ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XXXVI/XXXXVI, 10
SECTIO A
1982/1983

Instyut Ekonomii Politycznej i Planowania
Zakład Zastosowań Matematyki
Uniwersytet Marii Curie-Skłodowskiej

Z. LEWANDOWSKI

Some Remarks on Univalence Criteria

Pewne uwagi o kryteriach jednolistnosic!
Некоторие замсчании об условиях орнолистности

1. Introduction. The purpose of this paper is to establish some theorems representing univalence criteria for regular functions. A fundamental role here is played by Theorem 2 as a preparatory theorem for other results. The proof of this theorem is based on Theorem I which is due to Pommerenke [3], (Corollary 3).

We begin with some notations: \mathbb{C} - the compex plane; $\mathbb{R}=(-\infty, \infty) ; E_{r}=\{z \in \mathbb{C}$: $|z|<r\}, E_{1}=E ; A-$ the closure of the set $A ; \Omega-$ the class of functions ω which are regular in E and such that $|\omega(z)| \leqslant 1$ for $z \in E ; K(S, R)$ - the open disc of the centre S and the radius R.

Theorem 1. Let $r_{0} \in(0,1]$ and let $f(z, t)=a_{1}(t) z+\ldots, a_{1}(t) \neq 0$, be regular in $E_{r_{0}}$ for each $t \in[0, \infty)$ and locally absolutely continuous in $[0, \infty)$, locally uniformly with respect to $E_{r_{0}}$. Suppose that for almost all $t \in[0, \infty) \int$ satisfies the equation

$$
\frac{\partial f(z, t)}{\partial t}=z \frac{\partial f(z, t)}{\partial z} p(z, t), z \in E_{r_{0}}
$$

where $p(z, t)$ is regular in E and $\operatorname{Re} p(z, t)>0$ for $z \in E$. If $\left|a_{1}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and if $\left\{f(z, t) / a_{1}(t)\right\}$ forms a normal family in $E_{r_{0}}$, then for each $t \in[0, \infty) f(z, t)$ has a regular and univalent extension to the whole disc E.
2. The main results. Before the formulation of Theorem 2 we shall give a trivial but useful

Remark 1. Let $D \subset \mathbb{C}$ be a convex domain such that its boundary ∂D does not contain any rectilinear segment. Suppose that $A \in \bar{D} \backslash\{a\}$ and $w(\lambda)=\lambda A+(1-\lambda) B \in \bar{D}$ for some $\lambda \in[0,1]$ and $a \in \partial D$, where $A \neq B$. Then $w\left(\lambda_{0}\right) \in D$ for each $\lambda_{0} \in(\lambda, 1)$.

We assume throughout the whole paper that a, s, k are fixed numbers and such that $a>1 / 2, s=\alpha+i \beta, \alpha>0, \beta \in \mathbb{R}, k=a / \alpha$.

We come now to the formulation and proof of
Theorem 2. Let $f(z)=z+\ldots$ and $g(z)$ be regular in E with $f^{\prime}(z) \neq 0$ and such that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z) g(z)}-\frac{a s}{\alpha}\right| \leqslant \frac{a|s|}{\alpha} \tag{1}
\end{equation*}
$$

If

$$
\begin{equation*}
\left||z|^{2 k} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{2 k}\right)\left[\frac{z f^{\prime}(z)}{f(z)}+s \frac{2 g^{\prime}(z)}{g(z)}\right]-\frac{a s}{\alpha}\right| \leqslant \frac{a|s|}{\alpha} \tag{2}
\end{equation*}
$$

