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The Degree Theory for Local Condensing Mappings

Teoria stopnia topologicznego dla odwzorowań wielowartościowych, lokalnie ściągających

Теория индекса для многозначных локально сжимающих отображений

The present paper is a continuation of [4]. We define the topological degree for the 
new class of multivalued local condensing mappings and show the fixed point and odd 
mapping theorems.

Let G be an open subset of a Banach space x.

Definition 1. An USC mapping T‘.G-* 2X (see [4]) such that T(G) is bounded is call
ed local condensing if for eachx € G there exists an open neighbourhood Ux of x such 
that T/cxnC- the restriction of T on Ux n G, is condensing and T(x) is convex and

closed.

Lemma l.IfT.G -*2X is local condensing mapping and 

(L) or = £xeC:xGr(x)}

is a compact subset of G then there exists an open bounded subset V C G such that 
or C Vand T/yis condensing.

Definition 2. For local condensing mapping T: G -* 2X such that op is compact and 
0 §(/ - T) (3(7) we define

(2) deg (/ - T, G. 0) = deg (/ - T. V. 0)

where T is condensing on P.
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Remark, If T is a condensing mapping then T is 1-set contraction. The right hand side 
of (2) denotes the degree in the sense of [4].

Lemma 2. This degree deg (I - T, G, 0) is independent of the choise of V.

Theorem 1, Let T: G -* 2X be a local condensing mapping. Suppose that op is com
pact and x £ T(x) for x G 9G. Then the above defined degree has the following proper
ties:

a) if I - T is closed mapping and deg (7 - T, G, 0) < 0 then there exists x&G such 
that x£ T(x).
' b) if G(, G2 are open subsets of G such that G, U G2 = G, Gj n G2 = 0 and 0 G (7 - T) 

(bGi). /=1,2, then deg (7 - T, G, 0) = deg (7 - T, G,, 0) + deg (7 - T, G2.0).

Theorem 2 (Homotopy property). Let H: G X [0, 1] -* 2X be a mapping satisfying
the following conditions:

(i) the set o/j = [xGG:xG 7/(x, 7), t G [0, 1]’ is compact and x £H(x, t) for all 
(x, t) G 9G X [0, 1 ]

(ii) the mapping t -» 77(. , t) is continuous in the sense that for each 7 G [0, 1] and
e > 0 there exists 6 > 0. such that sup d*(H(x, t), H(x, t')) < e for all t G [0, 1 ] satisfy
ing | t - t' | < 5. xeG

(iii) 77 is „local uniformly condensing” (as the mapping t -*■ H(. , 7)) i.e. for each (x,
t) G G X [0, 1 ] there exist an open neighbourhood UxCX of x and an open neighbour
hood Jt CR of t such that »

a(77(4x(7fn(0,l])))<a(^)

for every A C Ux Ci G with a (4 ) > 0.
Then

deg (I -H(., 7), G, 0) = const (7).

(a is the measure of noncompactness, see [2], Condition (ii) compare to d) in Theorem 2, 
P]).

Remark. Condition (iii) implies, in particular, that for every t G [0, 1 ] mapping77(., t) 
is a locally condensing map.

Proof of Theorem 2. First we verify that deg (7 - 77(. , 7), G, 0) is constant in suffi
ciently small neighbourhood of any 70 G [0. 1].

Let x G G. Choose Ux, Jt x for (x, 70), as in (iii). We have U Ux Z> oH and from 
xeo^ 
n _

compactness of o// there exist UXi, ..., UXn such that U = U Ux. OGl on- 
/«i

be equal to Cl 7^ X|. n [0, 1 ]. For the restriction of 77 on G X 7fo is condensing (and so
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1-set concentration) we obtain deg(/ - //(., t),G, 0) = dcg(/ -//(., Z), U, 0) = const(Z) 
for t & Jto, (see [4]). It gives that the degree is constant on whole interval [0,1].

Remark. If H: G X [0, 1] -* 2X is a such that for each r G [0, 1 ] mapping//(. , Z) is 
condensing and mapping t -* H(. , t) is continuous in the sense of (ii) then condition (iii) 
is satisfying.

Corollary 1. If H\ G X [0, 1 ] -* 2X satisfies (i), (ii) and (iv) for each x&G there exists 
UXC X such that

a(H(A X [0, 1]))<«(4)

forACUxC\G with a(A) > 0, then deg (I - H(., Z), G, 0) is constant on [0,1].

Corollary 2. Let H: G X [0, 1] -* 2X be continuous in t uniformly in the sense that 
for any e > 0 there exists 8 > 0 such that || H(x, z) z) || < e for x, x G G with
|| x - x || < 6 and all t& [0, 1 ]. Suppose that H(. , t) is local condensing mapping for 
ZG [0, 1] and that H satisfies condition (i) of Theorem 2.

Then we have

deg (/ - H(., Z), G, 0) = const (Z).

