
ANNALES UNIVERSITATIS MARIAE C U RI E - S К Ł 0 DO WS К A

LUBLIN-POLONIA

VOL. XXXVI/XXXV11,12________________ SECTIO A______________________________ 1982/1983

Department of Mathematic* 
State University of New York 

Albany, New York, USA

T.H. MACGREGOR

Growth of the Derivatives of Univalent and Bounded Functions

Wzrost pochodnych funkcji jednolistnych i ograniczonych

Рост производных ограниченных однолистных функций

1, Introduction. Let 2 denote the set of functions that are( analytic and univalent in 
{z:0<|z|<l} and are normalized by

/(»)- 7+ 2 (0<|zl< 1). (1)
* «• o

In [6] K. Lowner showed that if /€ 2 then

1
IZ’WK

Izp(l-lzl’)
(0< |z| < 1). (2)

Except for an additive constant there is a unique function in 2 for whichaquality in (2) 
holds at a point z0. If z0 - r (0 <r < 1) the extremal functions are

I (l<-rł)z
/(*)« 7 + “о-—,----—

1 1 — Г2
(3)

Throughout this paper we let

M(r) = max |/'(z) 1 
ixl-e

(4)

whenever/is analytic on {z: |z| = rj . Inequality (2) implies that (1 — r) 3f(r) is uni-
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formly bounded over 2 as r '-*-1. Since the extremal functions for (2) vary with z0 it is
not clear whether is a function in 2 for which lim (1 — r) M(r) > 0.

r -»i

Our first theorem shows that this is not possible since 

Urn (1-r)M(r) = 0. (5)

for each function in 2. The proof is a consequence of the area theorem which asserts that

2 n|«„|3<l (6)
n> i

whenever f & 2 [7, p. 210]. We also show that (5) is sharp in that there is no prescribed 
rate at which (1 — r) M(r) tends to zero for all functions in 2. This is proved by an applica 
tion of Ahlfor’s distortion theorem to a suitable conformal mapping.

Similar results are obtained for the growth of the integral means. We shall let

Hfit.fi- 4- j"\f'(z)\pdO , (7)

2rr o

where z = re,e and p > 0, whenever / is analytic on {z: |z| = rj . We show that 
(1 — r)p~ 1 I( f; r, p) is uniformly bounded over 2 as r -* 1 whenever p > 2. Also, if 
p>2 and/e 2 then(l — r)p~l f(f; r, p)-*0asr-* 1.

Let S denote the set of functions tliat are analytic and univalent in A - jz: |z| < 1^ 
and are normalized by

g(z) = z + 2 bnz”, (|z|< 1). (8)
„»a

We show that the results quoted above have equivalent formulations for S which involve 
g'(z) /#J(2)- We also use the arguments developed for 2 to obtain analogous results for 
the derivatives of bounded functions in S.

In the last section we obtain estimates on M(f) and /(/; r, p) for functions that are 
analytic and bounded in A. Examples are given which depend on infinite Blaschke pro
ducts and gap series.

2. Meromorphic, univalent functions.
Theorem I.If f£ 2 then lim (1 — r)M(f) =» 0. 

ru
Proof. Suppose that / 6 2 and f has the Laurent expansion (1). If N is any positive 

integer then

rJA/(r)< 1 +jV’2* n |an| + 2 n |a„| r"t*.
n-i n-N

Cauchy’s inequality implies that

(9)
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2
n-N

2 zi |a„| r"*1 < j 2
n*N n»N

<■2 n |a„I* 1/1 j 2

n“N (.zi* 1 J

yj

1/2

1 - , Ç ui" 2 nlflnl1
1-P zi-Af

Using this inequality in (9) we obtain

N-i
r1 (l-r’)M(r)<(l-rJ)[(l + 2 „ |a„| ] +

n-1
2 n |a„r 

n-N
(10)

