ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 10

SECTIO A

1982/1983

Instytut Ekonomii Politycznej i Planowania Zakład Zastosowań Matematyki Uniwersytet Marii Curie-Skłodowskiej

Z. LEWANDOWSKI

Some Remarks on Univalence Criteria

Pewne uwagi o kryteriach jednolistności

Некоторые замечания об условиях однолистности

1. Introduction. The purpose of this paper is to establish some theorems representing univalence criteria for regular functions. A fundamental role here is played by Theorem 2 as a preparatory theorem for other results. The proof of this theorem is based on Theorem 1 which is due to Pommerenke [3], (Corollary 3).

We begin with some notations: \mathbb{C} - the compare plane; $\mathbb{R} = (-\infty, \infty)$; $E_r = \{z \in \mathbb{C}: |z| < r\}$, $E_1 = E, A$ - the closure of the set A; Ω - the class of functions ω which are regular in E and such that $|\omega(z)| \leq 1$ for $z \in E$; K(S, R) - the open disc of the centre S and the radius R.

Theorem 1. Let $r_0 \in (0, 1]$ and let $f(z, t) = a_1(t)z + ..., a_1(t) \neq 0$, be regular in E_{r_0} for each $t \in [0, \infty)$ and locally absolutely continuous in $[0, \infty)$, locally uniformly with respect to E_{r_0} . Suppose that for almost all $t \in [0, \infty)$ f satisfies the equation

$$\frac{\partial f(z,t)}{\partial t} = z \frac{\partial f(z,t)}{\partial z} \quad p(z,t), \ z \in E_{r_0}$$

where p(z, t) is regular in E and Re p(z, t) > 0 for $z \in E$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and if $\{f(z, t) | a_1(t)\}$ forms a normal family in E_{r_0} , then for each $t \in [0, \infty)$ f(z, t) has a regular and univalent extension to the whole disc E.

2. The main results. Before the formulation of Theorem 2 we shall give a trivial but useful

Remark 1. Let $D \subset \mathbb{C}$ be a convex domain such that its boundary ∂D does not contain any rectilinear segment. Suppose that $A \in \overline{D} \setminus \{a\}$ and $w(\lambda) = \lambda A + (1 - \lambda) B \in \overline{D}$ for some $\lambda \in [0, 1]$ and $a \in \partial D$, where $A \neq B$. Then $w(\lambda_0) \in D$ for each $\lambda_0 \in (\lambda, 1)$. We assume throughout the whole paper that a, s, κ are fixed numbers and such that $a > \frac{1}{2}, s = \alpha + i\beta, \alpha > 0, \beta \in \mathbb{R}, \kappa = a/\alpha$.

We come now to the formulation and proof of

Theorem 2. Let $f(z) = z + \dots$ and g(z) be regular in E with $f'(z) \neq 0$ and such that

$$\left|\frac{zf'(z)}{f(z)g(z)} - \frac{as}{\alpha}\right| \le \frac{a|s|}{\alpha} \tag{1}$$

lf

$$\left| z \right|^{2\kappa} \frac{zf'(z)}{f(z)g(z)} + (1 - |z|^{2\kappa}) \left[\frac{zf'(z)}{f(z)} + s \frac{zg'(z)}{g(z)} \right] - \frac{as}{\alpha} \right| \le \frac{a |s|}{\alpha}$$
(2)

holds for $z \in E$ then f is univalent in E.

Proof. We consider the family of functions

$$f(z, t) = f(ze^{-tt}) \left[1 + (e^{2at} - 1) g(ze^{-tt}) \right]^{t}, t \in [0, \infty).$$
(3)

It follows from (1) with $f'(z) \neq 0$ for $z \in E$ that $f(z)g(z) \neq 0$ for $z \in E$. Put A(z, t) =

$$= 1 + (e^{2at} - 1)g(ze^{-st}), g(0) = c_0.$$
 From (1) we obtain Re $\frac{d \leq c_0}{\alpha} > \frac{1}{2}$ thus $c_0 \notin (-\infty, 0]$