Applications. Lemma 3. Let X be a Banach space, J =[0,1] and A be a bounded sub
set of X. Then

a (J • A) = a (A)

where J • A = ta:t£J,a&A.

Proof. We have A C J • A and hence a (A) < a (J • A). Set e > 0. There exist subsets 
Bx,..., Bn of X such that

(3) A C U Bt and 8(B/)<a(A) + e/2, j = 1......n,
/«•

where 8 (fiy) = sup || x - y || . 
x.yeBj

We claim that for every to G J there is an open neighbourhood of Zq such that

(4) * B/)<a(A) + e, /=1......n .
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Indeed, let J{ satisfies 5 (Jt ) < e/(4 At) where 0 < At = sup || x ||. Then by (3) we 
have ° ° xeuBj

b(Jt 'Bf) = sup || rft — r'b'H < e/2 + 6(/?,)< a(A) + e .
0 t, t ejf', b. b'eBj

Now let /f........ Jtm be a finite subcover of /chosen from cover/fo, t0 € [0, 1]. By
(4) applied to Jfp / = 1..... m, we obtain

a(J • A) < a (A) + e

since family Jtt • B/, i = 1,, m, / = 1,... , n, is an open cover of / • A. So statement 
a (J • A) < a (A) follows from arbitrality of e.

Corollary 3. Let T: G -* 2* be a local condensing mapping and x0 £ G. If H(x, t) - 
= tT(x) + (1 - t)x0, xGG.tEJ, then for any x £ G there exists an open neighbourhood 
Ux'of x such that a (H(A X /)) < a (A) for A C Ux r\G, a (A) > 0, i.e. for segment ho
motopy H condition (iv) is valid.

Definition 3. For mapping T:D where DC X, and K C X we define 

r"1^) = £ e D-. T(x) n k * $}.

For example, if T = f : D X then 7’_I(A’) =f~' (K) ~ £x CD: f(x)CK§ (we identify
/and T(x) = f(x) ).

Definition 4. A mapping T: D ■* 2X is called proper if set ^(IQis compact for every 
compact subset K of X.

Lemma 4.
X.IfT is a proper mapping then it is closed.
2. If T is proper then for each sequence C D and CX,y„C T(xn) such 

that yn -* j’o S X there exist a subsequence fxBjt| of {xB] andx0 CD with xnjc -*x0.

Theorem 3 (the fixed point theorem). Let G be an open subset of a Banach space X. 
Let T: G ->2X be a local condensing mapping. Suppose that op I the fixed point set ofT) 
is compact, possible empty, tT is proper for all t C [0, I j and there exists wCG such 
that m(x - w) e T(x) - w for x CdG,m> 1.

Then there exists x C (5 such that x £ 7\x).

Proof. If T has a fixed point on dG then the theorem is true. Suppose that x e T(x) 
for x C dG. Consider the mapping

h (x, t) - tT(x) + (1 -t)w.



The Degree Theory for Local Condensing Mappings 89

By Corollary 3 h satisfies the homotopy conditions. Hence, in view of Theorem 2, deg 
(I - T, G, 0) = deg (7 - w, G, 0) = 1 and so T has a fixed point, by Lemma 4 and Theo
rem 1.

Theorem 4,(The odd mapping theorem). Let G be an open bounded subset of a Banach 
space X, symmetric about the origin, and 0 6 G. Let T: G -*■ 2X be a local condensing 
mapping. Suppose that op is compact, 0 ë (7 - T) (9C) and T(—x) = T(x) for all x G G.

Then deg (7 - T, G, 0) is an odd number.

Proof. There exists a neighbourhood V of op such that T/ pis condensing and deg (7 - 
T, G, 0) = deg (7 - T, V, 0). Set W = V (T (-F). W is symmetric about 0 and op C W. 
Let T, =_r/riZ Tt is USC and condensing, satisfies 0 5 (7 - T) (dW), T,(-x) = -Tt(x) 
for x S W. Tt being condensing is 1-set contraction. Hence for T = tTx, where 1 — t >0 
is sufficiently small, we obtain

deg (7 - T, W, 0) = deg (7 - T,. W, 0).

Now, from the Approximation Theorem for set contractions (see [8]) there exists a 
single valued compact mapping g : W1 X, where W is open bounded set symmetric 
about the origin, such that

deg (7 - T, W, 0) = deg (7 - M7', 0).

We see that f(x) = (1/2) g(x) — (l/2)g(—x) is an odd compact mapping. It is an approxi
mation of T since T(x) = (1/2) T(x) — (1/2) T(—x). Hence

deg (7 - T, W, 0) = deg (7 -/, W', 0) 

and the statement follows from the Odd Mapping Theorem (see [3]).
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STRESZCZENIE

W prac}' rozszerzono teorię stopnia topologicznego dla odwzorowań wielowartościowych i lokal’ 
nie ściągających podając także pewne zastosowania.

РЕЗЮМЕ

Расцд<ряется применимость теории топологического индекса на локально сжимающие ото
бражения и приводятся некоторые применения.


