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1. Introduction. The purpose of this paper is to establish some theorems representing
univalence criteria for regular functions. A fundamental role here is played by Theorem 2
as a preparatory theorem for other results. The proof of this theorem is based on Theo-
rem | which is due to Pommerenke [3], (Corollary 3).

We begin with some notations: @ — the compex plane; R = (— o0, ); £, = {z e
|z1<rl ,E, =E A - theclosureof the set 4; Q — the class of functions w which
are regular in £ and such that | w (2) | < 1 for z € E; K (S, R) — the open disc of the
centre S and the radius R.

Theorem 1. Let ro € (0, 1] and let f (2, t) = a,(2) 2 +...,a,(t) # 0, be regular in E,,
for each t € [0, =) and locally absolutely continuous in [0, =), locally uniformly with
respect to E, . Suppose that for almost all t € [0, «°) f satisfies the equation

af(z.?) B af(z, 1)
vl

2, 1), ZEE,
Y z p(1) r,

where p (z, t) is regular in E and Re p (2, 1) > 0 forz €E. If |a,(t) | = o for t +>and
if {f(t)/a\(0)} formsa normal family in E,,, then for each t € [0, ) f (z, t) hasa
regular and univalent extension to the whole disc E.

2. The main results. Before the formulation of Theorem 2 we shall give a trivial but
useful

Remark 1. Let D C @ be a convex domain such that its boundary 0D does not contain
any rectilinear segment. Suppose that 4 € D \ {a} and w (\) =M+ (1 —\)BED
for some A € [0, 1] and @ € 8D, where A # B. Then w (A\y) € D for each Ay € (A, 1).
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We assume throughout the whole paper that a, s, x are fixed numbers and such that
a>%,s=a+if,a>0,ER,k =a/a.

We come now (o the formulation and proof of

Theorem 2. Let f (z) = z +.... and g (2) be regular in E with f'(z) # 0 and such that

zf'(z) as als|
TR T S 1
f@s@ @ | a @
Ir
e L@ +(l_m,,‘)[2f(2)_Hzg(Z)'J__g alsl
1) g@) /(@) £(2) a a
holds for z € E then f is univalent in E.
Proof. We consider the family of functions
f@=f@e") 1+ 1) g@ze™))’, 1€[0,%). ©)

It follows from (1) with £ '(z) # O for z € E that f ()8 (z) #O0forz EE. Put A (2, 1) =
acey
a

=1+ (€29 - |) g(ze”**),2(0) = co. From (1) we obtain Re > Yathusco & (— =, 0]

and there exists a number p > 0 such that (4 (0,2)| = |1 + (e“'-— 1)co | > p for each
t € [0, =). It follows that there exists a number r, 3 O such that 4 (2, ¢) # O for each
1 € [0,) and z € E . We have also f/(0, 1) = [e™" + (e@9~F —¢~") ¢ ]* #£ 0 and

because a > % | f;'(0, t) | - o . as £+ o; here /z(0, t) denotes this continuous branch of
the power - for which f5(0, £) = 1* = 1. It is not difficult to verify that {f(z. 1)//7(0,0}
forms a normal family in £, and that f (z, ¢) is local absolutely continuous in [0, =)
uniformly with respect to E, if ro = % r,, say. This is guaranted, among other, by
uniform continuity of f;'(z, f) on [0, T] X E,, where T> 0 isanarbitrarily chosen fixed
number.