If e > 0 then the convergence of the series in (6) implies that

{'"‘"'T’< ”2

for some integer N. With N so chosen, there is a number 6 > 0 so that

(1- rJ)[l+A 2 < e/2
n ■ 1

whenever 1 — 5 < r < 1. Because of (10) this shows tliat (1 — r) M(r) •* 0 as r -* 1. 
Theorem 2. Suppose tliat e is a positive function defined on (0,1) so that e(r) -* 0 as

r— [.There is a function f in 2 for which

r- (l-z-)Af(r)
lim -------------------
' ♦ 1 €(r)

(ID

Proof. Since e(r) -* 0 as r -*■ 1 there is an increasing sequence j p„j so tliat pt > 0, 
p„ -* 1 and e(r) < l/n whenever p„ < r < p„ , ,. By approximating the step function 
defined by a(r) = 2/n, if pn < r < p„ ♦ t, we obtain a function 0 which is differentiable 
on [p,, 1) and satisfies 0'(r) < 0, 0(r) > e(r) and P(r) -+ 0 as r -* 1. If 7(r) = 0(r) +

+ V1 — r , then the function 7 has the additional property that its graph has a vertical 
tangent at (0,0).

Let 0 be an increasing differentiable function defined for t > 0 so that 0(f) -* + 00 as 
t ■* + 00. If tu(f) = 0(f) + f1 + t then w has the additional properties that to'(f) > 1 > 0 
and w'(f) -* + 00 as f -♦ + 00. Let D = p: I lmJ I < ff/2J • A simply connected domain E 

shall be defined in terms of w. We require that E C D, and E contains and is symmetric
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with respect to the real-axis. Also, if the boundary of £ is given by the curves y = X(x) 
and y = — X(x) then we require that for x > t0,

X(x) =
4«'(x)

(12)

Let i/z denote the analytic function that maps E one-to-one onto D so that ^(— °°) ’ 
= —o°, <// (0) = 0 and ip(+ «)== + “>. If t lsreal and t > t0 then

+ « / .J . </x-4rr 
2X(x)

(13)

whenever f 1 / (2X(x)) dx> 2 [3, p. 136]. Equation (12) thereby implies that if t is
ft

sufficiently large,then ^(f)> + 2 w(Z) — 4 <> u(t). Therefore,

*(0 >«(') (14)

for sufficiently large t. This asserts that E may be obtained so that on the positive real axis 
the mapping function ip tends to « as fast as we like. This is equivalent to having the 
inverse of tend to “> as slowly as possible, in terms of a given monotone differentiable 
function.

Let u = <t>(z) be the.composite function given by z -*■ s -* t -* u where r 6 A, j = 
= log (1 + z) / (1 — z), t - log (1 + u) I (1 — u) and » = ^(r). Then 0 maps A one-to- 
one onto a subset of A and #(z) -* 1 as z •* 1. Since z-*i and t ■+ u are inverse mappings 
the previous argument implies that with y given there is a domain £ so that

№)<l-y(r) (15)

whenever 0 < r < 1 and r is sufficiently close to 1.
We claim that there is an increasing sequence A r„ V of positive numbers so that

r„ -* 1 and

1-«('»)< (I-'») *'('».) (16)

for n = 1, 2, ... If no such sequence exists then there is number r0 (0 <r0 < 1) so that 
1 ~ ♦(r) > (1 whenever r0 < r < 1. Integrating this inequality from r0 to r we

l—0(r) 1—
find that --------------- >-----------------for r0 <r< 1. This inequality is inconsistent with

1 — r 1 To

(IS) and the fact that y has a vertical tangent at (1,1).
Using equations (16) and (IS) and y(r) > e(r) we conclude that

(1 “ e(rn) (17)



Growth of the Derivatives of Univalent and Bounded Functions 105

If A = 4>'(0) then A =#= 0 and f = (A/Q) 6 2. Since 0(r„) -» 1 this implies that (1 —
— rn) I f(fn) I > ( 1-41 I 2) e (r„) for sufficiently large n. If, in the initial argument, we 
replace e by v/e this shows that there is a function/ in 2 and a sequence so that

. , (I-'«) I/'('») I ,
r„ ■+ 1 and------------------------------- ■*+«». Thus proves (11).

e(^)

The argument given in Theorem 2 depends only on a local property of /. Our example 
at z - 1 locally maps onto the exterior of a region with a suitable cusp. The next theorem 
indicates to what extent | /'(z) 1 may tend to °° on an average. One assertion is uniform 
over 2 and the other holds for individual functions in 2.

