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A Property of Convex Mappings
Wtasnos¢ odwzorowan wypuktych

CBoficTBO BIMY KLIX OTOBpaXeHHA

Let S represent tne class of functions f(z) regular and univalent in the open unit
discy, A= {zEC: 12| < 15 , with the usual normalization

f(0)=0 and f'(0)=1; 0

and, forain 4, let

Pl

z 1+a¢
)= [ ————— dt. 2
fEay= 1 @ (2

For any admissible value of a, f(z; @) is locally univalent throughout the disc A and
f(z;0) = f(z). It is reasonable to ask about conditions on a and f(z) under which f(z;a)
is in S and the purpose of this note is to do so.

If f(2) is normalized as above and if Re J f“(2) ¢ > 0, z in A, then it is well-known
that f(z) is close-toconvex and hence in S, [1]. It follows that f(z; a) is also close-to-
<onvex for each @ in A. On the other hand, it we let k(z) =z / (1 — z)?, the Koebe
function, and let
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k(z;0)= [ —————— d{ = 2+ Ay(@) 2% +...
° k' (a)



98 R.J. Libera, E. Ztotkiewicz

then

(2+a)(1 —1a1?)

1—a?

k"(a)
2k'(a)

Ay(a) = *(1-lal*)= (3)

for any a in A, If we choose 0 <a < 1, then
As;(@)=2+a>2;

this means that k(z; a) is not one-to-one [2] and hence not in S. Consequently every
neighborhood of the origin contains points a such that for some function f(z) in S the
function f(z;a) is not in S.

These examples show that both extremes of behavior are possible for various sub-
classes of S. The next result shows that the operator (2) does preserve univalence when
Sf{A] is a convex domain.

Theorem, If f (2) is convex and in S, then f(z;a) is close-to~convex and in S provided
la| <+/2 [ 2. This conclusion is best possible.

By subjecting the integral (2) to a change of variable replacing [(§ +4) / (1 +a ¢))
by a new variable, say 7, and by suppressing constants which play no role in univalence
o- in the definitions of convexity and closeto-convexity, we see that the univalence of
S (2, a) is equivalent to the univalence of

: [
F@ a)= [ ————
@z a) 6{ (= e dr “)
Now, if |a| <2~ 2, then
Fea |, (1 —az| < 2arcsin|al < X (5)
ang —— ar, = arc sin |a e
T 5 2

and F(z:a) is close-toconvex with respect to f(z).

To show that the constant 27"2 is best possible we construct an example such that
F(z: a) fails to be univalent in A for some a, |a| = 27Y3_ If, in (4), we chouse f(z) =
=2z /(1 — bz), then f(z) is a convex mapping of the disk and

F@z o b)= z dr
@ a0 = ey A=y

If we choose @ = b, in (6), then F(z; a, b) fails to be univalent only when|al >3 /2; -
however, it we let a and b be positive and different, then

o i az bz 2ab 1 —b2 j
F(z; a,b)=(b—a) + + log ( ) O]
—a l1—az

&l—az 1— bz b

(6)
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and we can show F(z; g, b) is not univalent in the disc for appropriate choices of g and b.

F(z; a, b) has real coefficients and maps the interval [— 1, 1] onto the real axis; if
F(z; a, b) is univalent no point in the upper half of A maps onto or be fow the real axis.
If we let z = ef? ,then

a® sn 6 " b2 sin 6
} +4a* —2acosh 14# 5* —2b cos 6

2ab ~ asin@ -1 bsin b
3 {tm (/) —tan™! (mo0—m—)
-a

ImF(e'; a,b)=

Lettingao = V2 /2,bo = (V2 /3) + (v/3/6) and 6 = m—(1/10?), we find, with tne aid
of an Apple Il(programmed with our thanks, by W. E. Baxter), that Im F(e‘?; a,., b,) <O.
This shows that F (e'®; a,, b,) is not univalent in A. This concludes proof of the theorem.

At this point one might ask if the conclusion about close-to-convexity in the theorem
can be replaced by convexity. If we choose f(2) =z / (l — e 2), le| =1, then the
coefficient of z? for f(z; a) in (2) is A2(@) = [e (1 — |al*)} /(1 —ea); now, for anya
inA,a= ” Jdete=e =L , then we find that4,@)=1+p=1+q|. However, for a
convex functxon | Aa(a) | cannot exceed 1, consequently f(z; a) is not convex;and we
conclude that for each a in A there is a convex function f(z) such that f(z; a) is not
convex.

Had we been able to show that f(z; @) was convex for each convex f(z) and a in some
neighborhood of the origin, we would have shown that the transformation (2) gencrates
a variation for the class of convex functions.It may be possible to show this for other
subclasses of S or to replace the linear transformation in (2) by some other mapping
of A into A,
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STRESZCZENILE

Dowodzi sig, ie jeeli fjest funkgq holomorficzny i wypuktqw kole |2 | < 1 zaé|a|< 1/\/2 to

z
atka [ f'[(@a + w)/(l + au)] du jest funkcjy jednolistny. Stata 1/\/2 jest najlepszq z motliwych.
0
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JloxasuBactca, wro ecau f GyHiuna ranoMopHa # Bunykna B kpyre [z | < 1 n |a| <1/\/7

TOIma MHTerpan j', ' [@ +w/(+ T W) du dynxuns onHoaucta. Koncranta 1/\/2 caman
0
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