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1, Introduction. Let 2 denote the set of functions that are( analytic and univalent in 
{z:0<|z|<l} and are normalized by

/(»)- 7+ 2 (0<|zl< 1). (1)
* «• o

In [6] K. Lowner showed that if /€ 2 then

1
IZ’WK

Izp(l-lzl’)
(0< |z| < 1). (2)

Except for an additive constant there is a unique function in 2 for whichaquality in (2) 
holds at a point z0. If z0 - r (0 <r < 1) the extremal functions are

I (l<-rł)z
/(*)« 7 + “о-—,----—

1 1 — Г2
(3)

Throughout this paper we let

M(r) = max |/'(z) 1 
ixl-e

(4)

whenever/is analytic on {z: |z| = rj . Inequality (2) implies that (1 — r) 3f(r) is uni-
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formly bounded over 2 as r '-*-1. Since the extremal functions for (2) vary with z0 it is
not clear whether is a function in 2 for which lim (1 — r) M(r) > 0.

r -»i

Our first theorem shows that this is not possible since 

Urn (1-r)M(r) = 0. (5)

for each function in 2. The proof is a consequence of the area theorem which asserts that

2 n|«„|3<l (6)
n> i

whenever f & 2 [7, p. 210]. We also show that (5) is sharp in that there is no prescribed 
rate at which (1 — r) M(r) tends to zero for all functions in 2. This is proved by an applica 
tion of Ahlfor’s distortion theorem to a suitable conformal mapping.

Similar results are obtained for the growth of the integral means. We shall let

Hfit.fi- 4- j"\f'(z)\pdO , (7)

2rr o

where z = re,e and p > 0, whenever / is analytic on {z: |z| = rj . We show that 
(1 — r)p~ 1 I( f; r, p) is uniformly bounded over 2 as r -* 1 whenever p > 2. Also, if 
p>2 and/e 2 then(l — r)p~l f(f; r, p)-*0asr-* 1.

Let S denote the set of functions tliat are analytic and univalent in A - jz: |z| < 1^ 
and are normalized by

g(z) = z + 2 bnz”, (|z|< 1). (8)
„»a

We show that the results quoted above have equivalent formulations for S which involve 
g'(z) /#J(2)- We also use the arguments developed for 2 to obtain analogous results for 
the derivatives of bounded functions in S.

In the last section we obtain estimates on M(f) and /(/; r, p) for functions that are 
analytic and bounded in A. Examples are given which depend on infinite Blaschke pro­
ducts and gap series.

2. Meromorphic, univalent functions.
Theorem I.If f£ 2 then lim (1 — r)M(f) =» 0. 

ru
Proof. Suppose that / 6 2 and f has the Laurent expansion (1). If N is any positive 

integer then

rJA/(r)< 1 +jV’2* n |an| + 2 n |a„| r"t*.
n-i n-N

Cauchy’s inequality implies that

(9)
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2
n-N

2 zi |a„| r"*1 < j 2
n*N n»N

<■2 n |a„I* 1/1 j 2

n“N (.zi* 1 J

yj

1/2

1 - , Ç ui" 2 nlflnl1
1-P zi-Af

Using this inequality in (9) we obtain

N-i
r1 (l-r’)M(r)<(l-rJ)[(l + 2 „ |a„| ] +

n-1
2 n |a„r 

n-N
(10)

If e > 0 then the convergence of the series in (6) implies that

{'"‘"'T’< ”2

for some integer N. With N so chosen, there is a number 6 > 0 so that

(1- rJ)[l+A 2 < e/2
n ■ 1

whenever 1 — 5 < r < 1. Because of (10) this shows tliat (1 — r) M(r) •* 0 as r -* 1. 
Theorem 2. Suppose tliat e is a positive function defined on (0,1) so that e(r) -* 0 as

r— [.There is a function f in 2 for which

r- (l-z-)Af(r)
lim -------------------
' ♦ 1 €(r)

(ID

Proof. Since e(r) -* 0 as r -*■ 1 there is an increasing sequence j p„j so tliat pt > 0, 
p„ -* 1 and e(r) < l/n whenever p„ < r < p„ , ,. By approximating the step function 
defined by a(r) = 2/n, if pn < r < p„ ♦ t, we obtain a function 0 which is differentiable 
on [p,, 1) and satisfies 0'(r) < 0, 0(r) > e(r) and P(r) -+ 0 as r -* 1. If 7(r) = 0(r) +

+ V1 — r , then the function 7 has the additional property that its graph has a vertical 
tangent at (0,0).

