ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXVIII, 10

SECTIO A

1984

Zakład Matematyki Wyższa Szkoła Inżynierska im. Kazimierza Pułaskiego w Radomiu

T. MAZUR, S. WEREŃSKI

The Degree Theory for Local Condensing Mappings

Teoria stopnia topologicznego dla odwzorowań wielowartościowych, lokalnie ściągających

Теория индекса для многозначных локально сжимающих отображений

The present paper is a continuation of [4]. We define the topological degree for the new class of multivalued local condensing mappings and show the fixed point and odd mapping theorems.

Let G be an open subset of a Banach space x.

Definition 1. An USC mapping $T: \overline{G} \to 2^X$ (see [4]) such that $T(\overline{G})$ is bounded is called local condensing if for each $x \in \overline{G}$ there exists an open neighbourhood U_x of x such that $T/\overline{U}_x \cap \overline{G}$, the restriction of T on $\overline{U}_x \cap \overline{G}$, is condensing and T(x) is convex and

closed.

Lemma 1. If $T: \overline{G} \to 2^X$ is local condensing mapping and

(1)
$$\sigma_T = \{x \in G : x \in T(x)\}$$

is a compact subset of G then there exists an open bounded subset $V \subseteq G$ such that $\sigma_T \subseteq V$ and T/\overline{v} is condensing.

Definition 2. For local condensing mapping $T: \overline{G} \to 2^X$ such that σ_T is compact and $0 \in (I - T)(\partial G)$ we define

(2)
$$\deg (I - T, G, 0) = \deg (I - T, V, 0)$$

where T is condensing on V.

Remark. If T is a condensing mapping then T is 1-set contraction. The right hand side of (2) denotes the degree in the sense of [4].

Lemma 2. This degree deg (I - T, G, 0) is independent of the choise of V.

Theorem 1. Let $T: \overline{G} \to 2^X$ be a local condensing mapping. Suppose that σ_T is compact and $x \in T(x)$ for $x \in \partial G$. Then the above defined degree has the following properties:

a) if I - T is closed mapping and deg $(I - T, G, 0) \le 0$ then there exists $x \in G$ such that $x \in T(x)$.

b) if G_1 , G_2 are open subsets of G such that $\overline{G_1} \cup \overline{G_2} = \overline{G}$, $G_1 \cap G_2 = \emptyset$ and $0 \in (I - T)$ (∂G_1) , i = 1, 2, then deg $(I - T, G, 0) = \deg(I - T, G_1, 0) + \deg(I - T, G_2, 0)$.

Theorem 2 (Homotopy property). Let $H: \overline{G} \times [0, 1] \rightarrow 2^X$ be a mapping satisfying the following conditions:

(i) the set $\sigma_H = \{x \in G : x \in H(x, t), t \in [0, 1]\}$ is compact and $x \in H(x, t)$ for all $(x, t) \in \partial G \times [0, 1]$.

(ii) the mapping $t \to H(., t)$ is continuous in the sense that for each $t \in [0, 1]$ and $\epsilon > 0$ there exists $\delta > 0$, such that $\sup d^*(H(x, t), H(x, t')) < \epsilon$ for all $t \in [0, 1]$ satisfying $|t - t'| < \delta$, $x \in \overline{G}$

(iii) H is "local uniformly condensing" (as the mapping $t \to H(., t)$) i.e. for each $(x, t) \in \overline{G} \times [0, 1]$ there exist an open neighbourhood $U_x \subset X$ of x and an open neighbourhood $J_t \subset R$ of t such that

$$\alpha(H(Ax(J_t \cap [0, 1]))) < \alpha(A)$$

for every $A \subseteq U_{\mathbf{x}} \cap \overline{G}$ with $\alpha(A) > 0$. Then

 $\deg (I - H(., t), G, 0) = \operatorname{const} (t).$

(α is the measure of noncompactness, see [2]. Condition (ii) compare to d) in Theorem 2, [4]).

Remark. Condition (iii) implies, in particular, that for every $t \in [0, 1]$ mapping H(., t) is a locally condensing map.

Proof of Theorem 2. First we verify that deg (I - H(., t), G, 0) is constant in sufficiently small neighbourhood of any $t_0 \in [0, 1]$.

