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Introduction. In 1956, A. Bielecki has published two notes in the Bulletin de l’Aca
demie Polonaise des Sciences (see [7] and [8]), in which a new procedure of obtaining 
global existence results for differential equations (ordinary, or with partial derivatives) 
is illustrated.

This new procedure, according to the statement made in [7], was aimed at improving 
the estimate of the length of the interval of existence of solutions, by choosing in the 
underlying space a norm with respect to which the attached operator becomes a con
traction. Thus, besides existence and uniqueness of solution, the Bielecki’s procedure in 
applying the fixed point theorem leads to a wider domain of definition for the solution 
(than in case of a “crude” application of the same principle), and - simultaneously - to 
an estimate for the solution in terms of the data. This last feature better enhanced 
when the interval of existence is not a compact one, and it is illustrated (for instance) in 
the author’s paper [12].

Bielecki’s method has been applied, since its inception in [7] and [8], by many 
authors. It has become such a common tool in handling existence and uniqueness of 
solutions of equations (differential, differential-difference, integral), that some authors 
do not feel compelled anymore to quote the originator.

Without any attempt to be complete in regard to the existing literature on this subject, 
we would like to mention some papers in which the Bielecki’s method has been illustrated 
on various classes of equations, and under various assumptions.

For instance, in case of ordinary differential equations, the method has been used by 
the author in [12] and [13].

• Some results in this paper made the object of a lecture given by the author at the Mathematical 
Institute of the Lublin University in September 1975.
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D. Petrovanu [35] has used the Bielecki’s method in proving basic results for Pfaff’s 
system.

For equations with delay, the method was applied in the author’s paper [14], by M. C. 
Delfour and S. K. Mitter [23], S. Czerwik [22], and others. Recently, M. C. Delfour 
[24] applied the method in case of equations of the form

x(Z) = f[4 (s) x(t + s) + B(s) x (Z + s)] ds,

under the main assumption || A(s) ||, || B(s) || &L? (—°°, 0). The solution is sought in the 
Sobolev space H'l,p(0, T),T>0, wherep~* +q~l = 1.

' In the case of integrodifferential equations with Volterra operators on the right hand 
side, Bielecki’s method has been used by the author [16], by T. Talpalaru [39], and 
by M. Turinici [41].

Many more papers on the subject, but dealing with integral or integrofunctional 
equations, have been published during the last 20 years. It is our aim to survey in this 
paper the contributions falling into this category, and to emphasize the developments 
Bielecki’s method had generated.

The Case of Volterra Integral Equations. We shall briefly illustrate, in this section, 
the use of Bielecki’s method in the case of Volterra equations. We are not aiming here at 
the greatest generality, because forthcoming sections of this paper will be dedicated to 
recent contributions, emphasizing more general setting-ups for the problem.

Let us consider the nonlinear Volterra integral equation

(E) x(Z) =/(Z)+ /*(*.», x(i))ds, Z>0,
0

where x, f and k take their values in Rn. We assume that f is a continuous function on 
R+ = {z 11 > 0}, while k (t, s, x) is also continuous on A X Rn, where

(1) A={(Z,j)|0<s<z}.

Moreover, we assume k (z, s, 0) = 0 on A, a condition which can be achieved substituting 
k (z, s,x) — k (z, j, 0) to k (t, s, x) in (E), and /(z) + f k (Z, s, 0) ds to /(z).

The following generalized Lipschitz condition is imposed on k:

(2) || k (t, s,x) — k (t, s, y) || < k0 (t, s) || x-y || ,

where || • II denoted the norm in Rn, and k0(t, s) is a nonnegative continuous function 
on A.

Of course, under above stated conditions, one expects existence and uniqueness of 
the continuous solution to (E), defined on R+.

In order, to carry out the proof, let us look first for a convenient space (of continuous 
functions from R+ into /?") in which the solutions is to be sought. Assuming x (z) is a 
continuous solution of (E) defined onR», one easily derives the existence of a continuous
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positive function g (f), also such that || x(t) || < g(f), t S R+. We shall determine one of 
the possible choices for g (f).

Let us consider now the Banach space of continuous functions x (t), fromR, into Rn, 
such that

(3) llx(0H<3fx£(0, teR.,

with 0 <MX < + If one denotes this space with the norm 

II x (f) ||
(4) |x|c = sup-----——, tER.,

g g(t)
by Cg (R+, Rn), it is known [15], [21 ] that Cg is complete (i.e., a Banach space).

Now, for some convenient g, we want to apply the Banach fixed point theorem to
obtain existence and uniqueness for equation (E) in the space Cg (R+, Rn).