and there exists a number $\rho > 0$ such that $|A(0,t)| = |1 + (e^{2at} - 1)c_0| > \rho$ for each $t \in [0, \infty)$. It follows that there exists a number $r_1 \ge 0$ such that $A(z, t) \ne 0$ for each $t \in [0, \infty)$ and $z \in E_{r_1}$. We have also $f'_z(0, t) = [e^{-t} + (e^{(2a-1)t} - e^{-t})c_0]^s \ne 0$ and because $a > \frac{1}{2} |f'_z(0, t)| \rightarrow \infty$ as $t \rightarrow \infty$; here $f'_z(0, t)$ denotes this continuous branch of the power for which $f'_z(0, t) = 1^s = 1$. It is not difficult to verify that $\{f(z, t)/f'_z(0, t)\}$ forms a normal family in E_{r_0} and that f(z, t) is local absolutely continuous in $[0, \infty)$ uniformly with respect to E_{r_0} if $r_0 = \frac{1}{2} r_1$, say. This is guaranted, among other, by uniform continuity of $f'_t(z, t)$ on $[0, T] \times E_{r_0}$ where T > 0 is an arbitrarily chosen fixed number.

By simple calculation we obtain

$$\frac{f_t'(z,t)}{zf_z'(z,t)} = p(z,t) = -s + \frac{2as}{e^{-2at}\frac{\zeta f'(\zeta)}{f(\zeta)g(\zeta)} + (1 - e^{-2at}\left[\frac{\zeta f'(\zeta)}{f(\zeta)g(\zeta)} + s\frac{\zeta g'(\zeta)}{g(\zeta)}\right]},$$
(4)

where $\zeta = ze^{-zt}$. Let us denote by d(z, t) the denominator of the right hand side of (4). It follows from the definition of f(z) that $d(z, 0) \neq 0$. Replacing z by ζ in (2) and putting $\lambda = |\zeta|^{2\kappa} \approx |z|^{2\kappa}e^{-2\kappa t\alpha}$, $\lambda_0 = e^{-2\alpha t}$, by definition of κ we obtain $\lambda \lambda_0^{-1} = |z|^{2\kappa} < 1$. Hence, for fixed $z \in E$ and $t \in [0, \infty)$, we see from (1) and Remark 1 that $d(z, t) \in K(as/\alpha, a |s|/\alpha)$, if $A(\zeta) \neq B(\zeta)$ or $d(z, t) \notin \overline{K}(as/\alpha, a |s|/\alpha) \setminus \{0\}$, if $A(\xi) = B(\xi)$. Simultaneously we have $d(0, t) = e^{-2at} c_0^{-1} + (1 - e^{-2at})$. (1) implies $c_0^{-1} \in \overline{K}(as/\alpha, a |s|/\alpha) \setminus \{0\}$. Also, it is easy to verify that $1 \in K(as/\alpha, a |s|/\alpha)$. Then, by Remark 1, we obtain $d(0, t) \in K(as/\alpha, a |s|/\alpha)$ for $t \in (0, \infty)$. Thus, for each $t \in (0, \infty)$ and $z \in E$ we have

$$\left| d\left(z,t\right) - \frac{as}{\alpha} \right| < \frac{a\left|s\right|}{\alpha} \,. \tag{5}$$

Hence, p(z, t) is regular in E for each fixed $t \in [0, \infty)$. From (4) we also obtain that inequalities Re p(z, t) > 0 and (5) are equivalent. Thus Re p(z, t) > 0 for each $t \in (0, \infty)$ and $z \in E$. In addition Re $p(z, t) \ge 0$ for $z \in E$. By Theorem 1 f is univalent in E. The proof of Theorem 2 has been completed.

Let us observe that Theorem 2 can be stated in the following equivalent from Theorem 3, Let f(z) = z + ... be regular in E with $f'(z) \neq 0$ there and put

$$H_{s}(f, \omega, z) = (1-s) \frac{zf'(z)}{f(z)} + s\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z\omega'(z)}{e^{i\gamma} - \omega(z)}\right)$$

for $z \in E$. If there exists $\omega \in \Omega$, $\omega \neq e^{i\gamma}$ and $\gamma = \arg s$ such that

$$\left| (1 - |z|^2) [\alpha/a H_s(f, \omega, z) + |s| \omega - s] - \frac{|s| \omega (1 - |z|^2)}{1 - |z|^{2\kappa}} \right| < \frac{|s| (1 - |z|^2)}{1 - |z|^{2\kappa}}$$
(6)

holds for some $a > \frac{1}{2}$, $s = \alpha + i\beta$, $\alpha > 0$, $\kappa = a/\alpha$ then f is univalent in E.

