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Some Remarks on Univalence Criteria

Pewne uwagi o kryteriach jednolistności

Некоторые замечания об условиях однолистности

1. Introduction. The purpose of this paper is to establish some theorems representing 
univalence criteria for regular functions. A fundamental role here is played by Theorem 2 
as a preparatory theorem for other results. The proof of this theorem is based on Theo
rem 1 which is due to Pommerenke [3], (Corollary 3).

We begin with some notations: (T - the comoex plane; 1R = (— °°,«>o); E, = {zGlt:
I z | < r - the closure of the set A; S2 - the class of functions tu which
are regular in £ and such that | u (z) | < 1 for z G E; K (£, R) — the open disc of the 
centre £ and the radius/?.

Theorem 1. Let r0 G (0, 1 ] and let f (z, t) = a} (r) z +..., at (t) #= 0, be regular in Er<) 
for each t € [0, °°) and locally absolutely continuous in [0, °°). locally uniformly with 
respect to Er>. Suppose that for almost all r G [0, °°) f satisfies the equation

9/(z. t) = df(z, t) 
dt 3z

p(z, t), zeErt

where p (z, r) is regular in E and Re p (z. r) > 0 for z G £. If | a, (f) | -* °° for t -*■00 and 
if ff (z. f) / di (r)J forms a normal family in Er>, then for each t G [0, °°) f (z, t) has a 
regular and univalent extension to the whole disc E.

2. The main results. Before the formulation of Theorem 2 we shall give a trivial but 
usefuL

Remark 1. Let D C (T be a convex domain such that its boundary HD does not contam 
any rectilinear segment. Suppose that A G D \ { a j and w(X)=M+(l - XJSGfl 
for some X G [0.1] and a G 3D, where A B. Then w (Xo) G D for each Xo G (X, 1).
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We assume throughout the whole paper that a, s. k are fixed numbers and such that 
a > 54, s = a + ip, a > 0,0 e 1R, k = a/a.

We come now to the formulation and proof of
Theorem 2. Let f (z) = z +.... and g (z) be regular in E with f'(z) #= 0 and such that

zf'(z)___— < a I* *

/(z)g(z) a a
¥

If

0)

|Z| 2<c z/'(z) z/"(z) . 2g'(z)‘

f(Z)g(.Z) L /(2)

holds for z&E then f is univalent In E.
Proof. We consider the family of functions

+ J-
*(z)

as

a

a|s|
(2)+ (1-1*1’*)

/(z.0=/(2e-,')[l + (e2fl/ —1) g{ze‘,,)Y, te. [0,«»). (3)

It follows from (1) with f \z) #= 0 for z G £ that/(z)g (z) * 0 for z e E. Put A (z, r) =

~ 1 + (e2af — 1) g(ze~ft),g(0) = c0-Front (1) we obtain Re—”•> &thusc0 (~ 0]

and there exists a number p > 0 such that |/l(0,Z)| = 11 + (e2a/ — l)c0 | >p for each 

t 6 [0,«»). It follows that there exists a number r, > 0 such that A (z, Z) =# 0 for each 

/ e [0, °°) and z G £^. We have also ff(O, t) = [e"r + (e<,a“,lr — e~r) c0]* # 0 and

because a > 14 | fz'(0, Z) | -♦ *». as Z ■+ “»; here/2'(0, Z) denotes this continuous branch of 
the power for which//(0. Z) = 1* = 1. It is not difficult to verify that |/(z, Z)//z'(O,z)J 

forms a normal family in Er> and that/(z, z) is local absolutely continuous in (0, °°) 
uniformly with respect to Eft if r0 = r,, say. This is guaranted, among other, by
uniform continuity of //(z, t) on [0, T] X E,t where 7’>0 is an arbitrarily chosen fixed 
number.