By simple calculation we obtain

_i}'_(zﬁ_ = p(z,t)=—s+ i g
i e Q| (1 -2t e L wel’
)2@®) )@ 5 |

where { = ze ™ *!. Let us denote by d (z, f) the denominator of the right hand side of (4).
It follows from the definition of f(z) that d(z, 0) # 0. Replacing z by { in (2) and
putting X = [$I3* & |z|%e" %% A, = e~ 3% by definition of k we obtain
A! = 121?* < 1. Hence, for fixed z EE and ¢ € [0, ), we see from (1) and
Remark 1 thatd(z, 1) EX (as/, a 151/a), if A) # BQE) or d (z,t) K (as/, ais|/a) \{0O§,
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if A (§) = B (). Simultaneously we have d (0,7) =€~ 29* ¢! + (1 — e 29%), (1) implies
co ! €K (as/a a Is1/a)\{0}. Also, it is easy to verify that 1 €K (as/a. a Is|/a). Then,
by Remark 1, we obtain d(0, r) € K (as/c, a Is|/a) for ¢ €(0, ). Thus, for each ¢ €(0, =)
and z €EE we have

as | als|
ld@ t)—— |<
o

®)
o
Hence, p (2, ¢) is regular in E for each fixed ¢ € [0, ). From (4) we also obtain that in-
equalities Re p(z, £) > 0 and (5) are equivalent. Thus Re p(z, £) >0 for each ¢ € (0, =)
and z € B, In addition Re p(z, t) » O for z € E. By Theorem 1 fis univalent in E, The
proof of Theorem 2 has been completed. .

Let us observe that Theorem 2 can be stated in the following equivalent from

Theorem 3. Let f(2) = z +... be regular in E with '(z) # 0 there and put

PAO) y'@) 20@)

Blhan=0=9 S 0% Py T F—wld

for 2 EE. If there exists w € Q, w # 'Y and vy = arg s such that

Islw(l—1z1%) st = 1z1?)
<
1_|z|2x l__lzlil
holds for somea > Y%,s = a +ip,a>0,k =a/athen [ is univalent in E,
To see this we choose g(2) = (2£'(2)/(2)) [(as/a@) — (@ Is}/@) w(z)]~* which satisfies
(1) then a straighforward calculation shows that (2) and (6) are equivalent,
3. Corollaries and applications. If we assume s = 1 then by Theorem 3 we obtain

Corollary 1, Let f be regular in E with f '(0) # 0. If there exist a numbera > Y:and a
function w € Q, w # | such that

A=l1z1¥})[e/aHy(fiw 2)+Islw—3])—

O)

f1—a 17z2°¢) z0'(2) 1} l
2a —(1=1z1*% 1 + - + —| <1 7
Ll L AVERRET) 2
for z E E then f is univalent in E.
Assume nowa > % and w = (1 —a)a!. Corollary 1 yields
Corollary 2, Let f be regular in E with f'(0) # 0 and let
@)
a —1—(1-12*9) ‘ 8
Lath? Fre) o

then f is univalent in E.
The above statement had been obtained earlier by the author and J. Szynal at another
occasion. Corollary 2 in turn implies the well known univalence criterion, c.f. [1].
We now give some applications of Thorem 2. To this end we will introduce some
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notations, Let H and G denote such classes of functions regular in E for which f(0) =
=f'(0)—1=0iffEHandg(z)#0forzEEIfgEG. Putf,(2)=(1/r) f(rz)for fEH
and g,(2) =g(rz) forg €G.

Let us observe now that inequalities (1) and (2) can be written in following forms

sty M@ alsh|_ alsl

|’ " Tos e ISTa o
di oty ZH@) o -,.,[zf'(=)+ @) ]_ald | _alsl
W T T e T e 1T e

a
‘ 1{10)
which are equivalent to (1) and (2) respectively.

The limit case a - oo suggests the following
Corollary 3, Let f € H and g € G. Then f is univalent in E provided the conditions

- '@
R‘-[' h m]n forz€Eand an
Re{e""[z;((:)) + s z:(z(;)]} >0 forzere (12)

hold for some s =a +i8,a>0,8E R, where y = arg s € (— n/2,n/2).
if'(2) -

2 /@)

the class of functions p(z) =1 + IE! Pk z"', z € E that satisfy the condition Re p(z) > 0.

