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1. Introduction, Let T denote the set of functions that are analytic and univalent in
{z:0<121< l} and are normalized by

f(z)=%+n§°a,,z", 0<izi<l1). 1)

In [6] K. Léwner showed that if f€ Z then

I/'@I< , (0<]zI< ). (02}

S
1212 (1 = 121%)

Except for an additive constant there is a unique function in £ for whickmquality in (2)
holds at a point zo. If zo =7 (0 <r<1)the extremal functions are

1~r?
I@= 3+ a- 2 @

Throughout this paper we let

M{r)= max |f'(2)! 4)
|2t=r

whenever f is analytic on {z: |z| = r} . Inequality (2) implies that (1 — r) M(r) is und-
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formly bounded over  asr 1. Since the extremal functions for (2) vary with 2q it is
not clear whether is a function in  for which lim (1 —r) M(r) > 0.
rel1

Our first theorem shows that this is not possible since

im (1 —M()=0. ()
F=1

for each function in Z. The proof is a consequence of the area theorem which asserts that

£ nlap’<1 (6)

whenever f € T [7, p. 210]. We also show that (5) is sharp in that there is no prescribed
rate at which (1 —r) M(r) tends to zero forall functions in Z. This is proved by anapplica-
tion of Ahlfor’s distortion theorem to a suitable conformal mapping.

Similar results are obtained for the growth of the integral means. We shall let

1 i
I(finp)=— [ 1f')IPdo , )]
2m o

where z = re®® and p > 0, whenever f is analytic on {z: 1z] = r_} . We show that
(1 — P-Y I(f; r, p)is uniformly bounded over £ asr - | whenever p > 2. Also, if
p>2andfEZ then(1 =r)P~ Y I(f; r,p)+0asr—1.

Let S denote the set of functions that are analytic and univalent in A = {z: 1z] < l}
and are normalized by

g@=z+ I by, (121<1). ®)
ne

We show that the results quoted above have equivalent formulations for S which involve
£'(z) / 8*(2). We also use the arguments developed for T to obtain analogous results for
the derivatives of bounded functions in S.

In the last section we obtain estimates on M(r) and I( f; r, p) for functions that are
analytic and bounded in A. Examples are given which depend on infinite Blaschke pro-
ducts and gap series.

2. Meromorphic, univalent functions,

Theorem 1. If f€ Z then lim (1 —r)M(r) = 0.

rei

Proof. Suppose that £ € T and f has the Laurent expansion (1). If N is any positive *
integer then

N-1 -
rPMr)<1 + I nla,l + I nla,l r"*t. )
n=1 n=N

Cauchy’s inequality implies that
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- fin T,
2o sn lagl P S sl i uig”|’ e T IP.‘_r:(:rnl)?."’ <
neN neN neN
<[£ nla,,lz} m‘z T m:(a-:); L2irh
naN ne g J
1 [ - (W V7]
o= T nla,l?
1 - rl _II-N III j
Using this inequality in (9) we obtain
2 2 2 N-a (25 s | V2
rPA=-rHMr<A-r})[(1+ Z nla,l)+ - EN nlap| ) (10)
net e

If € > 0 then the convergence of the series in (6) implies that

{E nla,,l'}m<e12
n=l

for some integer V. With N so chosen, there isa number § > 0 so that

A= )1+ 5 nlayl] < e/2
nes 1

whenever 1| — 8 <r < 1. Because of (10) this shows that (1 —7)M(r)+0asr 1.

Theorem 2, Suppose that e is a positive function defined on (0, 1) so that e(r) - O as
r— 1. There is a function f in T for which

(1= r)M(r) -
red e

(11

Proof. Since e(r) = 0 asr — 1 there is an increasing sequence -{p,,} so that p; 20,
Pn — 1 and €(r) < 1/i whenever p, K r < p,, ;. By approximating the step function
defined by a(r) = 2/n, if pp < r < pp + 1, we obtain a function g which is differentiable
on [p;, 1) and satisfies f'(r) < 0, B(r) > €(r) and B(r) > O asr = 1. If y(r) = B(r) +
++/1 —r , then the function 7 has the additional property that its graph has a vertical
tangent at (0, 0).