To see this we choose $g(z) = (zf'(z)/f(z)) [(as/\alpha) - (a|s|/\alpha) \omega(z)]^{-1}$ which satisfies (1) then a straighforward calculation shows that (2) and (6) are equivalent.

3. Corollaries and applications. If we assume s = 1 then by Theorem 3 we obtain Corollary 1. Let f be regular in E with $f'(0) \neq 0$. If there exist a number a > 4 and a function $\omega \in \Omega$, $\omega \neq 1$ such that

$$\left||z|^{2a}\omega(z) - (1 - |z|^{2a}) \left\{ \frac{1 - a}{a} + \frac{1}{a} \left[\frac{zf''(z)}{f'(z)} + \frac{z\omega'(z)}{1 - \omega(z)} \right] \right\} \right| \le 1$$
(7)

for $z \in E$ then f is univalent in E.

Assume now $a > \frac{1}{2}$ and $\omega = (1 - a)a^{-1}$. Corollary 1 yields Corollary 2, Let f be regular in E with $f'(0) \neq 0$ and let

$$\left| a - 1 - (1 - |z|^{2a}) \frac{zf''(z)}{f'(z)} \right| \le a,$$
(8)

then f is univalent in E.

The above statement had been obtained earlier by the author and J. Szynal at another occasion. Corollary 2 in turn implies the well known univalence criterion, c.f. [1].

We now give some applications of Thorem 2. To this end we will introduce some

notations. Let H and G denote such classes of functions regular in E for which f(0) = f'(0) - 1 = 0 if $f \in H$ and $g(z) \neq 0$ for $z \in E$ if $g \in G$. Put $f_r(z) = (1/r) f(rz)$ for $f \in H$ and $g_r(z) = g(rz)$ for $g \in G$.

Let us observe now that inequalities (1) and (2) can be written in following forms

$$\left| e^{-l\gamma} \frac{zf'(z)}{f(z)g(z)} - \frac{a|s|}{\alpha} \right| \le \frac{a|s|}{\alpha} , \qquad (9)$$

$$\left||z|^{2\kappa}e^{-i\gamma} \frac{zf'(z)}{f(z)g(z)} + (1-|z|^{2\kappa})e^{-i\gamma}\left[\frac{zf'(z)}{f(z)} + s\frac{zg'(z)}{g(z)}\right] - \frac{a|s|}{\alpha}\right| \le \frac{a|s|}{\alpha}$$

which are equivalent to (1) and (2) respectively.

The limit case $a \rightarrow \infty$ suggests the following

Corollary 3. Let $f \in H$ and $g \in G$. Then f is univalent in E provided the conditions

$$\operatorname{Re}\left[e^{-i\gamma} \frac{zf'(z)}{f(z)g(z)}\right] \ge 0 \text{ for } z \in E \text{ and}$$

$$\tag{11}$$

$$\operatorname{Re}\left\{e^{-i\gamma}\left[\frac{zf'(z)}{f(z)} + s \; \frac{zg'(z)}{g(z)}\right]\right\} > 0 \text{ for } z \in \mathcal{E}$$
(12)

hold for some $s = \alpha + \beta$, $\alpha > 0$, $\beta \in \mathbb{R}$, where $\gamma = \arg s \in (-\pi/2, \pi/2)$.

Proof. 1° We assume first that $\operatorname{Re}\left[e^{-i\gamma}\frac{zf'(z)-}{f(z)g(z)}\right] > 0$, for $z \in E$. Let \mathcal{P} denote the class of functions $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$, $z \in E$ that satisfy the condition $\operatorname{Re} p(z) > 0$. It is well-known that if $S = (1 + r^2) / (1 - r^2)$, $R = 2r / (1 - r^2)$ then |p(z) - S| < R for z in \overline{E}_r , 0 < r < 1. Put $A(z) = e^{-i\gamma}\frac{zf'(z)}{f(z)g(z)}$ and $B(z) = e^{-i\gamma}\left[\frac{zf'(z)}{f(z)} + s\frac{zg'(z)}{g(z)}\right]$.

It is easy to verify that
$$A(rz) = e^{-i\gamma} \frac{zf_r'(z)}{f_r(z)g_r(z)}$$
 and $B(rz) = e^{-i\gamma} \left[\frac{zf_r'(z)}{f_r(z)} + s \frac{zg_r'(z)}{g_r(z)} \right]$.