Theorem 3. There is a positive constant C such that if p > 2 and fe. 2 then

— / |zJ/ (z)lpd0 <------------ - ------ • (18)
2jt o (1 - r)P-» k '

If p> 2 and /6 2 then

lim |(1-r)P"‘— /"iz’/'Wl'’^? = 0. (19)

r-1 ( 2ir o J

Proof. Suppose tliat /6 2 and /has the expansion (1). Parseval’s formula implies that

— /’lî’/'Wl’ dû = 1 + 2 nJ |«nlï*ï("*1>. 
2rr o ’ /!■ t

(20)

Sincern»* (1 -r)< max r"* 1 (1-r) = (
>1 + 1 

zi + 2

nr1^* » <
>1

>1 + 1

>1 + 1 

>1+2 l-H

>i + 2

1

2(1 -ra)

0 < r < 1
\n+ J 1

it follows r that

, for 0 < r < 1 and

n = 1,2,... This inequality and (6) imply that 2 n2 1 a„ 12 r2 + 1 > < ——-—-—.
n-i 2(1—r)

Because of (20) this proves (18) in the case p = 2 and with C= 3/2.
Now suppose that p > 2. We apply (2) and (18) in the case p = 2 to obtain

K 2b i
1 /”|z3/‘(z)|’d« <1

(l-rV* 2(1-r1) 2(l-r’)p-‘ 2(1- r)p"1
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We next prove (19) in the case p = 2. If N is any positive integer then from (20) we 
find that

1 J» • • , W-r , , 1
— / |z?/'(z)|lr/0< 1 + E n1 |a„|a + —------ --  -
2»r o n-i 2(1 — r3) n«yy

2 n|a„|a . (21)

Suppose that e > 0. Since the series in (6) converges there is an integer N so that

«• * W - l , .
£ n |a„ I1 <e. Next 6 is choosen so that 5 > 0 and (1 —r) [1 + E n* |a„lJ ] <e/2

n-N n - l

whenever 1 —6 <r < 1. Because of (21) this proves that (1 —r)— f2* |z3/(z)lJ dO~*Q 
asr-1. 2no

Now, suppose that p > 2 and f & £. Inequality (2) and (19) in the case p — 2 imply 
that

1 3w
° f) * 2tr o |z,/'(2)lpt/0<(l-r)p"‘

(1

1 3.

‘ 2n o <(1-/)T" asr-i.
2rr o

Inequality (18) cannot be improved in the sense that if

zi(P) = sup max -j(l-r)p*1 — f Iz’/'(z)|p dOi (22)
o < e <» /e £ (, 2rr o 1 1 J

then A (p) > 0 for p > 2. We need the following inequalities:

(a + b)p <ap + bp (a>0, b>0, 0<p<l), (23)

(a + i)p<2p"‘ (ap + bp) (a>0, b>0, p> 1) . (24)

These are proved in [2, p. 57) and combined assert that (a + b~f < Cp(ap + bp) 
where Cp > 0. If f is defined by equation (3), then to emphasize tliat / depends on r we 
write /(z) - fr(z). Since zJ//(z) = - 1 — [(1 — r1) z’/(l - rz)1) we conclude that

1 2 it „ _ , „ - „ 1 2 w 1
— J I z1 //(z) lp dO >Cp(l— ?)p rip — / --- -------—
2k o r 2rr o 11— rz

dO-2k. (25)