Let ¢ be an increasing differentiable function defined for ¢ > 0 so that ¢(t) =+ + e as
t -+ oo If w(t) = ¢(t) + £? + ¢ then w has the additional properties that w'(f) > 1 >0

and W'(f) > + 0 ast = + o, Let D ={s: 1Ims| < nlz} . A simply connected domain £

shall be defined in terms of w. We require that £ C D, and £ contains and is symmetric
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with respect to the realaxis. Also, if the boundary of E is given by the curves y = A(x)
and y = — A(x) then we require that for x 2 ¢,

n

Ax) = e (12)

Let Y denote the analytic function that maps £ one-to-one onto D so that y(— o) =
=—oo )(0) =0and y(+ )=+ Iftisrealand t > ¢4 then

V> w(r,)+1|;ft dx —4n (13)

2\(x)

whenever '{' 1/(@Nx)) dx>2 [3, p. 136]. Equation (12) thereby implies that if ¢ is
sufficiently large, then ¥ (£)> ¥ (to) + 2 w(t) — 4 > w(t). Therefore,

V() > ¢() (14)

for sufficiently large ¢. This asserts that £ may be obtained so that on the positive real axis
the mapping function ¢ tends to o as fast as we like. This is equivalent to having the
iaverse of | tend to o as slowly as possible, in terms of a given monotone differentiable
function.

Let u = ¢(z) be the:composite function given by z + s + ¢ =+ u wherez€E A, 5 =
=log(l +2) /(1 —2), ¢t =log (1 +u)/(1 —u) and 2= J(r). Then ¢ maps A one-to-
-one onto a subset of Aand ¢(2) 1 asz—+ 1. Since z>sand £ = u are inverse mappings
the previous argument implies that with v given there is a domain £ so that

¢(I<1-7(r) (15)

whenever 0 <r <1 and r is sufficiently close to 1, _
We claim that there is an increasing sequence i r,.j of positive numbers so that
rp, 1 and

1=¢(n) <(1— ra) ¢'(rn) (16)
forn =1, 2, ... If no such sequence exists then there is number ro (0 <r < 1) so that
1 —¢(r) 2 (1 —r) ¢'(r) whenever ry < r < 1. Integrating this inequality from rg tor we
1= 17
¢(r) > #(ro) fo
1—r 1=ro

(15) and the fact that vy has a vertical tangent at (1, 1).
Using equations (16) and (15) and y(r) > €(r) we conclude that

find that rrg Sr<1. This inequality is inconsistent with

(A — ra)¢'(ra)> €(rn) (k)
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If A = ¢'(0) then A # 0 and f = (4/¢) € Z. Since ¢(r,) = 1 this implies that (1 —
—rp) 1 £'(rn) | > (141 [ 2) € (rp) for sufficiently large n. If, in the initial argument, we
replace e by \/e this shows that there is a function £ in I and a sequence ir,,} s0 that

l.'" ’
r, 1 and (A =ra) 17 )| - + 0o, This proves (11).

e(rn)

The argument given in Theorem 2 depends only on a local property of . Our example
at z = | locally maps onto the exterior of a region with a suitable cusp. The next theorem
indicates to what extent | f'(z) | may tend to % on an average. One assertion is uniform
over Z and the other holds for individual functions in Z.

Theorem 3. There is a positive constant C such that if p > 2 and f€ T then

2w Sk P e rinke
5 { 122 f(@)17do < G (18)
Ifp>2and fEZ then
1 2m
- P11 2 ' P =
’hcn:‘{(l r) I 2" { |- f(Z)l do} 0. (19)

Proof, Suppose that f € T and f has the expansion (1). Parseval’s formula implies that

1 " -

— L@ d0 =1+ I ntlagP R (20)
2n o net

n+1 1
. ne 1 = neyl ] = nejl
Sincer Q1 r)<o 2\:’1x< ‘ r (1=r)=( 5 ) =53 it follows r . that
n n+1 1
nAne) nel < ,for0<r<1and
DAL ET TR 1-rF  2a-r) "

=y 1
= o d o d (6) i ly that b "l a 2,“("01) <.___..—_‘
n = 1,2, ... This inequality and (6) imply o lap| T

Because of (20) this proves (18) in the case p = 2 and with C = 3/2.
Now suppuse that p > 2. We apply (2) and (18) in the case p = 2 to obtain

= M2 e P do < ST T A1 <
2 a (1—r7~)yP"* 21 o

1 3 3 3

B
£ (l_rz)p-z 2(1_',2) 2(1_,3)["1 2(1__’)p-1
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We next prove (19) in the case p = 2. If N is any positive integer then from (20) we
find that

1 2w N-1 1 -
— 2'2)12do< 1+ T nla,? + ——— T nla,®. (1
o { 122 £'(2)1 = lanl =) nn lanl (1)

Suppose that € > 0. Since the series in (6) converges there is an integer N so that
- . N-a
EN nla,|* <e.Next§ ischoosensothat 6 >0and(1—=r)[1+ Z n?la,l1?])<e/2
n= ne=1

1
whenever | —& <r < 1. Because of (21) this proves that (1 —r) — f2* 123f'(z)1* d0 -0
asr—+1. =
Now, suppose that p > 2 and f € Z. Inequality (2) and (19) in the case p = 2 imply
that

(s - f2'|z’f'(z) Pdo<(1—r)P-? .
2n o (l—r’}"’

1 2

s . e Dl = ey
= 1z’f{z)|‘dﬂ<(l—r);{z]z"f(z)]’da—-(]asr-*l.