holds for $z \in E$ then f is univalent in E.
Proof. We consider the family of functions
$f(2, t)=f\left(z e^{-s t}\right)\left[1+\left(e^{2 a t}-1\right) g\left(2 e^{-8 t}\right)\right]^{8}, t \in[0, \infty)$.
It follows from (1) with $f^{\prime}(z) \neq 0$ for $z \in E$ that $f(z) g(z) \neq 0$ for $z \in E$. Put $A(z, t)=$ $=1+\left(e^{2 a t}-1\right) g\left(2 e^{-g t}\right), g(0)=c_{0}$. From (1) we obtain $\operatorname{Re} \frac{a \varepsilon c_{0}}{\alpha} \geqslant \not / 2$ thus $c_{0} \notin(\sim \infty, 0]$ and there exists a number $\rho>0$ such that $|A(0, t)|=\left|1+\left(e^{2 a t}-1\right) c_{0}\right|>\rho$ for each $t \in[0, \infty)$. It follows that there exists a number $r_{1}>0$ such that $A(z, t) \neq 0$ for each $t \in[0, \infty)$ and $z \in E_{r_{1}}$. We have also $f_{z}^{\prime}(0, t)=\left[e^{-t}+\left(e^{(2 a-1) t}-e^{-t}\right) c_{0}\right]^{8} \neq 0$ and because $a>1 / 2\left|f_{2}^{\prime}(0, t)\right| \rightarrow \infty$ as $t \rightarrow \infty$; here $f_{2}^{\prime}(0, t)$ denotes this continuous branch of the power for which $f_{z}^{\prime}(0, t)=1^{8}=1$. It is not difficult to verify that $\left\{f(z, t) / f_{z}^{\prime}(0, t)\right\}$ forms a normal family in $E_{r_{0}}$ and that $f(2, t)$ is local absolutely continuous in $[0, \infty)$ uniformly with respect to $E_{r_{0}}$ if $r_{0}=1 / 2 r_{1}$, say. This is guaranted, among other, by uniform continuity of $f_{t}^{\prime}(2, t)$ on $[0, T] \times E_{r_{0}}$ where $T>0$ is an arbitrarily chosen fixed number.

By simple calculation we obtain

$$
\begin{equation*}
\frac{f_{t}^{\prime}(2, t)}{z f_{z}^{\prime}(z, t)}=p(2, t)=-s+\frac{2 a s}{e^{-2 a t} \frac{\zeta f^{\prime}(\zeta)}{f(\zeta) g(\zeta)}+\left(1-e^{-2 a t}\left[\frac{\zeta f^{\prime}(\zeta)}{f(\zeta) g(\zeta)}+s \frac{\zeta g^{\prime}(\zeta)}{g(\zeta)}\right]\right.} \tag{4}
\end{equation*}
$$

where $\zeta \square 2 e^{-3 t}$. Let us denote by $d(2, t)$ the denominator of the right hand side of (4). It follows from the definition of $f(z)$ that $d(z, 0) \neq 0$. Replacing z by ζ in (2) and putting $\lambda=|\zeta|^{2 k} \Leftrightarrow|z|^{2 k} e^{-2 k t \alpha}, \lambda_{0}=e^{-2 a t}$, by definition of κ we obtain $\lambda \lambda_{0}^{-1}=|z|^{2 k}<1$. Hence, for fixed $z \in E$ and $t \in[0, \infty)$, we see from (1) and Remark 1 that $d(2, t) \in K(a s / \alpha, a|s| / \alpha)$, if $A(\zeta) \neq B(\zeta)$ or $d(z, t) \notin \bar{K}(a s / a, a|s| / a) \backslash\{0\}$.
if $A(\zeta)=B(\zeta)$. Simultaneously we have $d(0,8)=e^{-2 a 8} c_{\sigma}^{-1}+\left(1-e^{-2 a f}\right)$. (1) implies $c_{0}^{-1} \in \bar{K}(a s / \alpha, a|s| / \alpha) \backslash\left\{{ }^{\prime} 0\right\}$. Also, it is easy to verify that $1 \in K\left(a s / \alpha_{0} a|s| / \alpha\right)$. Then, by Remark 1 , we obtain $d(0, t) \in K(a s / \alpha, a|s| / \alpha)$ for $t \in(0, \infty)$. Thus, for each $t \in(0, \infty)$ and $z \in E$ we have
$\left|d(z, t)-\frac{a s}{\alpha}\right|<\frac{a|s|}{\alpha}$.
Hence, $p(z, t)$ is regular in E for each fixed $t \in[0, \infty)$. From (4) we also obtain that in. equalities $\operatorname{Re} p(z, t)>0$ and (5) are equivalent. Thus $\operatorname{Re} p(z, t)>0$ for each $t \in(0, \infty)$ and $z \in B$. In addition $\operatorname{Re} p(z, t)>0$ for $z \in E$. By Theorem $1 f$ is univalent in E. The proof of Theorem 2 has been completed.