Where, as usual, z = re10. There are positive constants Dq so that if q > 1 andz = Re16 
then

1 1 D„
d0>

2k i 1 1 - Z;\“ (1 - /?)*»-*
(26)
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[8, p. 262]. If (26) is used in (25) we see that

^-'/’|2J/,’(a)lp<tt> 

2»r o

Cp D2p rip 
(l-r1)^*

-1

whenever p > M. This implies that A (p)> (Cp D2p)I (2P~ l) whenever p>Vz. In 
particular, A (p) > 0 for p > 2.

The problem of the determining the best estimate on

7- ;”'l^/’(z)lpt/e
2w o

where /6 2 and p < 2 seems to be difficult. The best known result in the case p = 1 is 
the assertion that

Is»,, A
— / l2J/(i)l^< -----------------------------
2n 0 (J- r) 1/2-1/300

[1]

for a positive constant A.
3. Analytic, univalent functions. If f 6 2 then there is a complex nuber c so that 

f (z) * c for 0 < I z 1 < 1. Thus the function^ = l/(f—c)6Sand — [(g’(a))/(£J(z))] — 
= f '(a). Conversely, if g 6 S then / = (l/g) € 2 and f '(a) = — [(g'(z))/(£5 (a))]. This 
implies that

:*65}= {Z'^i/ez} (27)

S V4*)

whenever 0 < 1 z | < 1.
Because of (27) the results about 2 described in section 2 have equivalent formulations 

for S. For example, inequality (2) implies the sharp inequality

I I < 1
I gJ(a) I 1 - | a |J

where g 6 5 and | a | < 1, and inequality (18) implies that if p > 2 and g e S then

2n

z1 g'(z)
\pd0 <

C

0-r)p-‘

The arguments used to prove Theorems 1, 2 and 3 may be adapted to resolve similar 
problems for the derivatives of bounded functions in 5. We shall outline how the argu
ments proceed and point out that the resultsdo not depend on the normalizations given 
forS.

Suppose that g is analytic in A and
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g(z)= S bnzn, (\z |< 1) .
n« 0

If# also satisfies I #(z) | <M, (|z 1 < 1), then 

M

(28)

(29)I *’(*)!<
1 -|x I3

[5, p. 330J. If, in addition, g is univalent in A then as# maps A onto a set having area at 
most TiM2 we conclude that

S n | b„ 1» < M2 
«■ o

(30)

The following theorem is a consequence of the convergence of the series in (30) and 
the proof is similar to the proof of Theorem 1.

TTieorem 4. If g is analytic, univalent and bounded in A then (1 — r)Af(r)-*0asr-* 1.
Theorem 4 is sharp in the sense described in Theorem 2. This actually is shown in 

the proof of Theorem 2 where an extremal function g for this assertion is# = <t>, and say 
M => 1. The assertions of Theorem 3 also hold where/is replaced by g (and g is analytic, 
univalent and bounded). The argument depends on the inequalities (29) and (30). In
equality (18) is replaced by

1 „ CM1
— /It1 g'(z) |P d6 < -- ------- (31)
2ir o (1 - r)p 1

where C is an absolute constant and p > 2.
4. Bounded, analytic functions. We now examine problems about the growth of |#'(z) | 

where g is analytic and bounded in A (and not necessarily univalent) and for simplicity 
take the bound to be 1. Let 8 denote the set of functions g that are analytic in A and 
satisfy | g(z) | < 1 for | z | < 1.

