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O deluecTHCHHBIX QYHKUHAX OTPUHHYCHHOR BapHauKK
M MX tpHMclicHue B rEOMETPHYECKOR TeOpHH dyHKuMK

1. Introduction. The main objective of this paper is to establish a theorem on the
approximation of certain functions of bounded variation: Let m, n€ENand f: [0,1] - R
continuous such that

i) /=0, f(N)=m—n,

ii) Vé(f)<m+n,

()

where V§ denotesthe variationon [0, 1) . For ¢ € [0, 1] define the step functions g(-, c) :
R - R with

gx.o)=1lim W([x—c+l+e + [x—c+l—¢]).
€s+0

Theorem 1. There exist numbers ¢;, dj € (0, 1], u € [— %, %}, such that for x € [0, 1)

Jx)— Izl glx,q) + ;2-' g(x,d/)—p!<%. @
-] =)

We have not been able to find a really elementary proof for this apparently simple
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result. The crucial part in our development is played by St. Banach's quite deep theorem
on the indicatrix of a continuous function of bounded variation. However, Theorem !
with the (best pessible) constant % in (2) replaced by 1 is almost trivial.

We believe that Theorem 1 admits applications to various fields and we wish to point
out the following corollary in function theory, A function F normalized by F(0) =0,
F'(0) = 1, analytic in the unit disc A = {z: |2 | <1} is called starlike of order a
(FES* (a)) if and only if

2F'(@2)
F(z)
For m,,n €N let Q (m, n) be the class of functions

>a, z€A.

m n
G=F/FF,€S* (1= 2), FES (1- 7).

It is known that for any G € Q (m, n) the function
f(x)= lin arg G (re**/¥)
re1

has properties closely related to the assumptions of Theorem 1, for details see below.
Using that theorem we obtain:
Theorem 2. For G € Q (m, n) there exist x4,y; € 8Aand u € R such that

mlj: (1+ x2)
Re [ef —— G@z)] >0, z€A. 3)
ﬁl(r*nﬂ

This theorem generalizes a number of previous results and containé a considerable
amount of new information. In fact, assume FE S® (1 —m/2), H € §* (%). Then accor-
ding to our theorem we can find x; € 34, u € R, such that
F(2)

H(z)

Re [e# ’;'r.l‘l' (1 + x2) 1>0, z€A. (@)

For m = 1 this corresponds to [6, Theorem 2.25). Forn = 2 and H (z) = z ] (1 +yz2),
Y €04, we obtain

Re [’ (1 +yz) (1 +x2) F(2)] > 0, z€EA. )

This formula played a major role in the first proof of the Pdlya-Schocnberg conjecture
[5]. The extension of (5) to m > 2 was given in [4]. Note that (4) is much stronger
than (5).

Finally consider the class ¥ of functions G normalized as above with G’ # 0 in A
and of boundary rotation at most 2kn. It s known that G € V) if and only if
G'€Q (k + 1,k —1). A corollary to (3) in this particular case is the following result:
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Theorem 3, Let O € Vi, k EN, k 2 2. Then there exist numbers xy, x €34, pER,
such that

I:ug(ej“(l+x,z)(l+x,z)G'(z))|<(k—l)-;. 6)

It is natural to conjecture that this holds for k ER, k 2 2, as well,

Theorem 3 is of particular interest when k = 2. It has already been known to Paatero
[2] who introduced domains of bounded boundary variation without reference to
analytic functions that a domain of boundary rotation at most 4n is schlicht. After
introduction of the concept of close-to-convex domains (functions) it was easy to prove
(compare [6, Corollary 2.27]) that any such domain is in fact close-to-convex (i.c. its
complement can be covered by non-intersecting half lines). As a consequence of Theorem
3 and arecent result of Royster and Ziegler {3] we now have an even stronger conclusion. !

Theorem 4. Let S be a donwain  of boundary rotation at most 4= (in the sense of
Paatero). Then S) is convex in at least one direction.

It is known that any domain of boundary rotation 2 is convex (in every direction).
It is likely that there is continuous passage connecting these two extreme cases for
donains of boundary rotation at most 2k, 1 <k <2.

2. Proof of Theorem 1. Without loss of generality we may assume that f is nowhere
constant, i.c. there is no intervall (@, b) C [0, 1] such that frestricted to (g, b) js constant.
Let 7 be the set of numbers in (0, 1) where f has a local extremym, For y €R let

v = {x€0.1): f)=»],
and fory € [0, 1}
— v(y+k

Vo (y) ke z (y ) .
A ()=vo )\,
We shall use # to indicate the cardinality of a set.

Lenwa. i) If 1= Q or f (1) CZwe have #\(0)<n+m—2. i)Iff(r) % Z then
there exists yo € (0, V) with #\ (yo)<n+m—1.