Inequality (18) cannot be improved in the sense that if

1 in
= LSNP Mk 2 350 p } )
A(P) 0 <mrp<| }nea)z&; i,(l " 2n of 'z 4 (z)l s @2)

then A4 (p)>0for p > 2. We need the following inequalitics:

@+b)y’<al +b? (@20, 520, 0<p<1), (23)

@+b)P<2P" @ +bP)y@>0,b>0,p>1). (29)
These are proved in [2, p. 57] and combined assert that (a + b < Cp(a® + ¥P)

where Gy > 0. If f is defined by equation (3), then to emphasize that f depends on r we
write f(z) = f,(z). Since 23/ (z) = — 1 — [(1 = r?) 22/(1 — rz)*] we conclude that

1 an 1 2w l
— 25@ADWPdo>C, 0 —PYrP — [ ——————d0—21. 5
2"01 12° £y ()1 p( ) 2"‘.! (1—rz PP n (25)

Where, as usual, z = ref® . There are positive constants Dy so that if ¢ > 1 andz = Ref®
then

oL (L
mae |1-z)9 (1= R)¥™!

(26)
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(8, p. 262] . If (26) is used in (25) we see that

1 2 G sz ’2p
— 2 )P de > P —
2n of 12 ()] (Q-=r)P-?
whenever p > %. This implies that A4 (p)> (Cp D3p)/ @P- 'y whenever p>%. In
particular, 4 (p) >0 forp > 2.
The problem of the dctermining the best estimate on

ey pae
27 o

where f € T and p < 2 seems to be difficult. The best known result in the case p = 1 is
the assertion that

1 2 2 40 A
Frdeld RS TR et (1]

(1- nin- 1/300

for a positive constant 4.

3. Analytic, univalent functions. If f € Z then there is a complex nuber ¢ so that
f(z) # ¢ for 0 <|z|<1.Thusthe functiong = 1/(f - c) € S and — (&' (2))/(€*(2))] =
= f'(2). Conversely, if g € S then f = (1/g) € £ and f '(2) = — [(g'(2))/(&* (2))]. This
implies that

) - [/'): fET
{ g,(:)-xes} {re:re } @n

whenever0< |z |<1.
Because of (27) the results about T described in section 2 have equivalent formulations
for S. For example, inequality (2) implies the sharp inequality

=‘x'(:}_l 1
8 @) 1=z’

where g €S and | 2 | < 1, and inequality (18) implies that if p > 2 and g € S then

C
G0

22 g'(

1 2 z
L 1 EED ey <
ge) !

27 o

The arguments used to prove Theorems 1, 2 and 3 may be adapted to resolve similar
problems for the derivatives of bounded functions in S. We shall outline how the argu-

ments proceed and point out that the resultsdo not depend on the normalizations given
for S.

Suppose that g is analytic in A and
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g@)= T byz", (1zI<1). (28)
n=Q

If g also satisfies | g(2z) | <M, (1z| <1), then

y M
1@< ——
1—|z

[S, p. 330}. If, in addition, g is univalent in A then as g maps A onto a set having area at
most #M? we conclude that

S nibyl?< M? (30)

The following theorem is a consequence of the convergence of the series in (30) and
the proof is similar to the proof of Theorem 1.

Theorem 4, If g is analytic, univalent and bounded in A then (1 —r)M(r)—>0asr— 1.

Theorem 4 is sharp in the sense described in Theorem 2. This actually is shown in
the proof of Theorein 2 where an extremal function g for this assertion isg = ¢, and say
M = 1. The assertions of Theorein 3 also hold where f is replaced by g (and g is analytic,
univalent and bounded). The argument depends on the inequalities (29) and (30). In-
equality (18) is replaced by

L Magerda < — a1)
2n o & (-rnpP?

where C is an absolute constant and p 2 2,

4. Bounded, analytic functions. We now examine problems about the growth of [g'(2) |
where g is analytic and bounded in A (and not necessarily univalent) and for simplicity
take the bound to be 1. Let B denote the set of functions g that are analytic in A and
satisfy [g(z) IS 1for|z|<1.