Let us denote

(5) (7x) (f) =/(*)+/* (L x (s)) ds, teR,,
o

for any x € Cg. It is obvious that (7x) (z) is a continuous function on R+, with values in 
Rn. But (Tx) (Z) does not necessarily belong to Cg. Since x (Z) = 9 (the null element 
in /?") does belong to any Cg, one derives from (5) that/(f) must belong to Cg, in order 
to achieve TCq C Cg. Furthermore, the condition

(6) A(f,s,x(s))dseQ, xeCg, 
o

will be guaranted by

(7) / k0 (Z, s) g(s) ds < o^(0, t £ R. , 
o

with a a positive constant. Indeed, from our assumptions one obtains only

(8) II A(Z,j,x(s))d«ll< /*«,('.*) II x(s) II*. t&R+.
0 0

From (8) and (7), taking into account the definition of Cg, one derives the validity of (5). 
Hence, assuming only f S Cg, and the condition (7), besides other conditions on

k (t, s, x) formulated in this section, one obtains the inclusion

(9) TCgCCg

It remains now to prove the existence of a function g, such that the inclusion (9) is a 
contraction. Actually, this is the key of Bielecki’s method.

From (5), (7), and the definition of the norm in Cg, one obtains

• z II x (s) — y (s) ,|
(10) || (Fx) (Z) - (Ty) (z) || < f k0(t, s)------

o g(s)
g (s) ds <
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<l*-.ylcJ f ko(t,s)g(s)ds<a\x-y\Cg g(t), tGR+> 

which obviously implies

(11) \Tx-Ty\cg<a\x-y\Cg-

Therefore, T is a contraction any time 0 < a < 1 in (7), and this implies the existence 
and uniqueness of the solution in Cg.

Of course, the existence of a function g (/), satisfying (7), has yet to be proved.
Let us remark first that (7) is implied by the inequality

(12) F(f) f'g(s) ds < ag(t), teR+, ■
0

where k (t) is a positive continuous function verifying

(13) fro(r,s)<F(O, 0<s<r.

In order to construct k (r), one can proceed as follows: let k(r) = sup k0(t, s), 0 < s < 
< t C r, r > 0. Then set k(/) = Jf'* * k(r) dr,t>0.

A solution of the inequality (12) is obviously given by

(14) = exp ^a'1 /' k(s)dsJ, teR,,

which is. basically, the function used by Bielecki in [7] in constructing his norm.
Therefore, we can state the following result in regard to the integral equations (E):

Theorem 1. Consider the equation (E) under the following assumptions:
a) k is a continuous map from A X Rn into Rn, such that the generalized Lipschitz 

condition (2) holds true, with k0 : A -* R+ continuous;
b) fECg (R+, Rn), where g is defined by (14), and the norm in Cg by (4);
c) the constant a in (14) is such that 0 < a < 1.
Then, there exists in the space Cg a unique solution of the equation (E), which is 

the unique fixed point of the operator T defined by (5).

Remark 1. In Bielecki’s paper [7] it is assumed that k(t) dominates also || f (r) J|. 
Of course, this is no restriction as long as the underlying space is Cg (I, Rn) with/a com
pact interval of R. Since R, (or any interval [0. T),T> 0) is not compact, the assumption 
(b) in Theorem I allows more generality than || f (r) II < k (t).

Remark 2. The uniqueness in Theorem 1 is stated only with respect to the class Cg. 
In order to obtain the uniqueness in the class of all continuous functions from R+ into 
Rn, one can rely on the following argument.

Any continuous function from A+ into Rn belongs to some Cg(R+,Rn\ If we assume 
(E) has more than one solution, say x £ Cg and y £ Ch, with x/y, then considering



Bielecki’s Method in the Theory of Integral Equations 27

the function m (f) = max g (f), h (Z)| , t G/L, one has Cm C. CgV Cf,. But m (r) 
satisfies the inequality (12) if both g (f) and h (t) satisfy that inequality. This means 
TCm C-Cm for 0 < a. < 1, which ends the proof.

Function Spaces. From the discussion conducted above in proving Theorem 1, it 
appears clearly that the choice of the underlying space (or of the norm conducing at that 
space) plays a significant role in obtaining adequate results, with global character, for 
integral equations of Volterra type.

The space Cg defined in the preceding section has been considered by the author in
[15], in connection with the existence of solutions to integral equations of Hammerstein- 
-Volterra type. This space has been investigated in [15], [18], in regard to the con
tinuity of certain linear integral operators of Volterra type, as well as in regard to some 
Fredholm’s type operators.