Proof. i) If r = Q then S is monotonic and thus
#NO)=#voO)=Im—=n|—1< n+m-—2.
If 14 @ and f (1) C Zwehave Vg(f) = | for any two subsequent elementsa, b of v, (0)

and therefore #vo (0) < n + m — 1. However, vo (0) contains at least one element of 7
and the conclusion follows.

! A weaker form of this result is duc to Renyi, A. Publ. Math. Detxecen, 1, (1949) 18-23.
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il) # v (p) is Banach's indicatrix which is measurable and satisfies (compare |1,
p. 254])

[ #v)dy<Vi(f)<n+m,

hence

of' #vo (M)dy < ntm. ™
Let us assume

#vo(¥)2n+m, y€(©,1), (8)

since otherwise we are done. If there exists y; € (0, 1) for which strict inequality holds in
(8) we may choose n + m + 1 elements

Ay, @y, byyoyby, €1y, 0

from vy (vy) wherer, s, £ 20,r +s+t=m+n+ 1. Here gy correspond to maxima, b,
to minima of f while ¢; €7. Assume r < s. Since f is nowhere constant there exists ¢ > 0
such that forany y € [y,, y, + €] the equation

y=fx-[rx)1. x€©,1),
has at least m + n + 1 solutions (each of the s minima by splits into at least two solutions
which compensates the loss of the r solutions corresponding to the maxima g;). Thus
#vo (W)2n+m+ 1fory € [y, y, + €] and with (7) we obtain

f #vo()ady<ntm—mnt+m+1)e<(@m+m)(l—e). ©)
(0, LINDY W Yy te]
Similary, if » > s we find € > 0 such that

{' #v,()dy<(n+m)(1 —e). (10)
lol i\ Yy _"yll

(9) or (10) show that # ¥y (¥) <n + m on a set positive measure and thus # vy (o) <
< n + m for at least one yo € (0, 1) which contradicts (8). Hence

#vo()=n+my€(©,1). (1)
From the assumption we have xo € 7, f(x0) §. Z, which implies
Yo=f(x0)—[f(x0)]EO,1).

Since xo € vy (o) we get from (11): #A (Vo) Sn+m—1.
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Proof of Theorem 1. According to the Lemma we find yo € [0, 1) with # X () <
< n + m Since this set is finite it is clear that f is of increasing or decreasing type in
every ¢ € A ()'o)- (A function [ is said to be of increasing type at ¢ if there is an € > 0
such that f (x) < f (c) for x € (¢ — ¢, ¢) and f (x) > f (¢) for x € (¢, ¢ + €)); decreasing
type is defined accordingly). Let ¢,, ..., ¢, be the elements of X (yo) where f is of in-
creasing type and d,, ..., d; the elements of X ()'o) where f is of decreasing type. Then by
the Lemma we may assume

n+m—1, yo €(0,1),
s+r < - (12)
n+m—2 y,=0.

Now let
r

h (x) =f(x)—/2‘. g(x.cp) + i£ gx.dj), x€ fo,1}] . (13)
=1 e}

Consider the sets [y = [yo +k,yo + k + 1],k €Z,and two subsequent elements a, b of
A (o). Since X (Vo) N (a, b) = Qthe range of f restricted to (g, b) is contained is a certain
i and the same holds for A since in (g, b) f and /s dilfer by an integral constant. The same
argument works in the intervals {0, @), (b, 1] if a, b denote the smallest and the largest
element of X (o), respectively. Now let ¢ € A (o) and assume that f is of increasing
type at ¢. Then there exists € > 0 such that # (which has a jump of length — 1 at ¢) maps
(c — € ¢ + €) into one of the sets Jx. The same conclusion holds when f'is of decreasing
type m cEN(Yy). Thesc cansiderations show that there must be one single set Jx which
contains the range of s (x), x € [0, 1]. Since /1 is continuous at x = 0,x =} with /i (0) =
= f (0) = O we see that this set must be [yo — 1,0} if Yo ¥ Qoroneof [-1,0], [0, 1]
if yo = 0. We need 1o distinguish three possible cases: h (1)=0,% 1.
i) 1/ (1) =0 we obuain from (13) atx = 1:r — s = m — n. We set

I‘;(x)zh(x) ry=r s =s. (14)

if) If h (1) = 1 such that the range of /i lies in {0, 1] we must have yo =0,r —s =
=m-n-|.Weset

}T(x)=h(x)—g(x,l), rn=r+l,s =3 ¢ =1 (15)

iii) If » (1) = — 1 such that the range of h lies in {— 1, 0] we must have y, = 0,
r-s=m-—n+1]. Weset

