(t) (k =1, 2, ..., m, m 2 1) piecewise continuous on the interval
[0, %,), with no points of discontinuity of the second kind, and non-negative functions
6k =bk(r)(k=1,...,m),0<t<1,8 +...+8m = 1,such that f(z) =.9¢z, 0) where
@ t)EH], tE [0,t,],and the function z = F(w, t) inverse to a function w = &(z, t)
is a solution of the equation

aF(w, 1) ‘t‘:n S5k (0)
at kel up(t)—F(w, t)

satisfying the condition F(w, to) = w, w € Py, It turns out that the function F(w, t)
satisfies also the condition F(f(z), 0) = z.

The function F(w, t) is called a function associated with the function f. The equation
occurring in Theorem B bears the name of the Lowner equation for a half-plane:

In particular (m = 1), the function F(w, ) can be obtained as the integral of the equa-
tion

AFw,1) 1

OIS,
at u(t) —F(w, 1)

with the condition F(w, o) = w.

Remark. Normalization condition (1.1) secures the uniqueness of the inverse function
(cf. [2], p. 143).

It is to be proved that the function ®(z, ) (in the special case under consideration)
satisfies the equation
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20(0), | 240 _
at u(@y—z 3z

and the condition

d(z, 0) =1(2).

3. Of late years, there appeared many papers (comp. e.g. [8], [9], [10]) in which
some extremal problems were investigated by means of: variational methods, parametric
one and that of optimal control. As has been indicated in the introduction, the present
paper constitutes — in the author’s opinion — the first tentative of applying the above-
-mentioned methods to the solving of a concrete extremal problem concerning a selected
class of holomorphic and univalent functions in a half-plane.

Theorem 2.1. Let the differential equation

9f(z, 1) - 1 af(z, 1) )
ot u(t)-z z

(2.1 0

be given, where (z, t) € P; X [0. to], while u(t) is a measurable function on the interval
[0. 1o]. If €(2) is a holomorphic function in the half-plane P;, and f(z, t) is a solution
of equation (2.1) with the initial condition

(22) f(z,0)="€(2).

then there exists exactly one holomorphic and univalent function g : P; X [0,t,] = P7
such that

(2.3) [ 1)="Ce 1) fort€[0,1,).

Proof. Let us take into consideration the equation

ag(z, 1) N 1 ag(z, 1)

(2:4) ot u(t)—z 8z

with the initial condition g(z, 0) =z,

In this way we define. for all # € [0. £,). some holomorphic function g(z, ¢) of the va-
riable 2. Besides. the equation

gz, t)=a,Ilma>0,
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defines, for ¢ sufficiently small, a curve z(¢; @) such that
(2.5) g@z(t;a).t)=a.

This means that the curves z(t; a) are the characteristics of equation (2.4) and satlsfy
the differential equation

dz(t;a) 1
* =0,2(0;a)=a.
dt u(t)—z(a)
Since Im u(#) =0, Im z(t; @) > 0, therefore
dz(t;a)
2.6 ——
(2.6) i
Hence we infer that
dz(t;a)
Arg € (0, n).

By taking account of (2.5) and (2.6), it can be verified that the function g(z, ¢) is, for all
t € [0, to]. a univalent function in the half-plane P; and transforms it onto its certain
subset,

Since g(z, t) is a solution of equation (2.4), so is also each function

Q.7 fz £)= €@ ).

Moreover, since g(z, 0) =z, therefore f(z, 0) = 'e(z). From this and from the theorem on
the uniqueness of solution of a differential equation we deduce that the function f(z, 1),
appearing in the proposition of our thcorem, really has form (2.7), i.e. form (2.3).

On the ground of Lowner’s theory, it can be shown that the set of solutions of equa-
tion (2.1) is dense in H'. Whereas on the basis of theorem 2.1, from the continuity of
solution of a differential equation we infer that each function C € H' can be arbitrarily
approximated by the solution f(z, r) of equation (2.1) with the initial condition f(z, 0) =
= C(2). The justification of these facts can be found in monograph [7] where there have
been collected, among other things, some basic results concerning LGwaner's theory for
a half-plane and its applications.

4. We shall now give an example of applying the information gathered in sections 2
and 3 to the solvmg of a concrete extremal problem.
Lt e HL, and let it possess an expansion in a Laurent serics, given by formula
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(1.2). From the considerations contained in sections 2 and 3 it follows that, for this func-
tion, there exist: a number £y, > 0 and a real function 4 = u(t) piecewise continuous on
the interval [0, to], with no points of discontinuity of the second kind, continuous on
the right at the point 0 and on the left at the point o, such that “e(z) =f(z, 0) where
f(z. 1) € A} and, with any t € [0, 1], is the integral of equauon (2.1) with condition
(2.2). Since, with each t € [0, 74], the function f(z, t)GHL therefore this function has
in the neighbourhood of infinity the expansion

3.1) fizt)=z+ kglxk(t)z'*

with real coefficients xx =xg(2) (k=1,2,...).
Substituting (3.1) into equation (2.1), we obtain, for the coefficients xx () (k= 1, 2, ...),
the following system of equations:

.........................................................

for almost all € [0, ¢,].
If ck(k =1, 2, ...) are coefficients in the expansion of the function ‘€ in a Laurent
series, then from condition (2.2) we have

(32) C xk(@)=cr k=1,2,....