The space Cg have been used by many authors in the framework of Volterra integral 
equations: C. Avramescu [1], [2], G. Bantas [3]-[6], G. Dotseth [25], N. Pavel 
[34], D. Petrovanu [36], 0. Staffans [37], [38], P. Talpalaru [39], M. Turinici 
[40], [41], V. A. Tyshkevich [42], L. B. Tzalyuk [43]. The monograph by V. A. 
Tyshkevich [42], and the survey paper by L. B. Tzalyuk [43] contain long lists of 
references pertinent to the use of Cg spaces in various problems-cf existence for integral 
equations. The books by V. Lakshmikantham and S. Leela [28], and by R. K. Miller 
[29], also contain various results and references related to Cg spaces. Finally, in connec
tion with the use of Cg spaces in probability problems, we refer the reader to the books 
by T. A. Barucha-Reid [10], and by W. J. Padgett and C. P. Tsokos [32]. More 
references in respect, to the spaces of random variables, of type Cg, are included in these 
two books.

More significant, perhaps, than the direct use of the Cg spaces in problems related to 
integral equations is the fact that several interesting generalizations of these spaces have 
been considered by the researchers.

First, we shall indicate the generalization due to H. E. Gollwitzer [27]. It deals 
with Cg spaces for which g is a matrix valued function, instead of a scalar function. 
Moreover, by- means of the concept of a generalized inverse (to a matrix, in this case), 
Gollwitzer covers the case when g = g (f) is not invertible for some t & R+ (generalized 
inverse of a matrix).

In order to formulate the definition of Cg spaces introduced and investigated by 
Golwitzer, we need some preparation concerning the concept of a generalized inverse 
of a square matrix.

Let L (Rn, Rn) be the Unear space of all linear maps from Rn into itself. If an ortho
gonal basis of Rn is given, then L (/?", R") coincides with the class of all n by n matrices 
with real entries. For any A G L (Rn, Rn), let Nx and R4 be respectively the kernel 
(null space) and the range of A. Denote by P4 the orthogonal projector of Rn onto R4, 
and let A be the restriction of A to the orthogonal complement (in Rn) of , sayA^. 
Obviously, A is invertible on R4 = Rf • We now define
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which implies A.t : Rn ■+ . From (15) one derives A.t Ax = x, for every x £ .
In case A is a nonsingular matrix, N4 = { o}, = Rn, which means A.t = A ~1.

Assume nowg:R+->L (Rn, A”) is a continuous map (the continuity is not necessary), 
and let us keep the notations used above.

The space Cg (R+, Rn) is defined by means of the following properties:
1) x € Cg is continuous;
2) />rtOx(t)=x(t),Vte^;
3) g -1 (f) x (f) is bounded on /<..
The norm in Cg is defined by

(16) |x|g = sup£«g-1(f)x(f)||, t&lQ.

As shown in [27], Cg is a Banach space whose topology is stronger than the topology 
of uniform convergence on any compact interval off?»..

When g (t) stands for the matrix g (f) I, where g (t) is a continuous scalar function, 
the Cg defined by Gollwitzer reduces to the space Cg defined-by the author in [15].

Of course, the spaces defined by Gollwitzer present much more flexibility in regard 
to the behaviour at infinity of the functions belonging to them. In particular, choosing 
g (f) = diag [g, (t),g2(t), gn(r)}, with Si(t) continuous and positive onR+, one can
measure the growth of each component separately (having, for instance, some of them 
bounded on R+, some tending to zero at infinity, etc.).

If insteated of continuous maps we are interested in (Lebesque) measurable ones, 
the scheme above leads easily to the definition of the spaces Lg (R+, R"). The case of 
a scalar g is discussed in [36], while the case g£ L (Rn, Rn) is treated in [27]. The key 
point, in this case, is the fact that g.j (f) is measurable, anytime g (f) is. See [27] for 
details.

Finally, the scheme of constructing new function spaces proposed by Gollwitzer 
[27] can be applied to define the Lp(R+,Rn) spaces, Kp<°°,withg:K(.-*L(7?",y?n) 
a measurable map. This case has been dealt with in [25] by G. M. Dotseth. Briefly, 
the space Lpg(R^, Rn) consists of those measurable mapsx (t) for which Pg(t)X(t) =x(t) 
a.e. onR+, andg-, (t)x(t) 6 Lp (R+, Rn). The norm is given by

(17) |x|£p = ( f ||g-1(Ox(f)lW/'’ •
J? ,

In relationship to the scheme divised by Gollwitzer. the following basic problem arises: 
when does the space Cg(R+, Rn) coincide with another space of the same type, say 
Q (*♦.*")?

In case of scalar weight functions g and h it is obvious that the condition

(18) dt(r)<g(r)<C/j(f), VteR.,

where c and C denote two positive constants, is a necesary and sufficient condition 
for having Cg -Cf,.
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In case of matrix valued# and h, the necessary and sufficient condition for the identity 
of Gollwitzer’s spaces Cg and C/, has been obtained by L. Pandolfi [33]:

Theorem 2. A system of necessary and sufficient conditions for the identity of the 
spaces Cg and Ch consists of:

a) Rg(f) = (f)> f°r any t&R ;

b) sup jp.,(f)#(f) ||;16< + °°;

c) sup fjlg-j (r)A(r)||;r< + °°.