Proof. 1° We assume first that Re [e"" ] >0,forz EE. Let }’denole

It is wellknown that if S=(1 + *) /(1 —r*), R=2r /(1 =) then | p(z) - S I<R

forzinE,,0<r<1.Putd()=e’ CRE & sl B@z)=e™ 1 [zf B e ]
f(2)8() /(@) £(2)
It is easy to verify that A (rz) =e~ 17 #r(@) 4@ | A2 ]

— D and B(rz)=¢" 1 l,
r@ea P [ ) e |

In the considered case, by definitions and hypotheses of Corollary 3, 4(z) and B (z) have
positive real parts in E. Hence by an easy calculation and the mentioned property of p €

we conclude that for a fixed z € E, A (rz) and B (rz) lie in the closed discs K (S;, R;)
and K (5,, R,y)respectively where Re (S; —R,) = [(A=r)/(1 +7))ag |~ cos(y + argay)
and Re (S; —R;y)=[(1—7r)/(1 + r)] cos 7,40 = g(0). In addition in view of the assump-
tion Re | el 2f'(z) 1 (f(2)8(2))] > O for z EE there is— /2 < arga, +7y < n/2. Also
— 1/2 < v < /2 by the assumption of the corollary. Hence Re (S§; — R,) > 0 and
Re (S; — R;3) > 0. Thus we obtain that there exists @ > % and such that (K (S;, R,) U
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UK (S;, R)] CK(alsl/ea, als|/a)forafixedr € (0, 1). Hence 4 (rz) and B (rz) are
contained in K (a Is| / a, a |s| / «). Simultaneously for each fixed zeE ! 1z12%A(rz) +
+ (1 —121**) B (r2) | €K (aIs| [/ a, alsl/a). Thus fp(2) and g,(z) satisfy (9) and (10)
and f(2) is univalent in £ by Theorem 2. Hence f as the limit of £, for r = 1 is univalent
in E.

2°. Suppose now that Re {e"" '@/ /@) g(z)]} = 0 at some points of E. From
the minimum principle of harmonic functions we obtain Re { e vy ‘@1 g(z)]3 =
=0 for z € E. Thus {e' LETRO) [f(z)g(z)]} =ci for some ¢ € R. Hence cig (z) =

R sy 2 10E) and consequently — €k oy s 3y i0)

I g() '@ @)

. Thus Ree 7 [(1 -

-2’/ (@) +sQ +21(2) /f'(z))]} >0 for z € E by (12). We can write the last
inequality in the following equivalent form

Re{[rh_[n];f(:;) + |s| [Z—ff—,z—;]} >0forz€E, (13)

which is a known sufficient condition for univalence of f [2], The proof of Corollary 3
is complete. From Corollary 3 we will deduce here two results first of which is equivalent
to Corollary 3.

Corollary 4. Let fE H, p € B and let a, ¥, o be fixed numbers such that « > 0,
YE(=n/2,n/2)and (v + ¢o) (— /2, n/2). Then f is univalent in E provided

Y 2f'(z) [ 2f"(2) _ 2p'(2) ]} >0 14
R°{“ T T T T T r@ et ee e

forz€E

Proof. Let us put in (11) e~ b gf ‘(@) | [ £(2) 8(2)] = po(z), Re po(z)> O for z EE.
If Re po(z) = O at some points of £ then from case 2° of the proof of Corollary 3 we
obtain (13) and consequently f is univalent in E. Thus we may assume that Re po(z) > 0
for z € E. By the choice of po(2) we obtain pg(0) = [col™" e~ #7* ®s) where co =£(0),
®o = arg co. In addition (Y + ¢o) € (— 7/2, n/2) because Re py(0) > 0. Hence po(z) =
=p(z) lcol™ ! cos(y + @o) +1lcol™" sin (¥ + ¢o) where p € P. Moreover