Let $x \in \overline{G}$. Choose U_x , $J_{t_0,x}$ for (x, t_0) , as in (iii). We have $\bigcup_{\substack{x \in \sigma_H \\ n \\ i=1}} U_x \supset \sigma_H$ and from compactness of σ_H there exist U_{x_1} , ..., U_{x_n} such that $U = \bigcup_{\substack{i=1 \\ i=1}} U_{x_i} \cap \overline{G} \supset \sigma_H$. Let J_{t_0} be equal to $\bigcap_i J_{t_0,x_i} \cap [0, 1]$. For the restriction of H on $\overline{U} \times J_{t_0}$ is condensing (and so 1-set concentration) we obtain deg (I - H(., t), G, 0) = deg(I - H(., t), U, 0) = const(t)for $t \in J_{t_0}$, (see [4]). It gives that the degree is constant on whole interval [0, 1].

Remark. If $H: \overline{G} \times [0, 1] \to 2^X$ is a such that for each $t \in [0, 1]$ mapping H(., t) is condensing and mapping $t \to H(., t)$ is continuous in the sense of (ii) then condition (iii) is satisfying.

Corollary 1. If $H: \overline{G} \times [0, 1] \to 2^X$ satisfies (i), (ii) and (iv) for each $x \in \overline{G}$ there exists $U_x \subset X$ such that

$$\alpha(H(A \times [0, 1])) < \alpha(A)$$

for $A \subseteq U_x \cap \overline{G}$ with $\alpha(A) > 0$, then deg (I - H(., t), G, 0) is constant on [0, 1].

Corollary 2. Let $H: \overline{G} \times [0, 1] \to 2^X$ be continuous in t uniformly in the sense that for any $\epsilon > 0$ there exists $\delta > 0$ such that $|| H(x, t) - H(x', t) || < \epsilon$ for $x, x' \in \overline{G}$ with $|| x - x' || < \delta$ and all $t \in [0, 1]$. Suppose that H(., t) is local condensing mapping for $t \in [0, 1]$ and that H satisfies condition (i) of Theorem 2.

Then we have

 $\deg(I - H(., t), G, 0) = const(t).$

Applications. Lemma 3. Let X be a Banach space, J = [0, 1] and A be a bounded subset of X. Then

$$\alpha\left(J\cdot A\right)=\alpha\left(A\right)$$

where $J \cdot A = ta: t \in J, a \in A$.

Proof. We have $A \subseteq J \cdot A$ and hence $\alpha(A) \leq \alpha(J \cdot A)$. Set $\epsilon > 0$. There exist subsets B_1, \ldots, B_n of X such that

(3)
$$A \subset \bigcup_{j=1}^{n} B_j$$
 and $\delta(B_j) < \alpha(A) + \epsilon/2, j = 1, ..., n,$

where $\delta(B_j) = \sup_{x, y \in B_j} ||x - y||$.

We claim that for every $t_0 \in J$ there is an open neighbourhood J_{t_0} of t_0 such that

(4)
$$\delta(J_{t_{\alpha}} \cdot B_j) \leq \alpha(A) + \epsilon, \ j = 1, ..., n$$

Indeed, let J_{t_0} satisfies $\delta(J_{t_0}) \leq \epsilon/(4M)$ where $0 < M = \sup_{x \in \bigcup B_j} ||x||$. Then by (3) we have

$$\delta(J_{t_0} \cdot B_j) = \sup_{t_i, t' \in J_{t_0}, b, b' \in B_j} ||tb - t'b'|| \le \epsilon/2 + \delta(B_j) \le \alpha(A) + \epsilon$$

Now let J_{t_0}, \ldots, J_{t_m} be a finite subcover of J chosen from cover $J_{t_0}, t_0 \in [0, 1]$. By (4) applied to $J_{t_i}, i = 1, \ldots, m$, we obtain

$$\alpha(J\cdot A) \leq \alpha(A) + \epsilon$$

since family $J_{t_i} \cdot B_j$, i = 1, ..., m, j = 1, ..., n, is an open cover of $J \cdot A$. So statement $\alpha (J \cdot A) \leq \alpha (A)$ follows from arbitrality of ϵ .

Corollary 3. Let $T: \overline{G} \to 2^X$ be a local condensing mapping and $x_0 \in G$. If $H(x, t) = tT(x) + (1 - t)x_0$, $x \in \overline{G}$, $t \in J$, then for any $x \in \overline{G}$ there exists an open neighbourhood U_x of x such that α ($H(A \times J)$) $< \alpha$ (A) for $A \subseteq U_x \cap G$, $\alpha(A) > 0$, i.e. for segment homotopy H condition (iv) is valid.

Definition 3. For mapping $T: D \to 2^X$, where $D \subset X$, and $K \subset X$ we define

$$T^{\neg}(K) = \{x \in D: T(x) \cap K \neq \emptyset\}.$$

For example, if $T = f: D \to X$ then $T^{\neg}(K) = f^{-1}(K) = \{x \in D: f(x) \in K\}$ (we identify f and T(x) = f(x)).