To the best of the author’s knowledge, no similar results seems to be available in case 
of Lp spaces, 1 < p < For p = °°, the conditions are basically those in Theorem 2, 
with a.e. and ess-sup ingredients.

A further generalization of Cg (or Lp) spaces is due to M. Milman [30], [31]. If one 
examines the definitions formulated above (following Gollwitzer and Dotseth) for the 
spaces Cg or Lpg, one sees that a condition of “boundedness” is always involved. This 
“boundedness” is understood in the sense of the supremum norm for Cg spaces, as 
essential-supremum for the spaces or the usual Lp-norm, 1 < p < °°, for Lpg.

Milman’s idea consists in extending those definitions by using an abstract Banach 
space of functions, and to consider “boundedness” with respect to the norm of that 
function space. It is therefore useful to formulate the definition of a Banach function 
space. We have in mind functions defined on R, and taking values in Rn, the measure 
we are going to use is the Lebesque measure on R. This choice is consistent with the 
preceding definitions, but the scheme applies to more general situations [30], [31].

Let us first the Banach function spaces S = S (R, R), consisting of locally integrable 
functions, i.e., S G L^AR, R), and whose norm | • I# (the subscript will be ommitted) 
satisfies the following conditions:

1) If y G S, and x G L,toc(R+, R), then | x(f) | < |y(t) I a.e. on R impliesx G S, and 
l*l<ly|.

2) If E C R is a measurable set, of finite (Lebesque) measure, then its characteristic 
function xe^S.

3) If t/ni C S is such that 0 </„(0 t f(t) a.e. on R, and [|/„ |} is bounded. 
then/GS,and \f„ | -+1/| asn-*°°.

It can be shown that 3) implies the completeness of S.
The Banach function space 5 (R, R"), is then defined by the property: x€S(R, Rn)

iff each component Xj G 5 (R, R), i = 1,2......n. The norm inS(R,Rn) is simply defined
by I x ls(R., /?") = III x(t) || |5(^( R).

Using the weighting scheme due to Gollwitzer, we can define now the Banach func
tion space Sg(R, Rn'), starting from S(R, Rn). The subscript g above stands again for a
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measurable map from R+ into L (Rn, R"). As shown by Gollwitzer [27],g_, (t) is also 
measurable.

The space Sg(R+, /?") is now defined as follows: x : R+-* R" belongs to Sg iff it is 
measurable, Pg^x(t) = x(t) a.e. on R+, and g-i (f) x(t) S S(R+, R"). The norm of Sg 
is given by

O9) |Jclsr = li-,(O*(Ols •

The following lemma [31 ] clarifies the structure of Sg, as a normed space.

• Lemma. The space Sg(R+, Rn) is a Banach function space.

Proof. First, let us notice that | x is a norm on Sg. Only fact to be checked is that 
I x 1$^ = 0 implies x(r) = 0 a.e. on R+. Indeed, if x G Sg is such that | x = 0, then 
g_i (r) x(f) = 0 a.e. on R+, from which we obtain g(t)g-i(t)x(t) = 0 a.e. on R+. But 
according to the definition g(t)g-i (t) x(t) = x(r) a.e. on R+. Hence, | x is a norm 
on Sg.

Assume now that {x„ j C Sg is a Cauchy sequence. This implies that [y„ }, yn(t) = 
= g.j (f) x„(t), n> 1, is a Cauchy sequence in S. Therefore, there existsy 6S, such that 
\y„ — y Is -*• 0 as n -* 00. Consider now the map x(Z) = g(t) y(t), a,e, on R+. Since 
yh(t) 6 N^(f) a.e., one obtains a.e. on7?f. This meansPg^t)x(f) = x(f) a.e.
on R+. Moreover, since I x„ — x |g = | yn — y |g -* 0 as n -* 00, one concludes that Sg 
is a Banach space.

Can the result of Theorem 2 be generalized to the spaces Sg?
A procedure of defining Banach function spaces, more general than that leading to 

the spaces Cg os Lpg, with g scalar, is due to A. P. Calderon [11]. M. Milman [30], [31], 
has brought interesting contributions to the theory of Calderon spaces, and related them 
to the admissibility theory with respect to integral operators, the tensor products, in
terpolation spaces, and other concepts. We think these generalizations are somewhat 
overreaching the aim of this presentation. Therefore, we send the interested reader to 
the work of M. Milman quoted above.

It should be noted that weighted spaces have been dealt with by many authors, especially 
in the theory of partial differential equations. The purpose was usually different than in 
Bielecki’s approach (for instance, describing behavior of functions at the boundary).