In the considered case, by definitions and hypotheses of Corollary 3, A(z) and B(z) have positive real parts in E. Hence by an easy calculation and the mentioned property of $p \in \mathcal{T}$ we conclude that for a fixed $z \in E$, A(rz) and B(rz) lie in the closed discs $\overline{K}(S_1, R_1)$ and $\overline{K}(S_2, R_2)$ respectively where Re $(S_1 - R_1) = [(1 - r)/(1 + r)] a_0 |^{-1} \cos(\gamma + \arg a_0)$ and Re $(S_2 - R_2) = [(1 - r)/(1 + r)] \cos \gamma, a_0 = g(0)$. In addition in view of the assumption Re $[e^{-l\gamma} zf'(z)/(f(z)g(z))] > 0$ for $z \in E$ there is $-\pi/2 < \arg a_0 + \gamma < \pi/2$. Also $-\pi/2 < \gamma < \pi/2$ by the assumption of the corollary. Hence Re $(S_1 - R_1) > 0$ and Re $(S_2 - R_2) > 0$. Thus we obtain that there exists $a > \frac{1}{2}$ and such that $[K(S_1, R_1) \cup$ $\bigcup K(S_2, R_2)] \subset K(a |s| / \alpha, a |s| / \alpha)$ for a fixed $r \in (0, 1)$. Hence A(rz) and B(rz) are contained in $K(a |s| / \alpha, a |s| / \alpha)$. Simultaneously for each fixed $z \in L |z|^{2\kappa} A(rz) + (1 - |z|^{2\kappa}) B(rz) | \in K(a |s| / \alpha, a |s| / \alpha)$. Thus $f_r(z)$ and $g_r(z)$ satisfy (9) and (10) and $f_r(z)$ is univalent in E by Theorem 2. Hence f as the limit of f_r for $r \to 1$ is univalent in E.

2°. Suppose now that Re $\left\{e^{-i\gamma}zf'(z) \mid [f(z)g(z)]\right\} = 0$ at some points of E. From the minimum principle of harmonic functions we obtain Re $\left\{e^{-i\gamma}zf'(z) \mid [f(z)g(z)]\right\} \equiv 0$ for $z \in E$. Thus $\left\{e^{-i\gamma}zf'(z) \mid [f(z)g(z)]\right\} = ci$ for some $c \in \mathbb{R}$. Hence cig(z) = ci

$$=e^{-i\gamma}\frac{zf'(z)}{f(z)} \text{ and consequently } \frac{zg'(z)}{g(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}. \text{ Thus } \operatorname{Re}\left\{e^{-i\gamma}\left[(1 - \frac{zf'(z)}{f(z)} - \frac{zf'(z)}{f(z)}\right]\right\}$$

-s) $zf'(z) / f(z) + s(1 + zf''(z) / f'(z))] \le 0$ for $z \in E$ by (12). We can write the last inequality in the following equivalent form

$$\operatorname{Re}\left\{\left[e^{-t\gamma}-|s|\right]\frac{zf'(z)}{f(z)}+|s|\left[\frac{zf''(z)}{f'(z)}\right]\right\}>0 \text{ for } z\in E,$$
(13)

which is a known sufficient condition for univalence of f[2]. The proof of Corollary 3 is complete. From Corollary 3 we will deduce here two results first of which is equivalent to Corollary 3.

Corollary 4. Let $f \in H$, $p \in \mathcal{P}$ and let a, γ, ϕ_0 be fixed numbers such that $\alpha \ge 0$, $\gamma \in (-\pi/2, \pi/2)$ and $(\gamma + \phi_0) (-\pi/2, \pi/2)$. Then f is univalent in E provided

$$\operatorname{Re}\left\{\left(e^{-i\gamma}-\alpha\right)\frac{zf'(z)}{f(z)}+\alpha\left[1+\frac{zf''(z)}{f'(z)}-\frac{zp'(z)}{p(z)+i\operatorname{tg}(\gamma+\phi_0)}\right]\right\}>0$$
 (14)

for $z \in E$.