Let us observe that Theorem 2 can be stated in the following equivalent from
Theorem 3. Let $f(z)=z+$... be regular in E with $f^{\prime}(z) \neq 0$ there pand put
$H_{s}(f, \omega, z)=(1-s) \frac{z f^{\prime}(z)}{f(z)}+s\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \omega^{\prime}(z)}{e^{i \gamma}-\omega(z)}\right)$.
for $z \in E$. If there exists $\omega \in \Omega, \omega \neq e^{i \gamma}$ and $\gamma=\arg s$ such that

$$
\begin{equation*}
\left|\left(1-|z|^{2}\right)\left[\alpha / a H_{s}(f, \omega, z)+|s| \omega-s\right]-\frac{|s| \omega\left(1-|z|_{1}^{2}\right)}{1-|z|^{2 x}}\right| \leqslant \frac{|s|\left(1-|z|^{2}\right)}{1-|z|^{2 x}} \tag{6}
\end{equation*}
$$

holds for some $a>12, s=\alpha+i \beta, \alpha>0, k=a / \alpha$ then f is univalent in E.
To see this we choose $g(z)=\left(2 f^{\prime}(z) / f(z)\right)[(a s / \alpha)-(a|s| / \alpha) \omega(z)]^{-1}$ which satisfies (1) then a straighforward calculation shows that (2) and (6) are equivalent.
3. Corollaries and applications. If we assume $s=1$ then by Theorem 3 we obtain

Corollary 1. Let f be regular in E with $f^{\prime}(0) \neq 0$. If there exist a number $a>1 / 2$ and a function $\omega \in \Omega, \omega \neq 1$ such that

$$
\begin{equation*}
\left||z|^{2 a} \omega(z)-\left(1-|z|^{2 a}\right)\left\{\frac{1-a}{a}+\frac{1}{a}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z \omega^{\prime}(z)}{1-\omega(z)}\right]\right\}\right|<1 \tag{7}
\end{equation*}
$$

for $: \in E$ then f is univalent in E.
Assume now $a>1 / 2$ and $\omega=(1-a) a^{-1}$. Corollary 1 yields
Corollary 2. Let f be regular in E with $f^{\prime}(0) \neq 0$ and let
$\left|a-1-\left(1-|z|^{2 a}\right) \frac{2 f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<a_{0}$

then f is univalent in E.

The above statement had been obtained earlier by the author and J. Szynal at another occasion. Corollary 2 in turn implies the well known univalence criterion, c.f. [1].

We now give some applications of Thorem 2. To this end we will introduce some
notations. Let H and G denote such classes of functions regular in E for which $f(0)=$ $=f^{\prime}(0)-1=0$ if $f \in H$ and $g(z) \neq 0$ for $z \in E$ if $g \in G$. Put $f_{r}(z)=(1 / r) f(r z)$ for $f \in H$ and $g_{r}(z)=g(r z)$ for $g \in G$.