Inequality (29) asserts that if g € 8 then

: e
I8 @IS T, (z1<D). (32)

Equality in (32) at z = z4 (| 2o | < 1) occurs only for the functions

@ P2 33
Z)= x ———
g PR (33)
where x| = 1.

Since g in (33) depends on z, it isn't clear whether there is a function g in 8 for which
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lim (1= r) M(r)>0. (34)
r -1

We now provide an example where (34) holds. Suppose that

y= @I 2k 35)
2)= e

8 key ' IT—2p2 (
where |z | < 1 and

kz‘ (O=lz 1)< +. (36)

Condition (36) ensures that (35) converges in A uniformly on compact subsets [2, p. 19].
Since

18 Gy 1= ot ST R @7
o 1=1zg1* ken | 1= %2,
inequality (34) holds if there is a positive constant & so that
I e 2S5 forn=1,2,.. (38)
ken|l— 2y

Inequality (38) 1s the definition that {zk} is uniformly separated and a sufficient condi-
tion for thus 1s

1= |2k 1ISC( =12k ) for k=1,2,.. (39)

where 0 < C < | [2, p. 155]. Thus, by letting | z; | = | geometrically we obtain our
example. The example becomes even more interesting if izﬂ is also choosen so that
each point on 94 is a-point of accumulation of 1“1- 7

The argument given to prove that (39) implies (38) shows that

PN i B 0 O A ¥ (40)
ken|l1=3z, | Lnay 14" |7

Since the night-hand side of (40) tends 1 as C = O we see that to each number 4 so that
0 <A <1, there is a function in 8 for which

im (—r)yM@r)>A. (41)
r—-1

We raise the problem of whether there is a function in B for which
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im (1—-r)M@p)=1.
r—1

We next examine the growth of the integral mcans of the derivatives of functions in 8.
The first theorem deterimines the exact upper bounds for these means when 0 < p <2.
The following inequality is needed for that argument.

Lemma. [f m is a non-negative integer and

m m+ 1
<r< (42)
m+1 m+2
then
i< (m+1)r™ for n=1,2,.. (43)
Proof. We may assume that r > 0, and we let ng = — 1/log r. Since the functions
—log (1 +x)andy =log (1 +x)— [x /(1 + x)] are increasing for x > 0,
1
k< ___l—— <k+1 for k=1,2,..
(log (1 + —))
k
Applying this inequality and (42) we conclude that
m<ng<m+2. (44)

The function u(n) = nr~? (n > 0) is increasing for 0 < n < ny and decreasing for
n > ng. If n varies aver the posture integers then (44) implies that the maximum of p
occursat m, m+ 1 or m+ 2, Now, u(m) < u(m + 1) asthis is equivalent tor »
>m/|m+ 1. Also,u(m + 2) <pu(m + 1) since this is equivalent to r? < (m + 1)/(m + 2),
which follows from r < (m + 1)/(n + 2). This proves (43).

We also note that equality in (43) occursonly forn=m+ | whenm/ m+1 <r<
<@m+1)/(m+2)andonlyforn=mandn=m+ 1 whenr=m/ m+2,

Theorem 5.If g€ B and 0 <p < 2 then

—21; °;"|g'(z) 1P do < (m+ 1)P y™P (45)

where m is the greatest integer inr [ (1 —r).
Proof. m is the integer for which m < r /(1 —r) <m + | and this inequality is the .
same as (42).
If g €B and g has the representation (28) then

T 1P <1 (46)
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[2, p. 8]. The Lemma assert that if A(r) = sup {m‘"" tn=1,2, :& then A(r) =
=(m+ 1)r™. Thus,

l [} - -
— ;’ 1€@)Pdo= 2 m? |5, PR "VDCAYNr) T 15,1 <A%(r).
2n o ne nel

This proves (45) in the case p = 2.
Now, suppose that 0 < p < 2. Holder’s inequality completes the proof, as follows

1 I_l ) B o 1.2m ¢t pna m
P 6!' g ()17 do< . S 1g@)]I" d6 <i(m+ 1) = (m+1)PrP
(= o

The argument also shows that if m/ m+ 1 <r<(m+ 1)/ (m + 2) then equality in
(45) holds only for the functions g(z) = xz2™* ! where |x| = 1. Whenr = m/ m#l
equality occurs only for the functions g(z) = xz™*! and g(z) = xz™ where |x| = 1.