It can be shown (cf. [7]. p. 243) that ¢, < 0, with that ¢, = 0 if and only if €(z) = z.
From Theorem B one can deduce that the condition xx =xx (o) =0,k =1, 2, ..., holds.
From this and from condition (3.2) it follows that fo = —; . This equality is obtained at
once from the conditions: x, =0, x;(0)=c¢,, x,(t,) =0.

From among all functions of class H} we choose those for which the first two coeffi-
cients ¢, and c; of the expansion in a Laurent series are known. Let us consider the
following extremal problem.

Problem 1. Find the extremal values of the coefﬁcwnt ¢y in expansion (1.2), with the
first two coefficients ¢; and c; fixed.
Let a point move in the space of variables (x,, x,, x3) according to the law

X = l’x-z =u'x'3 =u2 -the [0,[0]
(3.3)
xi(0)=cq4, xi(t0)=0,i=1,2,3.
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We assume that the function u = u(¢) is a control function. Note that
t t

£ @A) - xi(e) dr = £ 5(0) dt = x3(t0) - x3(0) = ~x3(0) = <3,

and thus,
!

L]
(34) x3(0)=c;3 = —of (@ (£) — x,(r)) dt.
Let us consider.
Problem 2. Determine a control u that carries a point from a position (¢,, c2, X3) at

the instant ¢ = O to the position (0, 0, 0) at the instant #,, so that the functional J, =
= x3(0) should take the maximal value or, which is equivalent, that the functional

rﬂ
J)=[ (2 @)~ xy () dr

should attain the minimal value.
Applying the transformation

X =x; - 1,% =Xx,,
from (3.3) we obtain

E‘ = o,fz =u, .;l(lo) = —ty, ;2(10) =0.

(35)
X(0)=¢pi=1,2;
to
(3.6) J(u) = 6{ W) — X, (1) — t)dr.

Then Problem 2 can be reformulated in the following manner.

Problem 3. Determine a control u that carries a point from the position ¢,, ¢, at the
instant ¢ = O to the position (—f,, 0) at the instant 4, so that functional (3.6) should
attain its minimum. Of course, the optimal control found for Problem 3 is optimal for

Problem 2.
Let us put

Xy

Then (3.5) can be written in the form

F=A()Z+B(u
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where

and
to
J()={ @) -X,(t) - t)dr.
0
The matrices A(¢) and B(¢) as constants are continuous. We introduce the notations
Lo x)=-%(0) -1,
hO(z, u) =u(2).

Note that the function f°, with a fixed ¢, is a convex and bounded function with t € [0,
to]. In turn. the function h° is a sharply convex function, and

[h® (tu) 1> ul?.
Making use of the theorems given in monograph [4] on pages 226—234, we find that

Problem 3 does possess a solution. Moreover, the control u*() together with the trajec-
tory x*(¢) will be optimal in our problem if and only if there exists a vector

n(?) = [n0.n(1)]

such that
7"0 = 0’ no < 0’
. af(s, x)
nE=ne——— —nA@),
ox

and such that almost everywhere on the interval [0, #,] the relation
10 h®(r. u* (1)) + n(2) B(r) u*(£) = max [no h°(t, u) + n(t) B(t) u)
is satisfied.
We determine successively

n(t) = [no t +d,,d2), u*(t)=~(d;/2n,)
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and

where d,, d,, d3, d4 are fixed real numbers. Since

X1(0) =ct, X3(0) = c1,X%3(0) = c$, ®1(to) = —to, X3(10) = X3(t,) = 0,

therefore from (3.6), the above relations and the fact that

b ., i
x;(")=#[112)r +( 2 _ds)t+d5ld5=con8t’
410
we shall easily find the relation
c?
PRa— = ¥
3 ot 1

Hence we infer that if the function f€ A | has expansion (1.2) with ¢, and ¢, fixed, then
the sharp estimate

3 1
(3.7 s < —’—;c}

Cy

takes place. Estimate (3.7) was obtained, in some other way, by V. V. Sobolev and T.
N. Sellyakhova in 1974 [11].

The result obtained constitutes a confirmation of the efficacy of simultaneous applica-
tion of methods of complex analysis and optimal control to investigating extremal prob-
lems in the spaces of holomorphic and univalent functions in a half-plane.
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STRESZCZENIE

W pracy tej przedstawiono probe stosowania metod analizy zespolonej i sterowania optymalnego
do badania problemow ekstrecmalnych dla funkcji holomorficznych i jednolistnych w pétptaszczyi-
nie. Celowos¢ badania problemdéw ekstremalnych dla takich funkgji jest uzasadniona ich zastosowa-
niami w mechanice osrodkow ciggtych.

PE3IOME

B pa6ore mpeacTaBnciia NOMbITKa HCMNONB3OBAHHA METOda KOMILIEKCHOTO aHATIM3a M TEOPHM ON-
THMQ1LHOTO YNIPABAYHMA B HM3YYeHHH 3KCTPEMATbHBIX 3alay WA OTOGpaXeHMA roloMOpHLIX W
OJHOMMCTHLIX B NONYMIOCKOCTH. LlenecooGpa3HoCTs M3yyeHHS SKCTPEMANBHLIX 3ajay IUTA TAKHX
0TO06paXKcHHA 060CHOBAHHAa BO3MOXHOCTBIO HX NPHMEHEHHS B MEXaHMKE HeMpepHBHAIX Cpeldl.