Definition 4. A mapping $T: D \rightarrow 2^X$ is called proper if set $T^{\neg}(K)$ is compact for every compact subset K of X.

Lemma 4.

1. If T is a proper mapping then it is closed.

2. If T is proper then for each sequence $\{x_n\} \subset D$ and $\{y_n\} \subset X, y_n \in T(x_n)$ such that $y_n \to y_0 \in X$ there exist a subsequence $\{x_n\}$ of $\{x_n\}$ and $x_0 \in D$ with $x_{n_k} \to x_0$.

Theorem 3 (the fixed point theorem). Let G be an open subset of a Banach space X. Let T: $\overline{G} \rightarrow 2^X$ be a local condensing mapping. Suppose that σ_T (the fixed point set of T) is compact, possible empty, tT is proper for all $t \in [0, 1]$ and there exists $w \in G$ such that $m(x - w) \in T(x) - w$ for $x \in \partial G$, m > 1.

Then there exists $x \in \overline{G}$ such that $x \in T(x)$.

Proof. If T has a fixed point on ∂G then the theorem is true. Suppose that $x \in T(x)$ for $x \in \partial G$. Consider the mapping

$$h(x, t) = tT(x) + (1 - t) w$$

By Corollary 3 h satisfies the homotopy conditions. Hence, in view of Theorem 2, deg $(I - T, G, 0) = \deg (I - w, G, 0) = 1$ and so T has a fixed point, by Lemma 4 and Theorem 1.

Theorem 4. (The odd mapping theorem). Let G be an open bounded subset of a Banach space X, symmetric about the origin, and $0 \in G$. Let T: $\overline{G} \rightarrow 2^X$ be a local condensing mapping. Suppose that σ_T is compact, $0 \in (I - T)$ (∂G) and T(-x) = T(x) for all $x \in \overline{G}$. Then deg (I - T, G, 0) is an odd number.

Proof. There exists a neighbourhood V of σ_T such that T/\overline{V} is condensing and deg $(I - T, G, 0) = \deg(I - T, V, 0)$. Set $W = V \cap (-V)$. W is symmetric about 0 and $\sigma_T \subset W$. Let $T_1 = T/\overline{W}$. T_1 is USC and condensing, satisfies $0 \in (I - T)$ (∂W), $T_1(-x) = -T_1(x)$ for $x \in \overline{W}$. T_1 being condensing is 1-set contraction. Hence for $\overline{T} = tT_1$, where 1 - t > 0 is sufficiently small, we obtain

$$\deg (I - \overline{T}, W, 0) = \deg (I - T_1, W, 0).$$

Now, from the Approximation Theorem for set contractions (see [8]) there exists a single valued compact mapping $g: W' \to X$, where W' is open bounded set symmetric about the origin, such that

$$\deg (I - \overline{T}, W, 0) = \deg (I - g, W', 0).$$

We see that f(x) = (1/2)g(x) - (1/2)g(-x) is an odd compact mapping. It is an approximation of T since T(x) = (1/2)T(x) - (1/2)T(-x). Hence

$$\deg (I - \overline{T}, W, 0) = \deg (I - f, W', 0)$$

and the statement follows from the Odd Mapping Theorem (see [3]).

REFERENCES

- [1] Cellina, A., Lasota, A., A new approach to the definition of the topological degree for multi--valued mappings, Atti Acad. Naz. Lincei 47 (1969), 434-440.
- [2] Kuratowski, K., Sur les espaces complete, Fund. Math. 15 (1930), 301-309.
- [3] Lloyd, N. G., Degree Theory, Cambridge University Press, Cambridge 1978.
- [4] Mazur, T., Wereński, S., The topological degree and fixed point theorem for multivalued 1-set contractions.
- [5] Nussbaum, R. D., Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972).
- [6] Nussbaum, R. D., The fixed point index for local condensing maps, Ann. Mat. Pura Appl. 89 (1971), 217-258.
- [7] Petryshyn, W. V., Fitzpatrick, P. M., A degree theory, fixed point theorem and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25.
- [8] Webb, J. R. L., Degree theory for multivalued mappings and applications, Boll. Un. Mat. Ital. (4) 9 (1974), 137-158.

STRESZCZENIE

W pracy rozszerzono teorię stopnia topologicznego dla odwzorowań wielowartościowych i lokalnie ściągających podając także pewne zastosowania.

РЕЗЮМЕ

Расциряется применимость теории топологического индекса на локально сжимающие отображения и приводятся некоторые применения.