zi' @) o Ak 2f°(2) [ zf'(2) _ 2po(2) zpe(2) _ zp'(2)
g() ['@) /@) Po(2) ' Po(2) p(z) +itg(y + ¢o)
Combining these equalitics with (12) we obtain
' " ’ (15)
oo BEETRYT N | A C NN . i A =5C) } >0
s AL T @ 1 p@) + it + o)

for 15| > 0, v = arg & Thus fis univalent by Corollary 3. We may take |s} = a> 0. If now
@ = 0 in (13) then f is a spiral-like univalent function. The proof of Corollary 4 has been
completed,
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Remark 2, Let B denote the class of functions f € H which satisfy Corollary 4. It is not
difzcult to verify that B is the well-known class of Bazilewich (c f.p.ex. [3], p. 166). To
see this one ought to solve the differential equation
2f'(z) i [2/"(2) - 2p'(2)

@ L@ T r@ s

(e -a)

] - pl(z) ’

where p; (0)=¢~ 7 and Re p, () > O forz EE.
Corollary 5. Let p (z) = 1 + pyz +..€ B with p, # 0, Then p is univalent in E
provided for some a > O the inequality’

& { w'E [1 L 2e_@e  2e T

piz)—1 @) p@)  p@-1]]
holds in E.
Corollary 5 follows from Corollary 3 by taking
p(z)—1 zp'(2)
@) = ———, =————— andy=0.
st FOXT Sy Gy 8

We come now to concluding remarks. The consideration contained in the proof of
Theorem 2, from the very beginning to relation (4) is similar to that in [5], [excluding
some modification as in nature],

A similar consideration can be also found in an earlier paper of Ruscheweyh [4].
But we inserted in the paper the mentioned fragment of the proof of Theorem 2 for the
considerations to be complete.

The paper [5] contains a fundamental result which is stated as Theorem | and yields
a sufficient condition for univalence of a regular function. That theorem can be applied,
as it follows from its proof, if @ 2 a only, while Theorem 2 can be applied without this
restriction, We showed here that Theorem 2 is more general than Theorem 1 from [5]also
inthe case 0 <a<a

To this end we will now cite: Theorem 1 from [S] as Theorem 4 almost literally,

Theorem 4. Let f (z2) =z +..and P (z) = } + ¢,z +...beanalyticin E, f (2) f'(2) |
and P (2) be different from zero forz inEand s = a +if,a > %,0<a<a,

M= (afa)ls| + ((a/a)—1)|s+cP(2)I, (16)
where ¢ # 0 isa complex nuinber such that

ls+cP@)I<(als])/(2a—q) . an

Then f(2) is univalent in E if
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IEU"I:I:)[(I—S) AL WIS 2f(2) _ zPE) )‘|_
a

; <
1) r@ P@) "

[s +c IsI’P(z)-

. 5 <M (18)
orz in E.

Note that relations (17) and (18) can be written as a single inequality which is
equivalent to (17) and (18). Essentialy, (17) implies that there exists w C Q such that
s+ cP(2) = |s| w(z) with | wR@) ISa/(2a+a)<1forzEE,wherea [(2a—1)=1
iff @ = . Combining this with (16) and (18) we get by suitable transformations, the
following inequality

(=12P) [2H @ f )+ 1slo@=s]=Islw|< S s+ G = Distjo@)]
(19)

zf'(z) 2f"(2) z2W'(2)
+s(1+ - ”
0 s( ) i ), Y=amgs.