Inequality (29) asserts that if# e B then

|#'(z)|< , (|z|<l). (32)
i I z |

Equality in (32) at z = z0 (| z0 I < 1) occurs only for the functions

z—z0
#(z)=x------ -- — (33)

1 — zoz

where | x | = 1.
Since g in (33) depends on z0 it isn’t clear whether there is a functiong in 8 for which
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lim (1- r) M(r)>0. (34)
r -»1

We now provide an example where (34) holds. Suppose that

'w'-

where | z* | < 1 and

*2^ (1-|zt |)< +~. (36)

Condition (36) ensures that (35) converges in A uniformly on compact subsets [2, p. 19]. 
Since

I/(-’„)! = -------------- II
1 — | |3 itn

-k

-* *zi
(37)

1

inequality (34) holds if there is a positive constant 5 so that

II
k * n 1 ~ -k-n

>5 for zi = 1,2,... (38)

Inequality (38) is the definition that ( zjij is uniformly separated and a sufficient condi
tion for this is

l-l-’iv, |<C(l-|z*|) for A = l,2,... (39)

where 0 < C < 1 [2, p. 155]. Thus, by letting I Zjt | -* 1 geometrically we obtain our 
example. The example becomes even more interesting if is also choosen so that
each point on 3 A is a point of accumulation of J

The argument given to prove that (39) implies (38) shows that 

z„ ~ z* I . T - 1 - Cn V
11 —" T-~ >11 ------ ZT • (40)

k * n 1 — zk zn I L n" 1 1 4 C1 J

Since the right-hand side of (40) tends 1 as C -» 0 we see that to each number A so that 
0 < /1 < 1, there is a function in 8 for which

Urn (1 -r1) M(r)>A . (41)
r — 1

We raise the problem of whether there is a function in 3 for which
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Urn (1 - r2) A/(r) = 1 . 
r-* I

We next examine the growth of the integral means of the derivatives of functions in 3. 

The first theorem determines the exact upper bounds for these means when 0 < p < 2. 
The following inequality is needed for that argument.

Lemma. Ifmisa non-negative integer ami

in m+l
---------< r <----------
m+l m + 2

(42)

then

nr"~ 1 <(m + 1) rm for n — 1,2,... (43)

Proof. We may assume that r > 0, and we let n0 = — 1/log r. Since the functions 
y = x — log (1 + x) and/ = log (1 + x) — [x /(1 + x)J are increasing for x > 0,

1
k<----------------------- <A+1 for * = 1,2,...

(log(l+ {))

k

Applying this inequality and (42) we conclude that

m<n0 <m + 2 . (44)

The function n(n) = nrn~ 1 (n > 0) is increasing for 0 < n < n0 and decreasing for 
n > n0. U n varies over the posture integers then (44) implies that the maximum of p 
occurs at m, m+l or m + 2. Now, jr(m) < n(in + 1) as this is equivalent tor > 
> m / m + 1. Also, ju(m + 2) < n(m + 1) since this is equivalent to r2 < (m + l)/(m + 2), 
which follows from r < (m + l)/(m + 2). This proves (43).

We also note that equality in (43) occurs only for n = m + 1 when m / m+l < r < 
< (m + 1) / (m + 2) and only for n = m and n = m + 1 when r = m / m + 2 .

Theorem 5. If g G B and 0 < p < 2 then

— f" I g' 0) lp d0 < (m + 1/ rm* (45)
2w o

where in is the greatest integer in r / (1 — r).
Proof, m is the integer for which m < r / (1 — r) < m + 1 and this inequality is the

same as (42).
If g e 3 andg lias the representation (28) then

£ 
n - 0

(46)
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[2, p. 8J. The Lemma assert that if A(r) — sup •( nrn~ 1 : n — 1, 2,... Jr thenX(r) = 

= (m+ 1 )rm. Thus,

— /’lg'(z)prZ0 = 2 l)<X’(r) 2 |/»„P<X2(r).
2rr o «■ l n-1 .

This proves (45) in the case p = 2.
Now, suppose that 0 < p < 2. Holder’s inequality completes the proof, as follows

4~ <2rr o

•f~ /’|g'(z) P <70 J P < £(m + l)2r2mj p'2 = (»n + iyV”’

The argument also shows that if m / m + 1 < r < (rn + 1) / (m + 2) then equality in 
(45) holds only for the functions g(z) = xzm * 1 where | x | = 1. When r = m / m fFll 
equality occurs only for the functions f(z) = xzm*1 and#(z) =■ xzm where |x j = 1.