In [9], P. J. Bushell defines a class of spaces which he also denotes by Cg = Q((0,1],/?), 
in connection with the investigation of some nonlinear integral equations of the form

*(0 =/(*) + /'*('.«) {*(*)} pds,

or

x(t) -f(t) + / k{t. s) {*(*)} P ■ 
0
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The “singularity” of the equations is not at infinity anymore, but at the origin (/ = 0). 
The norm is given by

(2°) lx |g = sup jjx(f) |/g(f),fe(0, 1] j ,

and it is assumed that the right hand side in (20) is finite.
It is obvious that these spaces are isomorphic and isometric to the spaces Cg(R+, R)

considered above (the case of positive g(t) on (0, 1]).
In concluding this section, we shall briefly deal with another generalization of the

spaces Cg, due to M. Turinici [40], [41], who used it in connection with some integro- 
differential equations. We assume again that g is the scalar weight functions used in [15], 
but instead of a Banach function space one obtains a generalized Banach space (in 
the sense of generalized spaces of Luxemburg, when the distance between two elements 
can be also + °°).

The space (C, I ’ lg) = will consist of all continuous maps from R+ into Rn, where 
the generalized norm is given by

(21)

inf {.XlXGR., || x(f) | <^(f), t(=R>} , 
when {XI XGR+, I x(Z) || <Xg(f)J #=0,

+ otherwise.

Endowed with the generalized norm (21), (?g becomes a complete generalized metric 
space. Cg, as defined above, is isometrically imbedded in

Admissibility. The concept of admissibility with respect to an integral operator can 
be briefly described as follows: given two function spaces, say X = X (R+, Rn) and 
Y=Y (R+, R”), and an integral operator

(22) (Kx)(r) = f~k(t, s)x(s)ds,
0

with k : A -* L (R", R") measurable, find conditions on k such that

(23) K X C Y.

Sometimes, it appears necessary to add other properties to the inclusion (23). Usually, 
when X and Y stand for some Banach function space, the inclusion (23) implies the 
continuity on the operator K defined by (22). This fact is derived from the closed 
graph theorem.

Of course, the literature on this theme is very rich, and we confine our interest to the 
cases dealing with the classes of spaces considered in the preceding section.

The term admissibility, in connection with the above scheme, has been coined by 
J. L. Massera and J. J. Schaffer, in connection with the ordinary differential equations.



32 C. Corduneanu

In regard to the theory of integral equations, this term has been used by the author 
in [15], [16]. A good deal of results pertaining to this concept have been reviewed 
in the survey paper [43] by L. B. Tzalyuk, where a special section is dedicated to 
“Admissibility”. Another reference paper, mainly concerned with Soviet contributions 
to this topic, is the monograph of V. A. Tychkevich [42]. The literature prior to 1970 
is reviewed in author’s book [21 ].

It should be stressed that the admissibility with respect to Volterra integral operators 
is not necessarily simpler than in case of Fredholm operators of the form (22). Under 
more assumptions (than measurability) on the kernel k (f, s), it happens sometimes to 
have some of the conditions automatically satisfied by the Volterra kernels. We shall 
point out such situations in the sequel, whenever they arise.

Let us give now a result due to M. Milman [31], which constitutes one of the most 
general results in admissibility theory with respect to integral operators.

First, a few definitions are necessary in order to formulate the result.
The Banach function space X (R+, R), as defined in the preceding section, is said to 

have an absolutely continuous norm, if and only if the following property holds true: 
for every f € X, and every sequence [ A„^ of measurable sets on R+, such that 4 0, 
one has l/X4„ lx “*■0 as n

The associate space X' to the Banach function space X is defined by

(24) X' = £xlj measurable, and sup/ | x(t)y(r) | dt <°° for | x lx < 1 J .

The norm in X* is the sup appearing in (24).
Let g : R+ -*■ L (Rn, Rn) be a measurable weight function, and assume that h : R+-+ 

-> L(Rn, Rn) is continuous. We shall be concerned with the admissibility of the pair 
of spaces Xg (R+, R"), Cf, (R+, R"), with respect to the operator K defined by (22). 
In other words, we look for conditions assuring the inclusion

(25) KXgCCh.

Motivated by the needs of the theory of integral equations, it is useful to impose one 
more condition on the operator and spaces involved. Namely, we shall be interested in 
such operators that take every bounded set of Xg, into a set of Cf, which is equicon- 
tinuous at every t0 € R+. In such case, we shall say that the triplet (Xg, Cf,, K) defines 
a strongly admissible (or strongly stable) systems.