Proof. Let us put in (11) $e^{-i\gamma} zf'(z) / [f(z)g(z)] = p_0(z)$, $\operatorname{Re} p_0(z) \ge 0$ for $z \in E$. If $\operatorname{Re} p_0(z) = 0$ at some points of E then from case 2° of the proof of Corollary 3 we obtain (13) and consequently f is univalent in E. Thus we may assume that $\operatorname{Re} p_0(z) \ge 0$ for $z \in E$. By the choice of $p_0(z)$ we obtain $p_0(0) = |c_0|^{-1} e^{-i(\gamma+\phi_0)}$, where $c_0 = g(0)$, $\phi_0 = \arg c_0$. In addition $(\gamma + \phi_0) \in (-\pi/2, \pi/2)$ because $\operatorname{Re} p_0(0) \ge 0$. Hence $p_0(z) =$ $= p(z) |c_0|^{-1} \cos(\gamma + \phi_0) + i |c_0|^{-1} \sin(\gamma + \phi_0)$ where $p \in \mathfrak{F}$. Moreover $\frac{zg'(z)}{g(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} - \frac{zp_0'(z)}{p_0(z)}, \frac{zp_0'(z)}{p_0(z)} = \frac{zp'(z)}{p(z) + i \operatorname{tg}(\gamma + \phi_0)}$

Combining these equalities with (12) we obtain

$$\operatorname{Re}\left\{\left(e^{-l\gamma}-|s|\right)\frac{zf'(z)}{f(z)}+|s|\left[1+\frac{zf''(z)}{f'(z)}\right]-|s|\frac{zp'(z)}{p(z)+i\operatorname{tg}(\gamma+\phi_0)}\right\}>0^{(15)}$$

for |s| > 0, $\gamma = \arg s$. Thus f is univalent by Corollary 3. We may take $|s| = \alpha > 0$. If now $\alpha = 0$ in (13) then f is a spiral-like univalent function. The proof of Corollary 4 has been completed.

Remark 2. Let B denote the class of functions $f \in H$ which satisfy Corollary 4. It is not difficult to verify that B is the well-known class of Bazilewich (c f.p.ex. [3], p. 166). To see this one ought to solve the differential equation

$$(e^{-i\gamma} - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left[\frac{zf''(z)}{f'(z)} - \frac{zp'(z)}{p(z) + i \lg(\gamma + \phi_0)} \right] = p_1(z)$$

where $p_1(0) = e^{-i\gamma}$ and Re $p_1(z) > 0$ for $z \in E$.

Corollary 5. Let $p(z) = 1 + p_1 z + ... \in \mathcal{P}$ with $p_1 \neq 0$. Then p is univalent in E provided for some $\alpha > 0$ the inequality

$$\operatorname{Re}\left\{\frac{zp'(z)}{p(z)-1} + \alpha \left[1 + \frac{zp''(z)}{p'(z)} - \frac{\bar{z}p'(z)}{p(z)} - \frac{zp'(z)}{p(z)-1}\right]\right\} > 0$$

holds in E.

Corollary 5 follows from Corollary 3 by taking

$$f(z) = \frac{p(z)-1}{p_1}$$
, $g(z) = \frac{zp'(z)}{p(z)[p(z)-1]}$, and $\gamma = 0$.

We come now to concluding remarks. The consideration contained in the proof of Theorem 2, from the very beginning to relation (4) is similar to that in [5], [excluding some modification as in nature].

A similar consideration can be also found in an earlier paper of Ruscheweyh [4]. But we inserted in the paper the mentioned fragment of the proof of Theorem 2 for the considerations to be complete.

The paper [5] contains a fundamental result which is stated as Theorem 1 and yields a sufficient condition for univalence of a regular function. That theorem can be applied, as it follows from its proof, if $a > \alpha$ only, while Theorem 2 can be applied without this restriction. We showed here that Theorem 2 is more general than Theorem 1 from [5] also in the case $0 < \alpha < \alpha$.