Let us observe now that inequalities (1) and (2) can be written in following forms

$$
\begin{equation*}
\left|e^{-l \gamma} \frac{z f^{\prime}(z)}{f(z) g(z)}-\frac{a|s|}{\alpha}\right|<\frac{a|s|}{\alpha} . \tag{9}
\end{equation*}
$$

$\left||z|^{2 \kappa} e^{-i \gamma} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{2 \kappa}\right) e^{-l \gamma}\left[\frac{z f^{\prime}(z)}{f(z)}+s \frac{z g^{\prime}(z)}{g(z)}\right]-\frac{a|s|}{\alpha}\right|<\frac{a|s|}{\alpha}$
which are equivalent to (1) and (2) reapectively.
The limit case $a \rightarrow \infty$ suggests the following
Corollary 3. Let $f \in H$ and $g \in G$. Then f is univalent in E provided the conditions
$\operatorname{Re}\left[e^{-t y} \frac{z f^{\prime}(z)}{f(z) g(z)}\right]>0$ for $z \in E$ and
$\operatorname{Re}\left\{e^{-i r}\left[\frac{2 f^{\prime}(z)}{f(z)}+s \frac{2 g^{\prime}(z)}{g(z)}\right]\right\}>0$ for $z \in E^{\prime}$
hold for some $s=\alpha+\beta, \alpha>0, \beta \in \mathbb{R}$, where $\gamma=\arg s \in(-\pi / 2, \pi / 2)$.
Proof. 1° We assume first that $\operatorname{Re}\left[e^{-i r} \frac{z f^{\prime}(z)-}{f(z) g(z)}\right]>0$, for $z \in E$. Let $P_{\text {denote }}$ the class of functions $p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}, z \in E$ that satisfy the condition $\operatorname{Re} p(z)>0$. It is well-known that if $S=\left(1+r^{2}\right) /\left(1-r^{2}\right), R=2 r /\left(1-r^{2}\right)$ then $|p(z)-S|<R$ for z in $\bar{E}_{r}, 0<r<1$. Put $A(z)=e^{-i \gamma} \frac{z f^{\prime}(z)}{f(z) g(z)}$ and $B(z)=e^{-i \gamma}\left[\frac{z f^{\prime}(z)}{f(z)}+s \frac{z g^{\prime}(z)}{g(z)}\right]$. It is easy to verify that $A(r z)=e^{-i \gamma} \frac{z f_{r}^{\prime}(z)}{f_{r}(z) g_{r}(z)}$ and $B(r z)=e^{-i \gamma}\left[\frac{z f_{r}^{\prime}(z)}{f_{r}(z)}+s \frac{z g_{r}^{\prime}(z)}{g_{r}(z)}\right]$.
In the considered case, by definitions and hypotheses of Corollary $3, A(z)$ and $B(z)$ have positive real parts in E. Hence by an easy calculation and the mentioned property of $p \in \gamma^{\rho}$ we conclude that for a fixed $z \in E, A(r z)$ and $B(r z)$ lie in the closed discs $\bar{K}\left(S_{1}, R_{1}\right)$ and $\bar{K}\left(S_{2}, R_{2}\right)$ respectively where $\operatorname{Re}\left(S_{1}-R_{1}\right)=\left.[(1-r) /(1+r)] a_{0}\right|^{-1} \cos \left(\gamma+\arg a_{0}\right)$ and $\operatorname{Re}\left(S_{2}-R_{2}\right)=[(1-r) /(1+r)] \cos \gamma, a_{0}=g(0)$. In addition in view of the assump. tion $\operatorname{Re}\left[e^{-i \gamma} z f^{\prime}(z) /(f(z) g(z))\right]>0$ for $z \in E$ there is $-\pi / 2<\arg a_{0}+\gamma<\pi / 2$. Also $-\pi / 2<\gamma<\pi / 2$ by the assumption of the corollary. Hence $\operatorname{Re}\left(S_{1}-R_{1}\right)>0$ and $\operatorname{Re}\left(S_{3}-R_{2}\right)>0$. Thus we obtain that there exists $a>\not y_{2}$ and such that $\left\{K\left(S_{1}, R_{1}\right) \cup\right.$
$\left.\cup K\left(S_{2}, R_{2}\right)\right] \subset K(a|s| / \alpha, a|s| / \alpha)$ for a fixed $r \in(0,1)$. Hence $A(r z)$ and $B(r z)$ are contained in $K(a|s| / \alpha, a|s| / \alpha)$. Simultaneously for each fixed $\left.z e E\right|^{\mid}|z|^{2 K} A(r z)+$ $+\left(1-|z|^{2 \kappa}\right) B(r z) \mid \in K(a|s| / \alpha, a|s| / \alpha)$. Thus $f_{r}(z)$ and $g_{r}(z)$ satisfy (9) and (10) and $f_{r}(z)$ is univalent in E by Theorem 2. Hence f as the limit of f_{r} for $r \rightarrow 1$ is univalent in E.
2°. Suppose now that $\operatorname{Re}\left\{e^{-i \gamma} z f^{\prime}(z) /[f(z) g(z)]\right\}=0$ at some points of E. From the minimum principle of harmonic functions we obtain $\operatorname{Re}\left\{e^{-i \gamma} z f^{\prime}(z) /[f(z) g(z)]\right\} \equiv$ $\equiv 0$ for $z \in E$. Thus $\left\{e^{-i \gamma} z f^{\prime}(z) /[f(z) g(z)]\right\}=c i$ for some $c \in \mathbb{R}$. Hence cig $(z)=$ $=e^{-i \gamma} \frac{z f^{\prime}(z)}{f(z)}$ and consequently $\frac{z g^{\prime}(z)}{g(z)}=1+\frac{2 f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}$. Thus $\operatorname{Re}\left\{e^{-l \gamma}[(1-\right.$ $\left.\left.-s) z f^{\prime}(z) / f(z)+s\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)\right]\right\}>0$ for $z \in E$ by (12). We can wite the last inequality in the following equivalent form
$\operatorname{Re} \cdot\left\{\left[e^{-\mid \gamma}-|s|\right] \frac{z f^{\prime}(z)}{f(z)}+|s|\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>0$ for $z \in E$,
which is a known sufficient condition for univalence of f [2]. The proof of Corollary 3 is complete. From Corollary 3 we will deduce here two results first of which is equivalent to Corollary 3.