Let 0 be an increasing differentiable function defined for t > 0 so that 0(f) -* + 00 as 
t ■* + 00. If tu(f) = 0(f) + f1 + t then w has the additional properties that to'(f) > 1 > 0 
and w'(f) -* + 00 as f -♦ + 00. Let D = p: I lmJ I < ff/2J • A simply connected domain E 

shall be defined in terms of w. We require that E C D, and E contains and is symmetric
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with respect to the real-axis. Also, if the boundary of £ is given by the curves y = X(x) 
and y = — X(x) then we require that for x > t0,

X(x) =
4«'(x)

(12)

Let i/z denote the analytic function that maps E one-to-one onto D so that ^(— °°) ’ 
= —o°, <// (0) = 0 and ip(+ «)== + “>. If t lsreal and t > t0 then

+ « / .J . </x-4rr 
2X(x)

(13)

whenever f 1 / (2X(x)) dx> 2 [3, p. 136]. Equation (12) thereby implies that if t is
ft

sufficiently large,then ^(f)> + 2 w(Z) — 4 <> u(t). Therefore,

*(0 >«(') (14)

for sufficiently large t. This asserts that E may be obtained so that on the positive real axis 
the mapping function ip tends to « as fast as we like. This is equivalent to having the 
inverse of tend to “> as slowly as possible, in terms of a given monotone differentiable 
function.

Let u = <t>(z) be the.composite function given by z -*■ s -* t -* u where r 6 A, j = 
= log (1 + z) / (1 — z), t - log (1 + u) I (1 — u) and » = ^(r). Then 0 maps A one-to- 
one onto a subset of A and #(z) -* 1 as z •* 1. Since z-*i and t ■+ u are inverse mappings 
the previous argument implies that with y given there is a domain £ so that

№)<l-y(r) (15)

whenever 0 < r < 1 and r is sufficiently close to 1.
We claim that there is an increasing sequence A r„ V of positive numbers so that

r„ -* 1 and

1-«('»)< (I-'») *'('».) (16)

for n = 1, 2, ... If no such sequence exists then there is number r0 (0 <r0 < 1) so that 
1 ~ ♦(r) > (1 whenever r0 < r < 1. Integrating this inequality from r0 to r we

l—0(r) 1—
find that --------------- >-----------------for r0 <r< 1. This inequality is inconsistent with

1 — r 1 To

(IS) and the fact that y has a vertical tangent at (1,1).
Using equations (16) and (IS) and y(r) > e(r) we conclude that

(1 “ e(rn) (17)
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If A = 4>'(0) then A =#= 0 and f = (A/Q) 6 2. Since 0(r„) -» 1 this implies that (1 —
— rn) I f(fn) I > ( 1-41 I 2) e (r„) for sufficiently large n. If, in the initial argument, we 
replace e by v/e this shows that there is a function/ in 2 and a sequence so that

. , (I-'«) I/'('») I ,
r„ ■+ 1 and------------------------------- ■*+«». Thus proves (11).

e(^)

The argument given in Theorem 2 depends only on a local property of /. Our example 
at z - 1 locally maps onto the exterior of a region with a suitable cusp. The next theorem 
indicates to what extent | /'(z) 1 may tend to °° on an average. One assertion is uniform 
over 2 and the other holds for individual functions in 2.

Theorem 3. There is a positive constant C such that if p > 2 and fe. 2 then

— / |zJ/ (z)lpd0 <------------ - ------ • (18)
2jt o (1 - r)P-» k '

If p> 2 and /6 2 then

lim |(1-r)P"‘— /"iz’/'Wl'’^? = 0. (19)

r-1 ( 2ir o J

Proof. Suppose tliat /6 2 and /has the expansion (1). Parseval’s formula implies that

— /’lî’/'Wl’ dû = 1 + 2 nJ |«nlï*ï("*1>. 
2rr o ’ /!■ t

(20)

Sincern»* (1 -r)< max r"* 1 (1-r) = (
>1 + 1 

zi + 2

nr1^* » <
>1

>1 + 1

>1 + 1 

>1+2 l-H

>i + 2

1

2(1 -ra)

0 < r < 1
\n+ J 1

it follows r that

, for 0 < r < 1 and

n = 1,2,... This inequality and (6) imply that 2 n2 1 a„ 12 r2 + 1 > < ——-—-—.
n-i 2(1—r)

Because of (20) this proves (18) in the case p = 2 and with C= 3/2.
Now suppose that p > 2. We apply (2) and (18) in the case p = 2 to obtain