IT(x)=h(x)+g(x,l), rp=rs;=s+1,ds=1. (16)

Note that according to (12) we have in any of the three cases
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ry—s,=m-—an.
an
rptsg<m+n—1,

Also, the range of R lies in the same strip as the range of h and we obtain y € [— %, %]
such that

1R (x)—pul&%, x E[0,1]. (18)

From (17) we obtainpy <m — 1,8, <n—1.lfry =m—1 (and thuss, =n—1)(18)
is already the assertion (2), However, if 7, < m — 1 we choose an arbitrary ¢ € (0, 1)
and put

C=Cr o1 =..=Cm-y =dg oy = ... 5dy-y .
Sincer; —$; =m — n we get for x € [0, 1]

~ ~ m-1 n-1
h@x)=hx)— Z gxe)t Z g(x¢)
Jar,+1 fes,41

si that (2) follows from (18) also in this case.

3. Proofs of Theorcms 2--4.

Proof of Theorem 2, Let G=F,/F,; where Fy €S* (1 —(m/2)),F, €ES* (1 - (n/2)).
For0<r<1let G, (z2)=G(r2)=(F, (rz) [r) [ (F3 (rz) | r). Then F, (rz) [ r and
Fy (r2) [ r are starlike of the same respective orders and continuous in | 2 | < 1. Assume
Theorem 2 has beea establishied for G,,0<r < 1. Then an obvious Limiting procedure
gives the result for G. Thus it suffices to prove Theorem 2 for G = F,/F; € O (m, n)
with F,, F3 continuousin |z | < 1.

Let FE $* (1 — (m/2)) be continuous in | z | < 1. Then there exists Fe 5*(0) con-
tinuousin |z | <l suchthat F=2 (i‘/z)"'”. The function

V(x)= ¥ arg ( F (¢*"%))
n

is continuous, monotonic increasing with ¥V (1) — ¥V (0) = 2. This proves the existcnce of
two such functions ¥, ¥, such that

1 m n
~ag G (" )y=(n—m)x+ — V,(x)~ = Va(x).
n 2 2 (19)

Now let

f(x)=

wl3

V2 ()= V1 (0))— % (V2 @)= ¥ (0)), x€ [0, 1] (20)

f fulfills the assumptions of Theorem 1 and we find
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m-a n-1
Px)=2 gxc)— T g(x.dj)
I=1 /=1

such that for a certain y ER
Ifx)—p(x)—ul<% 28

holds for x € [0, 11. For c € (0, 1) one easily deduces

1 1
lim — arg(1 —re?™*-y=x—g(x,c) + 5 —-c

rey m
and thus
n-t
i In (1+y2)
px)=lim — arg - —————— |(m-n)x 10 2)
ret m }l (1+x2)
-

for x € [0, 11 and a certain constant ¢. Here we used y; = exp (ir (1 -2 Nxy=
=exp (im (1 — 2dy)), z=r <exp (2 nix). A combination of (19)—(22) proves

m-1
M (1+x2)

lim arg (e ke

G |< =, x€0,1}.
rea ) 2
-1

where z is as above. That this relation extends to z € A follows from a standard argument
involving Poisson’s integral formula and Lebesgue’s dominated convergence theorem.
Theorem 2 is proved.

Proof of Theorem 3. Since G € Vi if andonly if G' € Q (k + 1,k — 1) we obtain from
Theorem 2

" )
Iarg(e"‘ (+x,2)(1+x2) P(2) G(9))I< ; (23)
where
k-3 1+uyz
P@y=1n —1=
) J=1 1+y2 it TP

This implies | arg (e® P (z)]. | < (k — 2) n / 2 for a certain $E R and z € A. The con-
clusion follows from (23).
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Proof of Theorem 4. We may assume that there exists G € V; with G (A) = Q since
this can be achieved by translating and stretching §2. These operations affect neither
the assumption nor the conclusion of the theorem. Thorem 3 gives

Re [e® (1 +x,2)(1 +x,2) G'(2)]>0,z€EA,

for certain ¢ €ER, x,,x; € dA. By an obvious extension of a recent result of Royster and
Ziegler [3] we sec that §2 is convex in at least one direction.
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STRESZCZENIE
Giéwny wynik pracy (Tw. 1) dotycay aproksymadi funkc)i o wahaniu ograniczonym. Stosuje si@
to nastgpnic do wykazania kilku twierdzed o fynkdach jednolistnych.
PLE3IOME
Fnasubit peaynsrar paGornt (Tcopema 1) xacaercd anpoxcHMausH GyHKUHM C OMPaHMYcHHOR

papuausel. Jlpumensercs ITo ANA ROKA3ATENLCTBE HECKONBLKMX TeopeM 006 OOMHOMMCTHBIX
GyHxusax.