Corollary 4. Let $f \in H, p \in \gamma^{0}$ and let a, γ, ϕ_{0} be fixed numbers such that $\alpha>0$, $\gamma \in(-\pi / 2, \pi / 2)$ and $\left(\gamma+\phi_{0}\right)(-\pi / 2, \pi / 2)$. Then f is univalent in E provided
$\operatorname{Re}\left\{\left(e^{-l \gamma}-\alpha\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 p^{\prime}(z)}{p(z)+l \operatorname{tg}\left(\gamma+\phi_{0}\right)}\right]\right\}>0$
for $z \in E$.
Proof. Let us put in $(11) e^{-t \gamma} z f^{\prime}(z) /[f(z) g(z)]=p_{0}(z), \operatorname{Re} p_{0}(z) \geqslant 0$ for $z \in E$. If $\operatorname{Re} p_{0}(z)=0$ at some points of E then from case 2° of the proof of Corollary 3 we obtain (13) and consequently f is univalent in E. Thus we may assume that $\operatorname{Re} p_{0}(z)>0$ for $z \in E$. By the choice of $p_{0}(z)$ we obtain $p_{0}(0)=\left|c_{0}\right|^{-1} e^{-t\left(\gamma+\phi_{0}\right)}$, where $c_{0}=g(0)$, $\phi_{0}=\arg c_{0}$. In addition $\left(\gamma+\phi_{0}\right) \in(-\pi / 2, \pi / 2)$ because $\operatorname{Re} p_{0}(0)>0$. Hence $p_{0}(z)=$ $=p(z)\left|c_{0}\right|^{-1} \cos \left(\gamma+\phi_{0}\right)+i\left|c_{0}\right|^{-1} \sin \left(\gamma+\phi_{0}\right)$ where $p \in \mathcal{P}$. Moreover
$\frac{z g^{\prime}(z)}{g(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}-\frac{z p_{0}^{\prime}(z)}{p_{0}(z)}, \frac{z p_{0}^{\prime}(z)}{p_{0}(z)}=\frac{z p^{\prime}(z)}{p(z)+i \operatorname{tg}\left(\gamma+\phi_{0}\right)}$.
Combining these equalities with (12) we obtain
$\operatorname{Re}\left\{\left(e^{-\mid \gamma}-|s|\right) \frac{z f^{\prime}(z)}{f(z)}+|s|\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]-|s| \frac{z p^{\prime}(z)}{p(z)+i \operatorname{tg}\left(\gamma+\phi_{0}\right)}\right\}>0$
for $|s|>0, \gamma=\arg s$. Thus f is univalent by Corollary 3. We may take $|s|=\alpha>0$. If now $\alpha=0$ in (13) then f is a spiral-like univalent function. The proof of Corollary 4 has been completed.