K 2b i
1 /”|z3/‘(z)|’d« <1

(l-rV* 2(1-r1) 2(l-r’)p-‘ 2(1- r)p"1
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We next prove (19) in the case p = 2. If N is any positive integer then from (20) we 
find that

1 J» • • , W-r , , 1
— / |z?/'(z)|lr/0< 1 + E n1 |a„|a + —------ --  -
2»r o n-i 2(1 — r3) n«yy

2 n|a„|a . (21)

Suppose that e > 0. Since the series in (6) converges there is an integer N so that

«• * W - l , .
£ n |a„ I1 <e. Next 6 is choosen so that 5 > 0 and (1 —r) [1 + E n* |a„lJ ] <e/2

n-N n - l

whenever 1 —6 <r < 1. Because of (21) this proves that (1 —r)— f2* |z3/(z)lJ dO~*Q 
asr-1. 2no

Now, suppose that p > 2 and f & £. Inequality (2) and (19) in the case p — 2 imply 
that

1 3w
° f) * 2tr o |z,/'(2)lpt/0<(l-r)p"‘

(1

1 3.

‘ 2n o <(1-/)T" asr-i.
2rr o

Inequality (18) cannot be improved in the sense that if

zi(P) = sup max -j(l-r)p*1 — f Iz’/'(z)|p dOi (22)
o < e <» /e £ (, 2rr o 1 1 J

then A (p) > 0 for p > 2. We need the following inequalities:

(a + b)p <ap + bp (a>0, b>0, 0<p<l), (23)

(a + i)p<2p"‘ (ap + bp) (a>0, b>0, p> 1) . (24)

These are proved in [2, p. 57) and combined assert that (a + b~f < Cp(ap + bp) 
where Cp > 0. If f is defined by equation (3), then to emphasize tliat / depends on r we 
write /(z) - fr(z). Since zJ//(z) = - 1 — [(1 — r1) z’/(l - rz)1) we conclude that

1 2 it „ _ , „ - „ 1 2 w 1
— J I z1 //(z) lp dO >Cp(l— ?)p rip — / --- -------—
2k o r 2rr o 11— rz

dO-2k. (25)

Where, as usual, z = re10. There are positive constants Dq so that if q > 1 andz = Re16 
then

1 1 D„
d0>

2k i 1 1 - Z;\“ (1 - /?)*»-*
(26)
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[8, p. 262]. If (26) is used in (25) we see that

^-'/’|2J/,’(a)lp<tt> 

2»r o

Cp D2p rip 
(l-r1)^*

-1

whenever p > M. This implies that A (p)> (Cp D2p)I (2P~ l) whenever p>Vz. In 
particular, A (p) > 0 for p > 2.

The problem of the determining the best estimate on

7- ;”'l^/’(z)lpt/e
2w o

where /6 2 and p < 2 seems to be difficult. The best known result in the case p = 1 is 
the assertion that

Is»,, A
— / l2J/(i)l^< -----------------------------
2n 0 (J- r) 1/2-1/300

[1]

for a positive constant A.
3. Analytic, univalent functions. If f 6 2 then there is a complex nuber c so that 

f (z) * c for 0 < I z 1 < 1. Thus the function^ = l/(f—c)6Sand — [(g’(a))/(£J(z))] — 
= f '(a). Conversely, if g 6 S then / = (l/g) € 2 and f '(a) = — [(g'(z))/(£5 (a))]. This 
implies that

:*65}= {Z'^i/ez} (27)

S V4*)

whenever 0 < 1 z | < 1.
Because of (27) the results about 2 described in section 2 have equivalent formulations 

for S. For example, inequality (2) implies the sharp inequality

I I < 1
I gJ(a) I 1 - | a |J

where g 6 5 and | a | < 1, and inequality (18) implies that if p > 2 and g e S then

2n

z1 g'(z)
\pd0 <

C

0-r)p-‘

The arguments used to prove Theorems 1, 2 and 3 may be adapted to resolve similar 
problems for the derivatives of bounded functions in 5. We shall outline how the argu­
ments proceed and point out that the resultsdo not depend on the normalizations given 
forS.

Suppose that g is analytic in A and
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g(z)= S bnzn, (\z |< 1) .
n« 0

If# also satisfies I #(z) | <M, (|z 1 < 1), then 

M

(28)

(29)I *’(*)!<
1 -|x I3

[5, p. 330J. If, in addition, g is univalent in A then as# maps A onto a set having area at 
most TiM2 we conclude that

S n | b„ 1» < M2 
«■ o

(30)

The following theorem is a consequence of the convergence of the series in (30) and 
the proof is similar to the proof of Theorem 1.

