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1. Introduction. The main objective of this paper is to establish a theorem on the 
approximation of certain functions of bounded variation: Let m, n GN and/: [0,1] -* R 
continuous such that

0 Z(0) = 0. /(l)=m-M>

(0
ii) Fj(/)<m+n,

where Fj denotes the variation on [0,1]. Force [0,1] define the step functions g(-, c) : 
R -* R with

£(x,c)=lim H([x—c+l + e] + [x—c+1—e]).
»-»♦ o

Theorem 1. There exist numbers cj. d/ e (0,1 ], p e [- H, 56], such that for x e [0,1]

/(*) - "t, ‘ g(x,cy) + S ‘ g(x,d/)-nI<H. (2)
/-1 /-i

We have not been able to find a really elementary proof for this apparently simple
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result. The crucial part in our development is played by St. Banach’s quite deep theorem 
on the indicatrix of a continuous function of bounded variation. However, Theorem 1 
with the (best possible) constant 14 in (2) replaced by 1 is almost trivial.

We believe that Theorem 1 admits applications to various fields and we wish to point 
out the following corollary in function theory, A function F normalized by F(0) = 0, 
F ' (0) = 1, analytic in the unit disc A = (z : | z | < 1} is called starlike of order a 
(FES* (a)) if and only if

zF'(z) *
Re ------— > a, z e A.

F(z)

For m,,n E N let Q (m, „) be the class of functions 

C = F1/FJ.F,€S«(1-y), F2eS»(l-y).

It is known that for any GEQ(m, n) the function

f(x) = liin arg G(rer*ix) 
r ■» 1

has properties closely related to the assumptions of Theorem 1, for details see below. 
Using that theorem we obtain:

Theorem 2. For GEQ(m, n) there exist xj,yj € 3 A and p6R such that 
m- » .
II (1 + X/Z)

Re ---------------------a (z) J > 0, z € A . (3)
H i 0 + >/x)

This theorem generalizes a number of previous results and contains a considerable 
amount of new information. In fact, assume FES* (1 -m!2),HES* 04). Then accor­
ding to our theorem we can find x/ E 3 A, p E R, such tliat

, m-t F(z)Re[e'* n (l + z/z)-^|>0, z€A. (4)
y-1 H(z)

For m = 1 this corresponds to (6, Theorem 2.25J. For n => 2 and H(z) - z / (1 + yz), 
>G3A, we obtain

Re (?“(1+yz)(l+xz)F(z)l > 0, z6A. (5)

This formula played a major role in the first proof of the P61ya-Schocnberg conjecture
[5]. The extension of (5) to m > 2 was given in [4J. Note that (4) is much stronger 
than (5).

Finally consider the class F* of functions G normalized as above with G' 4 0 in A 
and of boundary rotation at most 2k it. It is known that G E F* if and only if 
G' E Q (k + 1, k — 1). A corollary to (3) in this particular case is the following result:
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Theorem 3. let G 6 Kt, k 6N, k> 2. Then there exist numbers Xi, x3 € 9 A, p e R, 
such that

|arg(?*1(l + x,z)(l + XjZ)G'(z))|<(fc- 1) (6)

It is natural to conjecture that this holds for k&R. k>2,as well.
Theorem 3 is of particular interest when k = 2. It has already been known to Paatero 

[2] who introduced domains of bounded boundary variation without reference to 
analytic functions tliat a domain of boundary rotation at most 4rr is schlicht. After 
introduction of the concept of close-to-convex domains (functions) it was easy to prove 
(compare (6, Corollary 2.27J) that any such domain is in fact close-to-convex (i.e. its 
complement can be covered by non-intersecting half lines). Asa consequence of Theorem 
3 and a recent result of Royster and Ziegler [3] we now have an even stronger conclusion.1

Theorem 4. Let £1 be a domain of boundary rotation at most 4 rr (in the sense of 
Paatero). Then £2 is convex in at least one direction.

It is known that any domain of boundary rotation 2 rr is convex (in every direction). 
It is likely that there is continuous passage connecting these two extreme cases for 
domains of boundary rotation at most 2 kn, 1 <k<2.

2. Proof of Theorem 1. Without loss of generality we may assume that f is nowhere 
constant, i.e. there is no intervall (a, b) C [0,1] such that/restricted to (a, b) is constant. 
Let t be the set of numbers in (0,1) where/has a local extremiyn. Fory 6 R let 

p(y)= [i6(0,1): /(x)=y} ,

and for y e [0,1J

P0(y) = U P(y + A), 
fce Z

X (y) = Po(y)\r.