By simple calculation we obtain

//(2,0 (2 t}__s+ ______________ __________________ (4)
Z) , Sf'U) +

( «a) J

where f ■=> ze ' ,l. Let us denote by d (z. Z) the denominator of the right hand side of (4). 
It follows from the definition of f (z) that d (z, 0) ¥= 0. Replacing z by f in (2) and 
putting X = If |’* p |zl2*e_2*r“, X« = e~iat, by definition of k we obtain 
XXi* = |z|2* < 1. Hence, for fixed z G£ and ZG [0,«®), we see from (1) and 

Remark 1 thatd(z, Z)G£ (as/a, a |sl/a),if^4(f) #=£(f)ord(z/z)^£(ai/a,als|/a) \{0$,
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if X (f) = B (f). Simultaneously we have d(O,f) = e"2a,c‘ff‘ + (1 -e~ iot). (1) implies 
ci * &K (as/a, a |j|/ot)\{O}. Also, it is easy to verify that 1 (as/a. a |j|/a).Then, 
by Remark 1, we obtain d(0, t)&K(as/a, a \s\/a) for rG(0, °°). Thus, for eachf G(0, °°) 
and z € E we have

(5)

Hence, p (z, t) is regular in E for each fixed t G (0, °°). From (4) we also obtain that in
equalities Re p(z, t) > 0 and (5) are equivalent. Thus Re p(z, r) > 0 for each t6 (0, °°) 
and z G E. In addition Re p(z, f) > 0 for z G E. By Theorem 1 f is univalent in £ The 
proof of Theorem 2 has been completed. .

Let us observe that Theorem 2 can be stated in the following equivalent from 
Theorem 3. Let f(z)-z +... be regular in E with f '(z) =# 0 there pnd put

z) = (l -i)
/(z)

+ s(l +
z/"(z)

Z'(z)

z w'(z)

for z G E. If there exists u G £2, to =# eiy and y = arg s such that

(1 - |z\i)[a/aH,(f, w, z) + Is | w-s] -
|s| (o(l - |zI?) 

1 — |z|’M

< 1*1(1 —|z|a) 

l-|z|SK
(6)

holds for some a>\i,s = a +iP,a>0,K -a/a then f is univalent in E.
To see this we chooseg(z) = (z/'(z)//(z)) [(as/a) — (a \s\/a) w(z)]"* which satisfies

(1) then a straighforward calculation shows that (2) and (6) are equivalent.
3. Corollaries and applications. If we assume s = 1 then by Theorem 3 we obtain 
Corollary I. Let f be regular in E with f '(0) o. If there exist a number a > % and a

function w G n, w #= 1 such that

|z|Jflw(z)-(l -|z|’a)
f 1- g + £ RAz) + zcu'(z) I J 
I a a L/'(z) !-«(?)]} <1 (7)

for z&E then f is univalent in E.
Assume now a > H and w = (1 — a)a~l. Corollary 1 yields 
Corollary 2. Let f be regular in E withf'(0) =# 0 and let

a — 1 — (1 — |z|aa)
z/"(z)

Z'(z)
< a. (8)

then fis univalent in E.
The above statement had been obtained earlier by the author and J. Szynal at another 

occasion. Corollary 2 in turn implies the well known univalence criterion, c.f. [1].
We now give some applications of Thorem 2. To this end we will introduce some
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notations. Let H and G denote such classes of functions regular in E for which/(0) = 
- f '(0) - 1 « 0 if fe H and g(z) * 0 for zG E ifg e G. Put fr(z) = (1 /r) /(rz) for /€ J7 

and gr(z) = g(rz) for g EG.
Let us observe now that inequalities (1) and (2) can be written in following forms

lz|ł«e-'ł

/(№)
(9)

z/'(z) + 

Z(z)g(z)
(1 — |z|,K)e_<7

zg'(z) 1 tfjsl 

g(z) J a

a |s|

<<10)

+ S <

which are equivalent to (1) and (2) respectively.
The limit case a ■+ °° suggests the following
Corollary 3. Let f £ H and g EG. Then f is univalent in E provided the conditions

D T -/v *Z'(Z) 1
L Z(z)g(z) J>0Z<wz££««f

Refe-/TM?U, ^l]}>0forze, l L zw g(2) J J

do

(12)

hold for some x = a + #, a > 0,0 £ IR, where y = arg s € (— it/2, ir/2).