Theorem 3. A set of necessary and sufficient conditions for the strong admissibility 
of the system (Xg, Cf,. K) consists of the following:

a) P/,a){;"k(r,s)x(s)JsJ=/“/:(r, s)x(s)ds, xeXg;

b) | *.,(/) fc(r, •)£(•) Ix e/,“;

c) lim |h(-) (k(t, -)-k(t0, -)}lX' = 0.
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Remark. The condition a) can be written equivalently asP/,^) k(t, s)g(s) ~ k(f s)g(s), 
(t, j)G A, due to the fact x € Xg is arbitrary.

The proof of Theorem 3 is given in [31 ], for the particular caseg = I. It can be easily 
carried out to an arbitrary weight function g (f).

Theorem 3 contains as special cases most of the admissibility results obtained earlier, 
under the hypothesis that the range of K is in a Banach space of continuous functions.

For instance with X — If, p > 1, andg : R+ -* L (Rn, Rn) an arbitrary measurable map, 
the result has been obtained by Gr. Dotseth [25]. In this case, X = Lq, where p~l + 
+ q~1 = 1, and conditions b) and c) of Theorem 3 take an integral form.

We shall now state another admissibility result, due to Gr. Dotseth [25], which is 
not a special case of Theorem 3 above.

Theorem 4. Let g,h :R+ -r L(Rn, R") be two measurable maps, and assume the 
kernel k : R+ X R+ -* L (R”, R") is also measurable. Then the pair (Lg, Lf,)is admissible 
with respect to the operator K given by (2), if and only if

(26) Ph(ft I f~ k(t, s)x(s)ds } = f°° k(t, s)x(s)ds, a.e. on R+, \fx£lZ
uo o

and, there existsM>0such that

(27) f || h. , (f) k(t, s) g(s) || ds < M, a.e. on R+. 
o

The proof of this theorem can be carried out on the same lines as its scalar counterpart 
(i.e., g and ft are scalar weight functions) [21 ].

A final results on admissibility with respect to integral operators, is due to H. 
Gollwitzer [27], and deals with Volterra operators and Cg spaces.

Theorem 5. Let g,h : R+ -*■ L (R™, R”) be two continuous weight functions, and 
consider the Volterra operator

(28) (Ax)(f) = f‘k(t,s)x(s)ds,
o

where k : A -* L (Rn, R") is continuous. The pair (Cg, Ch) is admissible with respect to 
the operator K given by (28), if and only if

(29) Ph(t) | fr k(t, s)x(s)ds } = ftk(t,s)x(s)ds,Q< s < t, \fx&Cg,
^0 0

and

(30) \\h_l(t)k(t,s)[\ds<M, teR., 
o

for some positive constant M =M (g, h, k).
The proof of Theorem 5 is provided in [27]. The scalar case is dealt with in [15] or [21].
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If we compare the Theorems 3 and 5, we notice that condition c) of Theorem 3 does 
not have a counterpart in Theorem 5. Of course, this particularity is easily explained 
by the fact that condition c) in Theorem 3 is imposed to obtain continuity, while in 
Theorem 5 the continuity of (Ajv) (f), x £ Cg, is secured by the continuity of k, and the 
fact that K in (28) is of Volterra type.

It can also be seen that the triplet (Cg, C>,, K) with A given by (28), is strongly stable 
(or admissible in the sense of the definition formulated in this section, if conditions 
of Theorem 5 hold true.

The admissibility results quoted above involve only the function spaces defined by 
means of the weighting scheme due to H. E. Gollwitzer [27]. It is, of course, interesting 
to quote results in which different kinds of function spaces are involved. An interesting 
case in this respect has been dealt with by G. Bantas [3], and then generalized by 
Gr. Dotseth [25]. We shall state this result here, considering only Volterra type integral 
operators.

First, we shall denote by C8 = C%(R+, Rn) the Banach space of continuous maps 
from R+ into Rn such that limx(t) = x(°°) £R" as r The norm will be the sup- 
remum norm, which induces the uniform convergence on the whole R+.

The Volterra kernel k (r, s) is assumed to be continuous on A, and moreover

(31) limk(t,s) = k(s),s£R+, 
t-> -

uniformly on any compact subset of ft,.

Theorem 6. Let g :R+ -* L (Rn, R") be a continuous map, and assume k (t, s) is a 
continuous Volterra kernel for which (31) holds true.

The pair (Cg, Cg) is admissible with respect to the operator K, given by (28), if and 
only if

(32) f" ll*(f, 0g(s) ||ds< + °°, 
o

and

(33) lim ||£(f, s)g(s)||ds=/“||A:(s)s(s)||ds.
- o o

It would be interesting to extend this result to the case of integral operators of the 
form (22).

Finally, there are several ways to investigate admissibility results, in which integral 
operators/equations are involved. In connection with the Cg spaces, a concept of 
admissibility with respect to a Volterra integral equation has been dealt with by the 
author in [17], [21]. Since next section of this survey is dedicated to the existence of 
solutions of integral equations, we shall discuss this kind of admissibility there.