To this end we will now cite: Theorem 1 from [5] as Theorem 4 almost literally. Theorem 4. Let f(z) = z + ... and $P(z) = 1 + c_1 z + ...$ be analytic in E, f(z)f'(z)/zand P(z) be different from zero for z in E and $s = \alpha + i\beta$, $a > \frac{1}{2}$, $0 < \alpha < a$,

$$M = (\alpha/a) |s| + ((\alpha/a) - 1) |s + c P(z)|,$$
(16)

(17)

where $c \neq 0$ is a complex number such that

$$|s+cP(z)| \leq (\alpha |s|) / (2 a - \alpha) .$$

Then f(z) is univalent in E if

$$\left|\frac{\alpha}{a} \left(1 - |z|^2\right) \left[(1 - s) \frac{zf'(z)}{f(z)} + s \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zP'(z)}{P(z)}\right) \right] - \left[s + c|s|^2P(z)\right] \right| \le M$$
(18)

for z in E.

Note that relations (17) and (18) can be written as a single inequality which is equivalent to (17) and (18). Essentially, (17) implies that there exists $\omega \subset \Omega$ such that $s + cP(z) = |s| \omega(z)$ with $|\omega(z)| \leq \alpha / (2a + \alpha) \leq 1$ for $z \in E$, where $\alpha \lfloor (2a - 1) = 1$ iff $\alpha = a$. Combining this with (16) and (18) we get by suitable transformations, the following inequality

$$\left| (1-|z|^2) \left[\frac{\alpha}{a} H_s(z,f,\omega) + |s|\omega(z) - s \right] - |s|\omega \right| \le \frac{\alpha}{a} |s| + (\frac{\alpha}{a} - 1) |s| \left| \omega(z) \right|,$$
(19)

where
$$H_s(z, f, \omega_0) = (1-s) \frac{zf'(z)}{f(z)} + s(1 + \frac{zf''(z)}{f'(z)} - \frac{z\omega'(z)}{e^{l\gamma} - \omega(z)}), \quad \gamma = \arg s.$$

The relation (6) in Theorem 3 can be written in an equivalent form

$$\left| (1-|z|^2) \left[\frac{\alpha}{a} H_s(z,f,\omega) + |s|\omega(z) - s \right] - |s|\omega(z)\phi(|z|,\frac{a}{\alpha}) \le |s|\phi(|z|,\frac{a}{\alpha}), \quad (20)$$

where $\phi(|z|, \frac{a}{\alpha}) = \frac{1 - |z|^2}{1 - |z|^2(a/\alpha)}$, $z \in E$.

Note, that $\phi(x; \lambda) = (1 - x^2) / (1 - x^{2\kappa})$ decreases in [0, 1] from 1 to $1/\lambda$ for each fixed $\lambda > 1$ and $\phi(x; 1) \equiv 1$. Note, that we assume $\phi(1) = \lim_{x \to 1^-} \phi(x, \lambda) = 1/\lambda$ and

 $0 < \alpha \le a$ by the hypothese. Let now $z \in E$ be a fixed point. It can be verified by using the mentioned property of ϕ that $\overline{K}(|s| \omega(z) \phi(|z|, a/\alpha); |s| \phi(|z|, a/\alpha))$ contains the circle $\overline{K}(|s| \omega(z) \alpha/a; |s| \alpha/a)$. Thus every function f which satisfies the inequality

$$\left| (1-|z|^2) \left[\frac{\alpha}{a} H_s(z,f,\omega) + |s|\omega(z) - s \right] - |s|\omega(z) \frac{\alpha}{a} \right| \le |s| \frac{\alpha}{a}$$
(21)

for a fixed $\omega \in \Omega$ satisfies also inequality (20). This is so because $z \in E$ was arbitrarily chosen. Hence we obtain the following

Corollary 6. If f satisfies the assumptions of Theorem 3 and it is subjected to (21) then f is univalent in E.

Note that a reasoning similar to above implies that every function satisfying (19) satisfies also (21). Hence Theorem 4 is a special case of Theorem 3.

Remark 3. We can also prove an analogy of Theorem 2 with an application to a function g of the form $g(\zeta) = \zeta + b_0 + b_1 \zeta^{-1} + ...$ which is regular in $E^0 \setminus \{\infty\}$ where $E^0 = \{\zeta \in \mathbf{C} : |\zeta| > 1 \}$. The following theorem is true.