TTieorem 4. If g is analytic, univalent and bounded in A then (1 — r)Af(r)-*0asr-* 1.
Theorem 4 is sharp in the sense described in Theorem 2. This actually is shown in 

the proof of Theorem 2 where an extremal function g for this assertion is# = <t>, and say 
M => 1. The assertions of Theorem 3 also hold where/is replaced by g (and g is analytic, 
univalent and bounded). The argument depends on the inequalities (29) and (30). In­
equality (18) is replaced by

1 „ CM1
— /It1 g'(z) |P d6 < -- ------- (31)
2ir o (1 - r)p 1

where C is an absolute constant and p > 2.
4. Bounded, analytic functions. We now examine problems about the growth of |#'(z) | 

where g is analytic and bounded in A (and not necessarily univalent) and for simplicity 
take the bound to be 1. Let 8 denote the set of functions g that are analytic in A and 
satisfy | g(z) | < 1 for | z | < 1.

Inequality (29) asserts that if# e B then

|#'(z)|< , (|z|<l). (32)
i I z |

Equality in (32) at z = z0 (| z0 I < 1) occurs only for the functions

z—z0
#(z)=x------ -- — (33)

1 — zoz

where | x | = 1.
Since g in (33) depends on z0 it isn’t clear whether there is a functiong in 8 for which
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lim (1- r) M(r)>0. (34)
r -»1

We now provide an example where (34) holds. Suppose that

'w'-

where | z* | < 1 and

*2^ (1-|zt |)< +~. (36)

Condition (36) ensures that (35) converges in A uniformly on compact subsets [2, p. 19]. 
Since

I/(-’„)! = -------------- II
1 — | |3 itn

-k

-* *zi
(37)

1

inequality (34) holds if there is a positive constant 5 so that

II
k * n 1 ~ -k-n

>5 for zi = 1,2,... (38)

Inequality (38) is the definition that ( zjij is uniformly separated and a sufficient condi­
tion for this is

l-l-’iv, |<C(l-|z*|) for A = l,2,... (39)

where 0 < C < 1 [2, p. 155]. Thus, by letting I Zjt | -* 1 geometrically we obtain our 
example. The example becomes even more interesting if is also choosen so that
each point on 3 A is a point of accumulation of J

The argument given to prove that (39) implies (38) shows that 

z„ ~ z* I . T - 1 - Cn V
11 —" T-~ >11 ------ ZT • (40)

k * n 1 — zk zn I L n" 1 1 4 C1 J

Since the right-hand side of (40) tends 1 as C -» 0 we see that to each number A so that 
0 < /1 < 1, there is a function in 8 for which

Urn (1 -r1) M(r)>A . (41)
r — 1

We raise the problem of whether there is a function in 3 for which
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Urn (1 - r2) A/(r) = 1 . 
r-* I

We next examine the growth of the integral means of the derivatives of functions in 3. 

The first theorem determines the exact upper bounds for these means when 0 < p < 2. 
The following inequality is needed for that argument.

Lemma. Ifmisa non-negative integer ami

in m+l
---------< r <----------
m+l m + 2

(42)

then

nr"~ 1 <(m + 1) rm for n — 1,2,... (43)

Proof. We may assume that r > 0, and we let n0 = — 1/log r. Since the functions 
y = x — log (1 + x) and/ = log (1 + x) — [x /(1 + x)J are increasing for x > 0,

1
k<----------------------- <A+1 for * = 1,2,...

(log(l+ {))

k

Applying this inequality and (42) we conclude that

m<n0 <m + 2 . (44)

The function n(n) = nrn~ 1 (n > 0) is increasing for 0 < n < n0 and decreasing for 
n > n0. U n varies over the posture integers then (44) implies that the maximum of p 
occurs at m, m+l or m + 2. Now, jr(m) < n(in + 1) as this is equivalent tor > 
> m / m + 1. Also, ju(m + 2) < n(m + 1) since this is equivalent to r2 < (m + l)/(m + 2), 
which follows from r < (m + l)/(m + 2). This proves (43).

We also note that equality in (43) occurs only for n = m + 1 when m / m+l < r < 
< (m + 1) / (m + 2) and only for n = m and n = m + 1 when r = m / m + 2 .

Theorem 5. If g G B and 0 < p < 2 then

— f" I g' 0) lp d0 < (m + 1/ rm* (45)
2w o

where in is the greatest integer in r / (1 — r).
Proof, m is the integer for which m < r / (1 — r) < m + 1 and this inequality is the

same as (42).
If g e 3 andg lias the representation (28) then

£ 
n - 0

(46)
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[2, p. 8J. The Lemma assert that if A(r) — sup •( nrn~ 1 : n — 1, 2,... Jr thenX(r) = 

= (m+ 1 )rm. Thus,

— /’lg'(z)prZ0 = 2 l)<X’(r) 2 |/»„P<X2(r).
2rr o «■ l n-1 .