Other admissibility results can be found in the papers by C. Avramescu, G. Bantas, 
D. Petrovanu, quoted in the reference list.
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Existence Results for Integral Equations. We shall use, in this section, the admissibility 
theory of pairs of function spaces, in order to find existence (and uniqueness) results 
for some classes of nonlinear integral equations. We shall consider equations of Hammer- 
stein type, such as

(34) x(Z)=p(f) +/“k(Z, j)/(s;x)ds, f GR,,
o

where /(f; x) = (/x)(f) is an operator acting between convenient function spaces. We 
shall also consider Volterra type equations of the form

(35) x(t) = p(t) + f‘p(f, s)f(s-,x)ds, t&R+,
o

as well as perturbed equations of some linear Volterra equations. For instance if one 
starts with the linear equation

(36) x(Z) = p(t) + f1 k(t, s)x(s)ds, t G R+,
o

one can attach to it the perturbed equation

(37) x(Z) = p(Z;x) + /f k(t, s)x(s)ds, Z GR^,
o

which becomes for

(38) p(Z;x) = p(Z) + /fR(Z,s,x(s))ds, ZGR,,
0

(39) x(Z) = p(Z) + f' (k(Z, s)x(s) + K(t, s, x(s))] ds, t GR+.
0

The operator p (t;x) = (px) (Z) has the same measuring as/(Z;x) in (35), and must satisfy 
further conditions to be specified below.

Of course, one can consider even more general equations, such as

(40) x(f) = p(f;x) + /“k(f, s)/(s;x)ds, zGR^,
o

since the admissibility conditions have been usually formulated for Fredholm type opera
tors (see the preceding section), and fixed point methods apply the same way.

Another class of equations to which the admissibility results have been applied by 
several authors (16], [39], [42] is the clas of Volterra integro-differential equations 
of the form

(41) x(Z)=/(Z,xf), ZGR»,

where xf(r)=x(s), for 0 < i < t. In particular, (41) can be of the form

(42) x(z)=/(Z>x(Z),/,A(Z, s,x(s))<Zs), t£R+,
0
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or

(43) x(Z)=/a,/rJf(s)(4C(f(s)).
о

and most of the times it appears as special case of (41) or (42).
We also notice the fact that only Cg or related spaces with scalar weight function 

have been considered in the literature on this subject, excepting [25], [26], and [27].
In the remaining part of this section we shall give, with at least a sketch of the proof, 

a few existence results for integral equations. These results will make use of a fixed point 
theorem, and will involve some admissibility results. As proceeded above, we shall restrict 
our considerations to the case of function spaces with a weighted norm, which will allow 
us to use the ideas developed by several authors in connection with Bielecki’s procedure 
in proving existence theorems.

We shall give first a result which is based on Theorem 3 above. The conditions of 
that theorem will be preserved in stating the existence result.

Theorem 7. Consider a triplet (Xg, С/,, K), subject to the same conditions as in 
Theorem 3, and assume further that in equation (34) one has p G C/,, while f : Cf,-* Xg 
is such that

(44) \fx-fy\Xg<\\x-y\ch^

for any x, у G C/t, with X > 0 a constant.
Then, there exists a unique solution x&C^ for equation (34), provided

(45) Х<(|/7-,(Г)к(Л •)g(-)IX')'*.

The proof of Theorem 7 follows from Banach fixed point theorem, applied to the 
operator

(46) (Tx) (r) = p(r) + /“ *(f, s)f(s;x)ds,
о

in the underlying space C/,.
Since strong stability of the triplet (Xg, С/,, K) implies local equicontinuity for any 

set of functions KB C Cj,. with В C Xg bounded, one can easily formulate and existence 
result for (34). based on the application of Schauder-Tykhonov fixed point theorem 
(see [21] for examples of this kind).

Another result on existence and uniqueness for equation (34) has been obtained by 
Gr. Dotseth [25].

Theorem 8. Consider the triplet (L^, L~t, K) under conditions of Theorem 4, and 
assume that in equation (34) p (r) 6 Lj,, while f : Lq, L“g is an operator satysfying

(47) |/x - fy |£- < X | x - у |L/- ,
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for any x, y & L°h, and for some X > 0. Then equation a unique solution x S Lq,,
provided \<M~i.

The proof of Theorem 8 follows easily from the fact that the operator T, defined by 
(46), is a contraction in the space Cf,. The main difference, with respect to the preceding 
theorem, consists in the fact that the existence of a measurable solution is stated.