The precise upper bounds given by (45) grow with the same order as the ‘trivial’
estimates given by (32). Namely, (32) implies that

_ e @ <
— z ———— +
oy (= r3)?
which is asymptotic to 1/[2P (1 —)?] asr — 1. On the other hand, whenr =m/ m+ 1
the right hand side of (45) becomes [1 / (1 —r)P] rP1P/( N1 yhich is asymptotic to
1/ [P (1=rPlasr—1,
Inequality (45) cannot hold for large values of p. This is a consequence of the fact that

if g is analytic in A and 0 <r < | then

lim !L fhlg' @) 1P d0\ o max |g'(2)1. 47)
l\Zn ° j

p+m= |1Z|=r

If we let g(z) = (z —r) / (1 — rz) then the right hand side of (47) is 1 /(1 —r*) and if
£g(2)=xz"(1x|=1)then

1 In vg
(-- f Ig'(Z)I”dG) =n""t,

2m o

Our assertion follows from the inequality sup {nr"' ':n=1,2, }< 1/(1 —r?), which
is not difficult to show,
Theorem 6. Ifg € B and p > 0 then

) =
lim {(l—r)” - of’ I8’ @Pas § =0. (48)

r=-\

Proof. Using the notation in the proof of Theorem 5, we see that if N is a positive in-
teger then



112 T. H. MacGregor

i [ 4 N=1 -
— (IE@P < T nPbgP+ T n by P AN, (49)
2m o nei ne=N
If n 2 2 then
1 .n—l‘ i
max (1—r)yr® '=— ( )
0<r<t n \ n }
and thus
1 =1\ 1
nr" V' g !" \ < ——— forn=2,3,..
1—7r \‘ n ) 2(1—1r)

Applying this inequality in (49) we conclude that
y 1 o, a2 2 NSX g 2 5 2
(1-r J 18@1Pdo<(1=r) £ n|by|"+% T |b,1°. (50)
2x o ne1 n=N

Because the series (46) converges, by first choosing /N large and then letting r - 1 we con-
clude from (50) that (48) holds in the case p = 2.
If 0 <p <2 then Holder's inequality implies that

[ ] ] L
(A=rP L j’ 1g@IPdo < (-—r) f—l— f’ 1g'@)1? df)l’ =
27 o lLZn ° 1)

[‘ an 1 L Ay p 2 2 pra
1(1 r) 2“3' 1g' @)1 dGJ

Since (48) holds in the case p = 2 this proves (48) when 0 < p < 2.
If p > 2 then inequality (32) implies that

1 i 1 1 in
- P — ' P < (] — el L e ! 2 T
(-nf — S i@ <@ o —rp Is@ra
-—1— da-o = Fire [’dﬂ} -0
A+ Py w e 89
asr—+1.

Theorem 6 is precise in the following sense. If € is a positive function on (0, 1) so that
€(r)—* 1 asr - ] then there is a function g in B for which

1 "
- — M Ig@F o
— 2n o

:i':l e(r) 2 (3
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The proof of this fact is implicitly contained in an argument in [4, p. 219-222]. The
appropriate function g, which is constructed in tenms of e, has the form

g@)= I anz", (121<1) (52)
Ae ]

where { a.} is a specific sequence of positive numbers for which ':‘. ap <1, The
net

sequence {v,. } of positive integers is increasing and selected to tend to o sufficiently

fast. The actual argument assumed that 0 < p < 1 since it relied on (23). When p > 1 by

appealing to (24) the same argument is possible. Thus, (51) holds for each p > 0.

REFERENCES

[1] Clunie, J., Pommerenke, Ch., On the coefficients of univalent funcrions, Michigan Math. J.
14 (1967), 71-178.

{2] Duren, P. L., Theory of HP Spaces, Academic Press, New York 1970.

(3] Evgrafov, M. A., Analytic Functions, W. B. Saunders Co., Philadelphia 1966.

{4] Feng, J., MacGregor, T. H., Estimates on integral means of the derivatives of univalent func
fions, ). Analyse Math. 29 (1976), 203-231.

[S) Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Americen Mathematical
Society, Providence. 1969.

(6) Lowner, K., Uber Extrermumsitze bei der konformen Abbildung des Aussern des Einheitskreises,
Math. Z. 3 (1919),65-77.

[7] Nehari, Z., Conformal Mapping, McGraw—Hill, New York 1952.

[8] Pommerenke, Ch., On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962),
259-269.

STRESZCZENIE
Badane 1y problemy wzrostu pochodnej | niektérych drednich catkowych w klasach funkgi
jednolistnych.
PE3IOME

Hiyvamotes npobnemil poOCTa NPOMIBOMIOA ¥ HEKOTOPLIX HHTETPANLHLIX CpeMMX B KNacax
oaHoNM cTHAIX G yHKUMA.