We sliall use # to indicate the cardinality of a set.
Lenuna. i) If t = 0 or f (r) C Z we have # X (0) < n + m — 2. ii) ///(r) Z then

there exists y0 € (0,1) with #\(y0)<n + m— 1.
Proof, i) If t = 0 then/is monotonic and thus

#X(0) = #v0 (0) = | m — n |- 1 < n + m — 2.

If X 4 0 and/ (r) C Z we have vj(/) = 1 for any two subsequent elements a, b of p0 (0) 
and therefore # p0 (0) < « + m — 1. However, v0 (0) contains at least one element of r 
and the conclusion follows.

1 A weaker form of this result is due to Renyi, A. Publ. Math. Debrecen, 1, (1949) 18-23.
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ii) # v (j) is Banach’s indicatrix which is measurable and satisfies (compare [1, 
P- 254])

/ #v(y)dy< Vl0 (f)<n +m ,

hence

/ #t>0(y)dy < n +m . (7)
o

Let us assume

#»o(y)>n + m. yG(O,1). (8)

since otherwise we are done. If there exists yt G (0,1) for which strict inequality holds in
(8) we may choose n + m + 1 elements

ah--ar> ..... &!• cU—ict

from p0 (Ji) where r, s, t>0,r+s + t = m + n+ l. Here a/ correspond to maxima, bj 
to minima of f while cj $t. Assume r < s. Since / is nowhere constant there exists e > 0 
such that for any y G lyt,yt + e] the equation

>=/(*)-[/(*)]. x€(0,l),

has at least m + n + 1 solutions (each of the s minima b/ splits into at least two solutions 
which compensates the loss of the r solutions corresponding to the maxima af). Thus 
#Po 0')>« + w+ 1 forj'G + ej and with (7) we obtain

f #v0(y)dy<n + m — (n+m+ l)e<(w+m)(l — e). (9)
(o. +«1

Similary, if r > s we find e > 0 such that

/ #v0(y)dy<(n + m)(l-e). (10)
(o, lBfy, y,|

(9) or (10) show that # (>>) < n + m on a set positive measure and thus #p0 (>0) <
< n + m for at least oney0 G (0,1) which contradicts (8). Hence

#Ro 0*)“« + m.yG (0,1). • (11)

From the assumption we have x0 € r, /(x0) 3 Z, which implies 

/o=/(xo)-l/(xo)]e(O,l).

Since Xo€po (/0) we get from (11): #\(y<>)<n + m— 1.
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Proof of Theorem 1. According to the Lemma we find y0 € [0, 1) with # X(y0)< 
< n + n Since this set is finite it is dear that f is of increasing or decreasing type in 
every c€ X (y0). (A function f is said to be of increasing type at c if there is an e > 0 
such that f (x) < / (c) for x £ (c — e, c) and f (x) > f (c) for x G (c, c + e)); decreasing 
type is defined accordingly). Let C, be the elements of X (yo) where f is of in­
creasing type and ds the elements of X(y<>) where/is of decreasing type. Then by
the Lemma we may assume

s + r <
ii + in — I, y0 e(0, 1). 

_n + in — 2, y0 - 0 .
(12)

Now let

/i(x)=/(x)- 2 g(x,Cj)+ 2 g(x. <//), x€[0, 1] . (13)
/“i /•»

Consider the sets = [y<> + yo + * + 1 ], € Z, and two subsequent elements a. b of 
X (y0). Since X (y0) H (a, b) = 0the range of/restricted to (a, b) is contained is a certain 

and the same holds for h since in (a, b)f and h differ by an integral constant. The same 
argument works in the intervals (0, a), (b, 1] if a, b denote the smallest and the largest 
element of X (y0), respectively. Now let c e X (y0) and assume that / is of increasing 
type at c. Then there exists e > 0 such that h (which has a jump of length — 1 at a) maps
(c — e, c + e) into one of the sets Ik. The same conclusion holds when/is of decreasing 
type in <• 6 X(y„). These considerations show that there must be one single set Ik which 
contains the range of It (x), x € [0,1 ]. Since h is continuous at x = 0,x = 1 witli/i (0) = 
= /(0) = 0 we see that this set must be [y0 — l,yo] tfyo * 0 or one of [- 1,0], [0,1] 
if yo = 0. We need to distinguish three possible cases: h (1) = 0, ± 1.

i) If li (1) = 0 we obtain from (13) at x = 1: r - i = m - n. We set 

h(x)-h(x) r, =r, s, =j. (14)

ii) If h (1) = 1 such that the range of It lies in [0, 1] we must havey0 = 0,r - j = 
= m - n - 1. We set

h (x) = h (x)-g(x, 1), r, = r+ 1, s, =s, cr> = 1 (IS)

iii) If h (1) = — 1 such that the range of h lies in [- 1,0] we must havey0 = 0, 
r - s = w — zi + 1. We set

h (x) = h (x)+jf (x, 1), r, = r.i, =s+ 1, </,,= 1 .