A similar result to Theorem 8 can be obtained from Theorem 5 above, under con
tinuity assumptions. The triplet (Cg, C/,. K), with K given by (28), is strongly stable if 
conditions (29) and (30) of Theorem 5 are satisfied (H. Gollwitzer, [27]). One obtains 
the existence and uniqueness of a continuous solution for the Volterra equation (35). 
See [25J for more details.

Next result is due to Gr. Dotseth [25], and deals with the existence of solutions 
possessing a finite limit at infinity. The admissibility result taken as a starting point 
is given in Theorem 6 above.

*
Theorem 9. Consider the equation (35), and assume that the triplet (Cg, Ce, K), 

with K given by (28), satisfies the assumptions of Theorem 6. If moreover, p(t) 
and f : Cg -*■ Cg verifies a Lipschitz condition with sufficiently small constant, then 
there exists a unique solution x£C5 of the equation (35).

Somewhat different results on the existence and uniqueness of solutions to integral 
equations can be obtained using the concept of admissibility with respect to an integral 
equation (instead of an integral operator, as above).

The pair of spaces (B, D) will be called admissible with respect to the equation (36), 
if for any p^B, the solution x of (36) belongs to D .x&D.

It is well known that for any continuous Volterra kernel k(t, s), there exists a resolvent 
kernel r(t, s), continuous on A, such that the solution of (36) is given by

(48) x(t) = p(t) +ftr(t,s)p(s)ds, t> 0. 
o

Hence, the admissibility with to a Volterra equation can be reduced,roughly speaking, 
to the admissibility with respect to the integral operator generated by the corresponding 
resolvent kernel. Results in this regard can be found in [17], [21], [27].

We shall include here a result of this kind, which is somewhat more general than the 
one given in [17] for the case of scalar weight functions.

Theorem 10. The pair (Cg, Cf) is admissible with respect to equation (36), if and 
only if the following conditions are satisfied:

a) Ph (f)g(f) =g(f), Vt

b) Ph(t)r(t, s)g(s) = r(t, s)g(s), V (t, s) e A;

c) there exists a positive constant A, such that
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(49) || /i.,(Z)g(f)|| + j'|l*-1(0r(O)£(s)ll<ft</l, t&R,.
o

The proof of Theorem 10, with g and h matrix valued functions, can be found in [27]. 
The scalar case is dealt with in [17] and [21].

Theorem 10 can be used to obtain further existence results for nonlinear Volterra 
equations.

For instance, if one considers the equation (37), which appears as a perturbed equation 
for (36), it can be rewritten as

(50) x(z) = p(t;x) + r(t, s)p(s,x)ds, t>0.
o

If p : C)t -* Cg satisfies a Lipschitz condition with sufficientlly small constant, then (50) 
has a unique solution x £ Cf,. In particular, equation (39) can be dealt with within this 
framework.

We will conclude the paper with a reference to some recent results of 0. Staffans 
[37], related to the admissibility properties of the resolvent kernel. As one can see from 
Theorem 10, the resolvent kernel is involved in condition (49). Conditions a) and b) are 
automatically satisfied wheng and h are scalar weight functions.

Of course, it would be desirable to substitute to (49) something involving the kernel 
k (t, s) of the equation (36), instead of r (t, s). While r (t, s) is known to exist, it is not 
an easy matter to determine if effectively. Therefore, it is not easy to check the validity 
of (49). In [37], the author brings some interesting contributions which allow to infer (49), 
based on properties directly formulated on k (t, s) and the weighting (scalar) functions.
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STRESZCZENIE

W 1956 r. A. Bielecki podał nową metodę otrzymywania globalnych twierdzeń egzystencjalnych 
dla równań funkcyjnych, polegającą na wprowadzeniu nowej normy, względem której operator 
związany z danym równaniem staje się kontrakcją. Metoda Bieleckiego była stosowana dośó szeroko 
przez wielu autorów do zagadnień istnienia i jedyności rozwiązań równań różniczkowych, całkowych, 
całkowo-różniczkowych etc. tak, że szereg autorów nie poczuwa się do obowiązku cytowania jej 
twórcy.

Praca niniejsza stanowi przegląd rezultatów otrzymanych tą metodą w ciągu ostatnich 20 lat.

РЕЗЮМЕ

В 1956 году А. Белецки представил новый метод устанавливания глобальных, экзистен
циальных теорем для функциональных уравнений состоящий в определении новой нормы, 
относительно которой рассматриваемый оператор становится контракцией. В дальнейшем, 
метод Белецкого был использован многими авторами в изучении вопросов существования 
и однозначности решений разных типов уравнений, например: дифференциальных, инте
гральных, интегро-дифференциальных и других. И так, по ходу дела, ряд авторов не чувствует 
уже себя обязанными цитировать создателя этого метода. В данной статье приведен обзор 
результатов получсных этим методом за последние 20 лет.