Proof. 1° We assume first that Re fe",y —1 > 0, for z ££ Let TPdenote

L Z(z)g(z) J 0
" k

the class of functions p(z) = 1 + 2 p* z ,z ££ that satisfy the condition Rep(z)>0. 
Jfc-t

It is well-known that if S = (1 + r2) / (1 — r2), R = 2r / (1 — r?) then I p(z) — S | <R

for z in 0 <r < 1. Put ^4(z) = e",y—— and £(z) = e ",7 f-+ j. * - ? j.
Z(z)g(z) lZ(z) g(z) J

It is easy to verify that A (rz) = e~iy---- — and B(rz) = e~,y [~ — - + x 1
Zr(z)gr(z) L Zr(z) gr(z) J

In the considered case, by definitions and hypotheses of Corollary 3, A (z) and B (z) have 
positive real parts in E. Hence by an easy calculation and the mentioned property of p £ 
we conclude that for a fixed z EE, A (rz) and B (rz) lie in the closed discs K(Slt Rt) 
and K. (Sj, Rj) respectively where Re(S, —R,)= [(I — r)/(l + r)) a0 1'* cos (7 + arg<r0) 
and Re (S3 — Ri)= [(1 —r)/(l + r)] cos y,a0 = g(0). In addition in view of the assump
tion Re [ e~iy zf'(z) I (f(z)g(z))] >QiotzEE there is — ir/2 < arg a0 + y < rr/2. Also 

— rr/2 < y < it 12 by the assumption of the corollary. Hence Re (S, — Rt) > 0 and 
Re (St — R2) > 0. Thus we obtain that there exists a > 14 and such that (A (S,. Rt) U
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U K (Sj, £,)] C K (a |j| /a, a\s\ I a) for a fixed r€(0,1). Hence A (rz) and 2? (rz) are 
contained in K (a |i| I a, a |s| / a). Simultaneously for each fixed ztE I lz|J*X(rz) + 

+ (1 —|z|J*)B (rz) | 6 K (a |s| / a, a (il I a). Thus/r(z) and£r(z) satisfy (9) and (10) 

and fr(z) is univalent in £ by Theorem 2. Hence f as the limit oifr for r-» 1 is univalent 
inf.

2°. Suppose now that Re £c'/7 zf'(z) I [/(z)#(z)] j = 0 at some points of E. From 
the minimum principle of harmonic functions we obtain Re [ e~ly zf'(z) / [/(z) g(z)] j = 
= 0 for z € E. Thus { e 'ly zf \z) I [ /(z) g(z)] J = ci for some c e IR. Hence cig (z) =

= e*'7 zf'M
and consequently

HM = 1 + 

£(2)

^"(z) z/’(z)

/’(2) /(Z)
. Thus Re{e-'7 [(1 -

-1) zf '(z) I f (z) + s (1 + zf ”(z) If ’(z))]} > 0 for z € £ by (12). We can write the last 

inequality in the following equivalent form

Re ■ ,-iy
. ,1V'W . . , |WM 11

-'’'JTÜT + 1,1 LTw JJ > 0 forz €£, (13)

which is a known sufficient condition for univalence of f [2]. The proof of Corollary 3 
is complete. From Corollary 3 we will deduce here two results first of which is equivalent 
to Corollary 3.

Corollary 4. Let f G H, p e TP and let a, y, 0O be fixed numbers such that a. > 0, 
7 6 (- ff/2, it 12) and (7 + <t>0) (- it/2, it 12). Then f is univalent in E provided

Re
/(2)

a [l + 2/"(z)

Z'(2)

2P'(Z)

p(z)+ /tg (7 + 0O)
>0 (14)

for :S£.
Proof. Let us put in (11) e" 7 zf '(z) / [/(z)g(z)] = p0(z), Rep0(z)> 0 for z S£. 

If Re Po(z) = 0 at some points of £ then from case 2° of the proof of Corollary 3 we 

obtain (13) and consequently f is univalent in£. Thus we may assume that Re p0(z)> 0 
for z e £. By the choice ofp0(z) we obtainp0(0) = |c0|*1 wherec0 = s(0),
0o = arg c0. In addition (7 + 0o) e (" ff/2, w/2) because Repo(O) > 0. Hencep0(z) = 
= p(z) |c0r ‘ cos(7 + 0O) + i ko I" 1 sin(7 + 0O) wherep 6 2P. Moreover 
2g'(z) _ + zf"(z) _ z/'(z) _ zpo(z) ZPo(z) _ zp'(z)