Note that according to (12) we liave in any of the three cases

(16)
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ri — s, - m—n.
(17)

+ $! < WJ + W — 1 .

Also, the range of h lies in the same strip as the range of h and we obtain p€ [- V4, 
such that

| A (x)-p|6fc, x e JO, 1J . (18)

From (17) we obtainfj < mi — 1,ij <n — 1. If r( = mi — 1 (andthusii •= n — 1)(18) 
is already the assertion (2). However, if r» < m - 1 we choose an arbitrary c € (0, 1) 
and put

c = c>( + i = ... = cm ., = d,t + , = .

Since r, — s, -m - n we get for x € (0,1 ]

~ ~ mi-i n- i
A(x) = A(x) — E g(x, cf) + E g(x,cj)

si that (2) follows from (18) also in this case.
3. Proofs of Theorems 2 -4.
Proof of Theorem 2. Let G = F,/F2 where F, e S* (1 - (mi/2)), F, 6 S* (1 - (n/2)). 

For 0 < r < 1 let Gr (z) = G (rz) -- (F, (rz) / r) / (Fj (rz) / r). Then Fi (rz) / r and 
Fj (rz) I r arc starlike of the same respective orders and continuous in |z |< 1. Assume 
Theorem 2 lias been established for Gr,Q<r< 1. Then an obvious limiting procedure 
gives the result for C. Thus it suffices to prove Theorem 2 for G = Ft/Fj e (J (m, n) 
with Fj, Fj continuous in | z | < 1.

Let FGS* (1 - (wr/2)) be continuous in | z | < 1. Then there exists ?&S*(0) con­
tinuous in 1 z | < 1 such that F = z filzf11*. The function

F(x)= - arg(F(e3’,JC))

is continuous, monotonic increasing with V (1) — V (0)= 2. This proves the existence of 
two such functions F,, Fj such that

rr i t (19)

Now let

nm
/(*) = - (F,(x)-K,(0))- - (K2(x)-’yJ(0)),xe|0.1j

/fulfills the assumptions of Theorem 1 and we find

(20)
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m-1 n-i
PW = 2 <(x,<y)- 2

/-1 /•»
g (x. df)

such that for a certain p 6 R

|/(x)—p(x) —yt|< J4

holds for x € [0,11. For c G (0,1 ] one easily deduces

lim — arg(l — re5,,(x_e)) = x— g(x, c)+------ c
r-trr 2

and thus

, "n* (1 + jyz)

p (x) ” lim — arg —— ------------------  | (m - n) x | <f>
n if (l+xyz)

(22)

for x € [0, 11 and a certain constant <t>. Here we used jy w exp (rtr (1-2 Cj)),Xj = 
= exp (itr(1 - 2<//)), z = r • exp(2 nix). A combination of (19)-(22) proves

m - I
n (1+x/z)

lim arg -------------------------- G(z)]
II O+y/z)

tr< - 
2

xejo.i) .

where z is as above. That this relation extends to z € A follows from a standard argument 
involving Poisson’s integral formula and Lebesgue’s dominated convergence theorem. 
Theorem 2 is proved.

Proof of Theorem 3. Since G G F* if and only if G' € Q (k + \,k — 1) we obtain from 

Theorem 2

|arg(e'*(l+xlz)(l+x,z) P(z) p (23)

where

* - » 1 + u/ z
P(z) = Il , up v/edA.

/•I 1 + f/Z

This implies | arg [e<0 P (z)J, | < (k — 2) tr I 2 for a certain R and z e A. The con­
clusion follows from (23).
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Proof of Theorem 4. We may assume that there exists G € V2 with G (A) = fZ since 
this can be achieved by translating and stretching fZ. These operations affect neither 
the assumption nor the conclusion of the theorem. Thorem 3 gives

Re [?*(1 + x, z)(l + Xj z) G'(z)]>0,zGA,

for certain <p£ R,Xi,X2 G 3A. By an obvious extension of a recent result of Royster and 
Ziegler [3] we see that fZ is convex in at least one direction.
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STRESZCZENIE

Główny wynik pracy (Tw. 1) dotyczy aproksymacji funkcji o wahaniu ograniczonym. Stosuje się 
to następnie do wykazania kilku twierdzeń o funkcjach jednotistnych.

РЕЗЮМЕ

Главный результат работы (Теорема 1) касается апроксимации функции с ограниченной 
вариацией. Применяется это для доказательства нескольких теорем об одииолистных 
функциях.