This proves (45) in the case p = 2.
Now, suppose that 0 < p < 2. Holder’s inequality completes the proof, as follows

4~ <2rr o

•f~ /’|g'(z) P <70 J P < £(m + l)2r2mj p'2 = (»n + iyV”’

The argument also shows that if m / m + 1 < r < (rn + 1) / (m + 2) then equality in 
(45) holds only for the functions g(z) = xzm * 1 where | x | = 1. When r = m / m fFll 
equality occurs only for the functions f(z) = xzm*1 and#(z) =■ xzm where |x j = 1.

The precise upper bounds given by (45) grow with the same order as the *trivial’ 
estimates given by (32). Namely, (32) implies that

4" /'lg‘(z)lpdO < —
2rr o (1 H)

which is asymptotic to 1 /[2P (1 — r)p] asr■+ 1. On the other hand, whenr-m/1 
the right hand side of (45) becomes (1 / (1 — z)p] rp^^* '^1, which is asymptotic to 

1 / (ep (1 — r)p ] as r -* 1.
Inequality (45) cannot hold for large values of p. This is a consequence of the fact that 

if g is analytic in A and 0 < r < 1 then

lim |— f |g (z)|pt/0| *P = max |g'(z)|. (47)
p 1 2rr o / izI-r

If we let g(z) = (z — r) / (I — rz) then the right hand side of (47) is 1 / (1 — r3) and if 
g(z) — xzn (lx 1 = l)then

■£nr"" 1 : n = 1,2, ...J< 1/(1 — r2), whichOur assertion follows from the inequality sup 
is not difficult to show.

Theorem 6. If g G B and p>0 then

lim j(l~r)p /’'l«'(z)lpJfl ? =0. (48)
r r ( 2rr o J

Proof. Using the notation in the proof of Theorem 5, we see that if N is a positive in­
teger then
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— I2'\g'W\2 dO<Ni' n* |b„|J + 2 n2 
2ir o

(49)
n « I n-A

If n > 2 then

„ , 1 [n-l\
max (1 - r) rn = - 

o < r < 1 n \ n

and thus

nrn- I
<n-\ \

2(l-r)
for /1 = 2,3, ...

1-r \ «

1

Applying this inequality in (49) we conclude that

(1-r)1 — /'|^7OI3‘tt<(l-O, + K 2 IMl. (50)

2rr o n • J n - N

Because the series (46) converges, by first choosing N large and then letting r -* 1 we con­
clude from (50) that (48) holds in the case p = 2.

If 0 < p < 2 then Holder’s inequality Implies that

(1 - r)* — /” 1 g' (z) |* dO < (I-r)P f ~ /' |g'(z)|J dO ■ 

2rr o I 2rr o

f Is. 7 p'2

p/3

Since (48) holds in the case p — 2 this proves (48) when 0 < p < 2. 
If p > 2 then inequality (32) implies that

(1-r)* 4- /’|«'(OIP dO < (1 - r)P 
2n o

1 1 ,
-------------------— S lx CO P dO =(1-r1)*'3 2rr 0 * 1 71

0
asr-* 1.

Theorem 6 is precise in the following sense. If e is a positive function on (0,1) so that 
e (0 •* 1 as r -* 1 then there is a function g in B for which

(l-0p 7" /'l*'(Olp dO 
— 2ir o
lim ----------------------------------------------------- = "» .
r -* i e (0

(51)
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The proof of this fact is implicitly contained in an argument in [4, p. 219-222]. The 
appropriate function g, which is constructed in terms of e, has the form

g(z) = 2 a„zvn, (|z|<l) (52)
»• I

where V is a specific sequence of positive numbers for which 2 an < 1. The 
n ■ 1

sequence ^Vn\ of positive integers is increasing and selected to tend to °° sufficiently 
fast. The actual argument assumed that 0 < p < 1 since it relied on (23). When p > 1 by 
appealing to (24) the same argument is possible. Thus. (51) holds for eachp > 0.
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STRESZCZENIE

Badane są problemy wzrostu pochodnej i niektórych średnich całkowych w klasach funkęjl 
jedno Ustnych.

РЕЗЮМЕ

Изучаются проблема! роста производной и некоторых интегральных средних в класах 
однолистных функций.