The relation (6) in Theorem 3 can be written in an equivalent form

where Hy(z, f, wo) =(1 —3)

a
[+

I(l—'Izl’)[c;H,(z.f.w)+Islw(Z)—S]'-Islw(zw(lzl.—|<|s|¢(|z[,f-), (20)
a

1—|zp3

I——W Wz B

where ¢(l2], =)=
a
Note, that ¢(x; \) = (1 — x?) /(1 —x?*) decreases in [0, 1] from 1 to 1/A for each
fixed A > 1 and ¢ (x; 1) = 1. Note, that we assume ¢(1) = lim ¢(x,A) = 1/A and
X 1"

0 < a < a by the hypothese. Let now z € E be a fixed point. It ican be verificd by using
the mentioned property of ¢ that K (Is| w(z) ¢( izl, a/a); Is| ¢( 1z, a/a)) contains
the circle K ( Is] w (z) a/a; is| a/a). Thus every function f which satisfies the inequality

I . @ a L
f 4 2 Jds _
Uﬂﬂ);ﬂafwﬂhww-s—hw@;l<ma @1)

for a fixed w € Q satisfies also inequality (20). THis 1s so because z € E was arbitrarily
chosen. Hence we obtain the following

Corollary 6. If f satisfies the assumptions of Theorem 3 and it is subjected to (21) then
J is univalent in E.

Note that a reasoning similar to above implies that every function satisfying (19)
satisfies also (21). Hence Theorem 4 is a special case of Theorem 3.

Remark 3. We can also prove an analogy of Theorem 2 with an application to a
function g of the formg(t) = ¢ + bo + by ¢~ ! +... which is regular in £° \ {eo} where
E°= {Q’EE > 1} . The following theorem is true.

Theorem §. Suppose that g(£) = + b + b, +..andh(®) =1+ ¢, 072 +...are
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regular in E° \ {e% and E°, respectively, with g'(t) # 0 for { € E®. Let for some
numbers s =a +if,a> 0,8 ER, 4 <a < a the inequality

(') _ as alsi
g@) h($) o @
hold in E®, If the inequality
RedN [Ig(f)} as als|
Y3 ax — XSS
14 &) h(®) Uyl h@) a a

holds for t € E® and x = a/a then [ is univalent in E° .

Detailed considerations are contained in another paper which is to be pubhshed in

Annales Polonici Mathematici (1985).

(1
(2]
(3]
(4]
(5]
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STRESZCZENIE

Praca zawiera nastopujacy wynik podstawowy
Twierdzenie 2. Niecha > ¥, 2= a + I8, a> 0,8 ER, « ™ g/a bgdg ustalonymi liczbami. Zatéi-

my, e f(z) = z +... 1 8(2) 53 funkcjami regularnymi w £ = {z: 121 < l} takimi, e f'(2) » 0ig(z) » O
w E oraz, 2o zachodzl nieréwnofé

@) als |< alsl
f(2) 8(2) Q

Jefli ponadto mamy

:I"'—————'f'(z) + (1 —121*%) [Sf'(l) + __:s’(tl] oo s

Jz) ! glz)

1@ e

to f jest funkcjq jednolistng w E.

Praca zawiera pewne wnioski i zastosowania jak réwniez analogon bez dowodu twierdzenia 2 dia

funkclig(§) = £+ by + b, §~* +...regularnej w E® = §2:151>13.
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PE3IOME

PaGora conepamT cnenymomHa peaynsrar

Teopera 2. [lyctu g > %, s =a +18, a>0, S ER, x = a/ a puxaposasnire wmen. Mpeano-
noxumM, 970 GyHkumy f(2) =2 +5. v g(z) perynnapyuip £ = {z:: 121 < l] JS(2) »0,8(2) WO
nna gz € £ & Taxue, Y70 MMOET MECTO HEPABOHCTBO

f'(2) _ a3 aisl
1) g(2) a @ _ 1

Ecm xpome TOro nmeem

sk 3'2) eaky | J2) '@ | as|. el
I"' f@em * 4T ’[/(z) Y | T e T

70 f ogMonucrHa B E.
Pa6oTa coNepaoIT HEKOTOPMO CNEACTBHSE M NPUMEHCHHR & TAKXE aManor Teopemit 2 (6e3 QOKa-
satenscrea) ana Gynxuuug (3) =5 +b, +b, § ~'... peaynspuoRp £2 = {r: 131> 1} d