The precise upper bounds given by (45) grow with the same order as the *trivial’ 
estimates given by (32). Namely, (32) implies that

4" /'lg‘(z)lpdO < —
2rr o (1 H)

which is asymptotic to 1 /[2P (1 — r)p] asr■+ 1. On the other hand, whenr-m/1 
the right hand side of (45) becomes (1 / (1 — z)p] rp^^* '^1, which is asymptotic to 

1 / (ep (1 — r)p ] as r -* 1.
Inequality (45) cannot hold for large values of p. This is a consequence of the fact that 

if g is analytic in A and 0 < r < 1 then

lim |— f |g (z)|pt/0| *P = max |g'(z)|. (47)
p 1 2rr o / izI-r

If we let g(z) = (z — r) / (I — rz) then the right hand side of (47) is 1 / (1 — r3) and if 
g(z) — xzn (lx 1 = l)then

■£nr"" 1 : n = 1,2, ...J< 1/(1 — r2), whichOur assertion follows from the inequality sup 
is not difficult to show.

Theorem 6. If g G B and p>0 then

lim j(l~r)p /’'l«'(z)lpJfl ? =0. (48)
r r ( 2rr o J

Proof. Using the notation in the proof of Theorem 5, we see that if N is a positive in
teger then
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— I2'\g'W\2 dO<Ni' n* |b„|J + 2 n2 
2ir o

(49)
n « I n-A

If n > 2 then

„ , 1 [n-l\
max (1 - r) rn = - 

o < r < 1 n \ n

and thus

nrn- I
<n-\ \

2(l-r)
for /1 = 2,3, ...

1-r \ «

1

Applying this inequality in (49) we conclude that

(1-r)1 — /'|^7OI3‘tt<(l-O, + K 2 IMl. (50)

2rr o n • J n - N

Because the series (46) converges, by first choosing N large and then letting r -* 1 we con
clude from (50) that (48) holds in the case p = 2.

If 0 < p < 2 then Holder’s inequality Implies that

(1 - r)* — /” 1 g' (z) |* dO < (I-r)P f ~ /' |g'(z)|J dO ■ 

2rr o I 2rr o

f Is. 7 p'2

p/3

Since (48) holds in the case p — 2 this proves (48) when 0 < p < 2. 
If p > 2 then inequality (32) implies that

(1-r)* 4- /’|«'(OIP dO < (1 - r)P 
2n o

1 1 ,
-------------------— S lx CO P dO =(1-r1)*'3 2rr 0 * 1 71

0
asr-* 1.

Theorem 6 is precise in the following sense. If e is a positive function on (0,1) so that 
e (0 •* 1 as r -* 1 then there is a function g in B for which

(l-0p 7" /'l*'(Olp dO 
— 2ir o
lim ----------------------------------------------------- = "» .
r -* i e (0

(51)
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The proof of this fact is implicitly contained in an argument in [4, p. 219-222]. The 
appropriate function g, which is constructed in terms of e, has the form

g(z) = 2 a„zvn, (|z|<l) (52)
»• I

where V is a specific sequence of positive numbers for which 2 an < 1. The 
n ■ 1

sequence ^Vn\ of positive integers is increasing and selected to tend to °° sufficiently 
fast. The actual argument assumed that 0 < p < 1 since it relied on (23). When p > 1 by 
appealing to (24) the same argument is possible. Thus. (51) holds for eachp > 0.
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STRESZCZENIE

Badane są problemy wzrostu pochodnej i niektórych średnich całkowych w klasach funkęjl 
jedno Ustnych.

РЕЗЮМЕ

Изучаются проблема! роста производной и некоторых интегральных средних в класах 
однолистных функций.