«(2) Z'(2) /(z) Po(z) * Po(z) p(z) + /tg(7 + 0o)

Combining these equalities with (12) we obtain

Re 4 (e,-h— lil)
2Z'(2)

Z(2)
+ |i| II

zp'(2)

p(2) + i tg(7 + 0o)
>0

(15)

L t w J
}

for |s| > 0, 7 = arg s. ThusZis univalent by Corollary 3. We may take |s, = a>0. If now 
a = 0 in (13) then f is a spiral-like univalent function. The proof of Corollary 4 has been 
completed.
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Remark 2. Let B denote the class of functions/6 H which satisfy Corollary 4. It is not 
difficult to verify that B is the well-known class of Bazilewich (c f.p.ex. [3], p. 166). To 
see this one ought to solve the differential equation

»A»)
/(») L /'(»)

zp'(z)
Pi(z).+ a

PCO +i l8(T + *o).

where p, (0) = e ',y and Re pj (z) > 0 for z S £.
Corollary 5. Let p (z) = 1 + p,z + 6 QP with Pi =#= 0. Then p is univalent in E

provided for some a>0 the Inequality

J 2rtJ) +.r,+ 2p'(») zp'(z) Tj

[p(z)-i L p(*) P(z) P(z)-lJJ

holds in E.
Corollary 5 follows from Corollary 3 by taking

Pi

*p'(O

P(»)№(»)-!] ’
and 7 = 0.

We come now to concluding remarks. The consideration contained in the proof of 
Theorem 2, from the very beginning to relation (4) is similar to that in [5], [excluding 
some modification as in nature].

A similar consideration can be also found in an earlier paper of Ruscheweyh [4]. 
But we inserted in the paper the mentioned fragment of the proof of Theorem 2 for the 
considerations to be complete.

The paper [5] contains a fundamental result which is stated as Theorem 1 and yields 
a sufficient condition for univalence of a regular function. Tliat theorem can be applied, 
as it follows from its proof, if a > a only, while Theorem 2 can be applied without tliis 
restriction. We showed here that Theorem 2 is more general than Theorem 1 from [5] also 

in the case 0 < a < a.
To this end we will now cite? Theorem 1 from [5] as Theorem 4 almost literally,
Theorem 4.Lef/(z) = z +... and P (z) = 1 + ctz +... be analytic in E,f(z)f'(z)/z 

andP(z) be different from zero for z in E and s = a+ip,a>H,0<a<af

M = (a/a) | a | + ((a/a) - 1) | s + c P (z) |, 

where c^O is a complex number such that

I j + cP(z) I <(a |s|) / (2a-'#) . 

77iezi /(z) is univalent in E if

(16)

(17)
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/(2)
+ s (1 +

2/"(2)

/'(2)

2P’(2)

P(2)

jl-p + clîl’PCz)

< M (18)
for z in E.

Note that relations (17) and (18) can be written as a single inequality which is 
equivalent to (17) and (18). Essentialy, (17) implies that there exists uCfi such that 
s + cP(z) - |s| w(z) with | w(z) 1 < a / (2a a) < 1 for z EE, where a /(2a — 1) = 1 
iff a = a. Combining this with (16) and (18) we get by suitable transformations, the 
following inequality

d-lzp) [J//f(z.Z.w) + |i|«(z)-î]-|î|«|< J Isl + (£ - 1) |s| |co(z) | , 

(19)

2 w'(2)zf'(z)
where Hs(z, /, w0) = (1 - ») —— + z (1 + —7— , --------—

/(2) f (2) e'T - w(z)
The relation (6) in Theorem 3 can be written in an equivalent form

)., y = argj.

(I-I2I3) co) + |i|co(z) — Î ■ |s|w(z)0(|z|, — 
a

<mi2|.-), (20)
a

a I —|z|*
where 0(|z|.-)- —, z££.