Remark 2. Let B denote the class of functions $f \in H$ which satisfy Corollary 4. It is not dificiult to verify that B is the well-known class of Bazilewich (c f.p.ex. [3], p. 166). To see this one ought to solve the differential equation
$\left(e^{-i \gamma}-\alpha\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z p^{\prime}(z)}{p(z)+i \operatorname{tg}\left(\gamma+\phi_{0}\right)}\right]=p_{1}(z)$,
where $p_{1}(0)=e^{-l \gamma}$ and $\operatorname{Re} p_{1}(z)>0$ for $z \in E$.
Corollary 5. Let $p(z)=1+p_{1} z+\ldots \in \mathcal{X}^{0}$ with $p_{1} \neq 0$. Then p is univalent in E provided for some $\alpha>0$ the inequalitg'
$\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)-1}+\alpha\left[1+\frac{z p^{\prime \prime}(z)}{p^{\prime}(z)}-\frac{z p^{\prime}(z)}{p(z)}-\frac{z p^{\prime}(z)}{p(z)-1}\right]\right]>0$
holds in E.
Corollary 5 follows from Corollary 3 by taking
$f(z)=\frac{p(z)-1}{p_{1}}, g(z)=\frac{z p^{\prime}(z)}{p(z)[p(z)-1]}$, and $\gamma=0$.

We come now to concluding remarks. The consideration contained in the proof of Theorem 2, from the very beginning to relation (4) is similar to that in [5], [excluding some modification as in nature].

A similar consideration can be also found in an earlier paper of Ruscheweyh [4]. But we inserted in the paper the mentioned fragment of the proof of Theorem 2 for the considerations to be complete.

The paper [5] contains a fundamental result which is stated as Theorem 1 and yields a sufficient condition for univalence of a regular function. That theorem can be applied, as it follows from its proof, if $a>\alpha$ only, while Theorem 2 can be applied without this restriction. We showed here that Theorem 2 is more general than Theorem 1 from [5]also in the case $0<\alpha<a$.

To this end we will now cite: Theorem 1 from [5] as Theorem 4 almost literally.
Theorem 4. Let $f(z)=z+\ldots$ and $P(z)=1+c_{1} z+\ldots$ be analytic in $E, f(z) f^{\prime}(z) / 2$ and $P(z)$ be different from zero for z in E and $s=\alpha+i \beta, a>1 / 2,0<\alpha<a$,
$M=(\alpha / a)|s|+((\alpha / a)-1)|s+c P(z)|$.
where $c \neq 0$ is a complex nuinber such that
$|s+c P(z)|<(\alpha|s|) /(2 a-\alpha)$.
Then $f(z)$ is univalent in E if

$$
\begin{gather*}
\left|\frac{\alpha}{a}\left(1-|z|^{2}\right)\left[(1-s) \frac{z f^{\prime}(z)}{f(z)}+s\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z P^{\prime}(z)}{P(z)}\right)\right]-\left[s+c|s|^{2} P(z)\right]\right| \leqslant \\
<M \tag{18}
\end{gather*}
$$