Theorem 5. Suppose that $g(\zeta) = \zeta + b_0 + b_1 \zeta^{-1} + ... and h(\zeta) = 1 + c_2 \zeta^{-2} + ... are$

regular in $E^0 \setminus \{\infty\}$ and E^0 , respectively, with $g'(\zeta) \neq 0$ for $\zeta \in E^0$. Let for some numbers $s = \alpha + i\beta, \alpha > 0, \beta \in \mathbb{R}, \forall \le \alpha \le \alpha$ the inequality

$$\frac{\zeta g'(\zeta)}{g(\zeta) h(\zeta)} - \frac{as}{\alpha} \bigg| \leq \frac{a|s|}{\alpha}$$

hold in E° . If the inequality

$$\left||\zeta|^{2\kappa} \frac{\zeta g'(\zeta)}{g(\zeta) h(\zeta)} + (1 - |\zeta|^{2\kappa}) \left[\frac{\zeta g'(\zeta)}{h(\zeta)}\right] - \frac{as}{\alpha} \right| \le \frac{a|s|}{\alpha}$$

holds for $\zeta \in E^0$ and $\kappa = a/\alpha$ then f is univalent in E^0 .

Detailed considerations are contained in another paper which is to be published in Annales Polonici Mathematici (1985).

REFERENCES

- [1] Becker, J., Löwnersche Differetialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. reine angew. Math., 255 (1972), 23-43.
- [2] Eenigenburg, P. J., Miller, S. S., Mocanu, P. T., Reade, M. O., On a subclass of Bazile ič functions, Proc. Amer. Math. Soc., 45 (1974), 88-92.
- [3] Pommerenke, Ch., Über die Subordination analytischer Funktionen, J. reine angew. Math., 218 (1965), 159-173).
- [4] Ruscheweyh, S., An extension of Becker's univalence condition, Math. Ann., 220 (1976), 285-290.
- [5] Sing, V., Chichra. Pran Nath., An extension of Becker's criterion of univalence, Journal of the Indian Math. Soc., 41 (1977), 353-361.

STRESZCZENIE

Praca zawiera następujący wynik podstawowy

Twierdzenie 2. Niech $a > \frac{1}{2}$, $s = \alpha + i\beta$, $\alpha > 0$, $\beta \in \mathbb{R}$, $\kappa = a/\alpha$ będą ustalonymi liczbami. Załóżmy, że f(z) = z + ... i g(z) są funkcjami regularnymi w $E = \{z: |z| < 1\}$ takimi, że $f'(z) \neq 0 | g(z) \neq 0$ w E oraz, że zachodzi nierówność

$$\frac{zf'(z)}{f(z)g(z)} = \frac{a|s|}{\alpha} < \frac{a|s|}{\alpha}$$

Jefli ponadto mamy

$$|z|^{3K} \frac{zf'(z)}{f(z)g(z)} + (1-|z|^{3K}) \left[\frac{zf'(z)}{f(z)} + s \frac{zg'(z)}{g(z)} \right] - \frac{as}{\alpha} \le \frac{a|s|}{\alpha}$$

to f jest funkcją jednolistną w E.

Praca zawiera pewne wnioski i zastosowania jak również analogon bez dowodu twierdzenia 2 dla funkcji $g(t) = t + b_0 + b_1 t^{-1} + \dots$ regularnej w $E^0 = \{t: |t| > 1\}$.

PESIOME

Работа содержит следующий результат

Теорена 2. Пусть $a > \frac{1}{2}$, $s = a + i\beta$, a > 0, $\beta \in \mathbb{R}$, $\kappa = a / a \phi$ ык сырованные числа. Предположим, что функцин $f(z) = z + \frac{1}{2}$. # g(z) регуллярны в $E = \{z :: |z| < 1\}$, $f'(z) \neq 0$, $g(z) \neq 0$ для $z \in E$ и такие, что имеет место неравенство

$$\frac{zf'(z)}{f(z)g(z)} - \frac{4s}{\alpha} < \frac{a|s|}{\alpha}$$

Если кроме того имеем

$$\left||z|^{\frac{3}{2}K} \frac{zf'(z)}{f(z)g(z)} + (1-|z|^{\frac{3}{2}K}) \left[\frac{zf'(z)}{f(z)} + s \frac{zg'(z)}{g(z)}\right] - \frac{as}{\alpha} \right| \le \frac{a|s|}{\alpha},$$

то / однолистна в Е.

Работа содержит некоторые следствия и применсния в также аналог теоремы 2 (без доказательства) для функции $g(\xi) = \xi + b_0 + b_1 \xi^{-1} \dots$ резулярной в $E_0^* = \{\xi: |\xi| > 1\}$.