Note, that 0(x; X) = (1 — x?)/(l — x5*)decreases in [0,1] from 1 to 1/Xforeach 
fixed X > 1 and 0 (x; 1) = 1. Note, that we assume 0(1) = lim 0(x, X) = 1 /X and

x»i~
0 < a < a by the hypothèse. Let now z € E be a fixed point. It ,can be verified by using 
the mentioned property of 0 that K ( |s| w(z) 0( lz|, a/a); |s| 0( |z|,a/a)) contains 
the circle K ( |s| w (z) a/a; Is I of a). Thus every function f which satisfies the inequality

(1 -|z|1)^Z//(z,/,«)+|s|w(z)-sJ-|s|w(z} j- _ , « 
< isl - 

à
(21)

for a fixed to € £2 satisfies also inequality (20). This is so because z EE was arbitrarily 
chosen. Hence we obtain the following

Corollary 6. If f satisfies the assumptions of Theorem 3 and it is subjected to (21) then 
f is univalent in E.

Note that a reasoning similar to above implies that every function satisfying (19) 
satisfies also (21). Hence Theorem 4 is a special case of Theorem 3.

Remark 3. We can also prove an analogy of Theorem 2 with an application to a 
function g of the formg(f) = f + b0 + b, f * +... which is regular in£° \ {“>} where 
E° - {f e <E : If | > 1^ . The following theorem is true.

Theorem 5. Suppose that g(f) = f + b0 + bi fl +... and h(f) =■ 1 + Cjf3 +... are
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regular in E° \ and E°, respectively, with g'Qf) =£Qfor$& E°. Let for some
numbers s = a+i0, a > 0,0 e JR, li<a< a the inequality

< д iJi
g(f) ft(f) tt л

hold in E°. If the inequality
«

in1*
gtf) A(f)

+(1 - Ifl1*)
as

a

holds for S<=E° and n-a/a then f is univalent in E°.
Detailed considerations are contained in another paper which is to be published in

Annales Polonici Mathematlci (1985).

REFERENCES

[1] Becker, J., LOwnersche Dlfferetialglelchung und quasikonform forlsetzbare schlichte Funk
tionen, J. reine angew. Math., 255 (1972), 23-43.

[2] Eenigenburg, P. J., Miller, S. S., Mocanu, P. T. Reade, M. 0.; On a subclass of Bazlie té 
functions, Proc. Amer. Math. Soc., 45 (1974), 88-92.

[3] Pommerenke, Ch., Über die Subordination analytischer Funktionen, J. reine angew. Math., 
218(1965), 159-173).

[4] Ruscheweyh, S., An extension of Becker’s univalence condition. Math. Ann., 220 (1976), 
285-290.

[5] Sing, V., Chichra. Pran Nath., An extension of Becker’s criterion of univalence, Journal of 
the Indian Math. Soc.. 41 (1977), 353-361.

STRESZCZENIE

Praca zawiera następujący wynik podstawowy
Twierdzenie 2. Niech a > Yi, s - a + Ifl, a > O,0eR, * « a/a będą ustalonymi liczbami. Załóż

my, że /(z) “ z +... ig(z) są funkcjami regularnymi w £ » {z: |z| < 1 j takimi, że/'(z) * 0 lg(z) * 0 
w £ oraz , że zachodzi nierówność

I z/'(z) _ а 1Л
I /(z)g(z) ~ “ a

Jeśli ponadto mamy

IZ|
z/'(z)

/(z)g(z)
a Ul 

a

to/jest funkcją jednolistną w £.
Praca zawiera pewne wnioski i zastosowania jak również analogon bez dowodu twierdzenia 2 dla 

funkcjig(f) “ t + bt + 6, f 1 +... regularnej w£‘ “ {f: Ifl > l}.
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РЕЗЮМЕ

Работа содержит следующий результат
Теорема X, Пусть я > й. х “ а + /0, а > 0, 0 6 И, к “ а / л фиксированные числа. Предпо

ложим, что функции /(х) ■* +•»>. и/(г) регул лярныв £“ £г::|т! < ,/'(х) ’’О./Ся) *0

для г е Е и такие, что имеет место неравенство

if'W
ММ а

а 1x1

Если кроме того имеем

х/’(г) 
/(х)S(х)

+ (l-lxl’*) х/*(х)
/(X)

xg'(x)
г(х)

Ai
а

+ X

то [ однолистна в Е.
Работа содержит некоторые следствия и применения а также аналог теоремы 2 (без дока

зательства) для функции/(£)■ р + 6, + 6, 1 ‘1 ••• резулярной в Е* ■ Гр: |р| > 1^.