for z in E.
Note that relations (17) and (18) can be written as a single inequality which is equivalent to (17) and (18). Essentialy, (17) implies that there exists $\omega \subset \Omega$ such that $s+c P(z)=|s| \omega(z)$ with $|\omega(z)| \leqslant \alpha \mid(2 a+\alpha) \leqslant 1$ for $z \in E$, where $\alpha \mid(2 a-1)=1$ iff $\alpha=a$. Combining this with (16) and (18) we get by suitable transformations, the following inequality
$\left|\left(1-|z|^{2}\right)\left[\frac{\alpha}{a} H_{s}(z, f, \omega)+|s| \omega(z)-s\right]-|s| \omega\right|<\frac{\alpha}{a}|s|+\left(\frac{\alpha}{a}-1\right)|s||\omega(z)|$.
where $H_{s}\left(z, f, \omega_{0}\right)=(1-s) \frac{z f^{\prime}(z)}{f(z)}+s\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \omega^{\prime}(z)}{e^{f \gamma}-\omega(z)}\right), \gamma=\arg s$.
The relation (6) in Theorem 3 can be written in an equivalent form
$\left|\left(1-|z|^{2}\right)\left[\frac{\alpha}{a} H_{s}(z, f, \omega)+|s| \omega(z)-s\right]-|s| \omega(z) \phi\left(|z|, \frac{a}{\alpha}\left|\leqslant|s| \phi\left(|z|, \frac{a}{\alpha}\right)\right.\right.\right.$,
where $\phi\left(|z|, \frac{a}{\alpha}\right)=\frac{1-|z|^{2}}{1-|z|^{2(a / \alpha)}}, \quad z \in E$.
Note, that $\phi(x ; \lambda)=\left(1-x^{2}\right) /\left(1-x^{2 k}\right)$ decreases in $[0,1]$ from 1 to $1 / \lambda$ for each fixed $\lambda>1$ and $\phi(x ; 1) \equiv 1$. Note, that we assume $\phi(1)=\lim _{x \rightarrow 1^{-}} \phi(x, \lambda)=1 / \lambda$ and $0<\alpha<a$ by the hypothese. Let now $z \in E$ be a fixed point. It ican be verified by using the mentioned property of ϕ that $\overline{\mathcal{K}}(|s| \omega(z) \phi(|z|, a / \alpha) ;|s| \phi(|z|, a / \alpha))$ contains the circle $\bar{K}(|s| \omega(z) \alpha / a ;|s| \alpha / a)$. Thus every function f which satisfies the inequality

$$
\begin{equation*}
\left|\left(1-|z|^{2}\right)\left[\frac{\alpha}{a} H_{s}(z, f, \omega)+|s| \omega(z)-s\right]-|s| \omega(z) \frac{\alpha}{a}\right|<|s| \frac{\alpha}{\dot{a}} \tag{21}
\end{equation*}
$$

for a fixed $\omega \in \Omega$ satisfies also inequality (20). This is so because $z \in E$ was arbitrarily chosen. Hence we obtain the following

Corollary 6. If f satisfies the assumptions of Theorem 3 and it is subjected to (21) then f is univalent in E.

Note that a reasoning similar to above implies that every function satisfying (19) satisfies also (21). Hence Theorem 4 is a special case of Theorem 3.

Remark 3. We can also prove an analogy of Theorem 2 with an application to a function g of the form $g(\zeta)=\zeta+b_{0}+b_{1} \zeta^{-1}+\ldots$ which is regular in $E^{0} \backslash\{\infty\}$ where $E^{0}=\{\zeta \in \overline{\mathbb{C}}:|\zeta|>1\}$. The following theorem is true.

Theorem 5. Suppose that $g(\zeta)=\zeta+b_{0}+b_{1} \zeta^{-1}+\ldots$ and $h(\zeta)=1+c_{2} \zeta^{-2}+\ldots$ are
regular in $E^{0} \backslash\{\infty\}$ and E^{0}, respectively, with $g^{\prime}(\zeta) \neq 0$ for $\zeta \in E^{0}$. Let for some numbers $s=\alpha+i \beta, \alpha>0, \beta \in \mathbb{R}, 1 / 2<a<\alpha$ the inequality
$\left|\frac{\zeta g^{\prime}(\zeta)}{g(\zeta) h(\zeta)}-\frac{a s}{\alpha}\right| \leqslant \frac{a|s|}{\alpha}$
hold in E^{0}. If the inequality
$\left||\zeta|^{2 \kappa} \frac{\zeta g^{\prime}(\zeta)}{g(\zeta) h(\zeta)}+\left(1-|\zeta|^{2 \kappa}\right)\left[\frac{\zeta g^{\prime}(\zeta)}{h(\zeta)}\right]-\frac{a s}{\alpha}\right|<\frac{a|s|}{\alpha}$
holds for $\zeta \in E^{0}$ and $\kappa=a / \alpha$ then f is univalent in E^{0}.
Detailed considerations are contained in another paper which is to be published in Annales Polonici Mathematici (1985).

REFERENCES

[1] Becker, J., Lownersche Differetialgleichung und quasilionform forsserzbare schlichre Funktonen, J. reine angow. Math., 255 (1972), 23-43.
[2] Eenigenburg, P. J., Miller, S. S., Mocanu, P. T. Reade, M. O.; On a aubelass of Bazile ie functons, Proc. Amer. Math. Soc., 45 (1974), $88-92$.
[3] Pommerenke, Ch., Ober die Subordination analyrischer Funktionen, J. reine angew. Math., 218 (1965), 159-173).
[4] Ruscheweyh, S., An extension of Becker's univalence condtiton, Math. Ann, 220 (1976), 285-290.
[5] Sing, V., Chichre. Pran Nath., An extension of Becker's ertiedion of univalence, Journal of the Indian Math. Soc., 41 (1971), 353-361.

STRESZCZENIE

Praca zawlera nastppujacy wynik podstawowy
Twierdzenio 2. Niech $a>1 / 2, z=a+\ell \beta, \alpha>0, \beta \in R, \alpha \propto a / \alpha$ bẹdqustalonymiliczbami. Załóż$m y$, te $f(z)=z+\ldots i g(z)$ sq funkcjami regularnymi $w E=\{z:|z|<1\}$ takjmi, te $f^{\prime}(z) \neq 0 \mid g(z) \neq 0$ w E oraz, 亡o zachodzl njerówność
$\left|\frac{z f^{\prime}(z)}{f(z) g(z)}-\frac{a|z|}{a}\right|<\frac{a|z|}{a}$.
Joîl ponadto mamy
$\left||z|^{2 k} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{2 K}\right)\left[\frac{z f^{\prime}(z)}{f(z)}+s \frac{z g^{\prime}(z)}{g(z)}\right]-\frac{a z}{\alpha}\right|<\frac{a|z|}{a}$.
to f jeat funkcja jodnolistina $w E$.
Praca zawlen pewne wnioskl i zastosowanin jak sównjeż analogon bez dowodu twierdzonia 2 da funkcji $g(\xi)=5+b_{0}+b_{1} \xi^{-1}+\ldots$ regularnej $w E^{0}=\{5:|5|>1\}$.

PE310ME

Pabota содердант следутоииа результат

 лощим, вто функшия $f(z)=z+q \circ$ у $g(z)$ рогулляриы в $E=\{z z:|z|<1\}, f^{\circ}(z) \neq 0 . g(z) ш 0$ для $z \in E$ и тасие, тто имеет место неравенство
$\left|\frac{z^{\prime}(z)}{f(z) g(z)}-\frac{a s}{a}\right|<\frac{a|s|}{a}$.
Естм кроме того нмеем
$\left||z|^{2 \kappa} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{2 \kappa}\right)\left[\frac{z f^{\prime}(z)}{f(z)}+s \frac{z g^{\prime}(z)}{g(z)}\right]-\frac{a g}{\alpha}\right|<\frac{c|z|}{\alpha}$,
rof одиолистнав в.
Pabота содерхол некоторне следствия м применения а также аналог теореми 2 (вез дока" зателиства) для функики $\varepsilon(\xi)=\xi+b_{0}+b_{1} \xi^{-1} \ldots$ резулярнов в $E_{6}^{0}=\{\xi:|\xi|>1\}$.

