ANNALES UNIVERSITATIS MARIAE CURIE.SKLODOWSKA LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 9
SECTIO A
1982/1983

Department of Mathematics
Waslington University
St. Louis, Missouri, USA

J.A.JENKINS

On a Problem of A. A. Goldberg *
O pewnym problemic A. A. Goldberga
06 одноп проблеме А. А. Гольдберга

1. Goldberg [2] considered the following problem. Let K_{1} denote the class of functions f meromorphic in the unit dise for which the multiplicities with which the values 0,1 and ∞ are taken are finite and distinet.Let $r(f)$ denote the maximum modulus for a point where one of these values is assumed and let A_{1} denote the greatest lower bound of these quantities for $f \in K_{1}$. Let K_{2}, K_{3}, K_{4} be the classes obtained by replacing meromorphic by regular, rational and polynomial respectively and A_{2}, A_{3}, A_{4} the corresponding greatest lower bounds. Then Goldberg concluded that
$0<A_{1}=A_{3}<A_{2}=A_{4}$.
He also obtained explicit numerical upper and lower bounds for A_{2} and an explicit numerical upper bound for A_{1}. He did not however obtain such a lower bound for A_{1}. The object of this paper is to provide such a bound (which is better than Goldberg's lower bound for \boldsymbol{A}_{2}). The same order of ideas also gives an upper bound for \boldsymbol{A}_{1} significantly better than Goldberg's, .

I want to express my thanks to James M. Anderson of University College, London, who brought this problem to my attention and supplied the reference to Goldberg's paper.
2. Definition 1. A function f meromorphic in $|z|<1$ is said to satisfy condition C if the multiplicities with which f takes the values 0,1 and ∞ in $|z|<1$ are finite and distinct.

Theorem 1. If the function f meromorphic in $|z|<1$ satisfies condition C and does not take the value 0,1 or ∞ in $r<|z|<1,0<r<1$, then $r \geqslant .00037008$.

[^0]Let Δ denote the sphere punctured at $0,1, \infty$. The mapping $w=f(z)$ carries a circumference $|z|=s, r<s<1$, into a path in Δ. The covering surface of Δ determined by the cyclic subgroup of the fundamental group corresponding to this path is a doubly-connected Riemann domain \mathcal{Q}. Q is conformally equivalent to a domain obtained from the upper half-plane by identifying points congruent under the corresponding subgroup of the group of linear transformations with integral coefficients and determinant 1 generated by a hyperbolic transfurmation T. If T has fixed points ζ_{1}, ζ_{2} is has the representation (with suitable choice of notation)
$\frac{\omega-\zeta_{1}}{\omega-\zeta_{2}}=\lambda \frac{\zeta-\zeta_{1}}{\zeta-\zeta_{2}} \quad(\lambda>1)$
which is to be appropriately modified in case either of ζ_{1}, ζ_{2} is the point at infinity. In any case $d 0$ has module $\pi(\log \lambda)^{-1}$. It is well known $[3,4]$ that the module of $r<|z|<1$ is at most this size. Thus
$\frac{1}{2 \pi} \log r^{-1}<\pi(\log \lambda)^{-1}$
or
$r>\exp \left(-2 \pi^{2}(\log \lambda)^{-1}\right)$.
On the other hand if T is given by
$\frac{a \zeta+b}{c \zeta+d}, \quad a d-b c=1$,
it is well known that
$\lambda+\lambda^{-1}+2=(a+d)^{2}$.
Since T represents a covering transformation of the universal covering surface of Δ it is well known that the inatrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ (taken to have determinant 1) will be congrucut modulo 2 to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$; see for example $\left[1\right.$, p. 270]. Thus $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has the form

$$
\left(\begin{array}{cc}
1+2 m & 2 k \\
2 \ell & 1+2 n
\end{array}\right)
$$

k, ℓ, m, n integral, with
$1+2 m+2 n+4 m n-4 k l=i 1$
so that
$a+d=2-4 m n+4 k l$.

If $a+d= \pm 2, T$ is parabolic (or the identity), thus when T is hyperbolic $a+d$ is divisible by 6 . Hence
$\lambda>17+(288)^{1 / 2}$.
Carrying out the numerical calculation we find
$r>.00037008$.

Definition 2. Let K_{1} denote the class of functions f meromorphic in the unit disc satisfying condition \mathbf{C}. Let $r(f)$ denote the maximum modulus of a point in $|z|<1$ where f takes one of the values $0,1, \infty$. Let $A_{1}=$ g.l.b. $r(f)$.

$$
f \in K_{1}
$$

Corollary. $A_{1}>.00037$.
3, Lemma. There exists a meromorphic function in K_{1} for which all of the points at which it takes the values $0,1, \infty$ lie in a continuum whose complement with respect to the unit disc is a doubly-connected domain whose module is arbitrarily close to
$\pi\left(\log \left(17+(288)^{1 / 2}\right)\right)^{-1}$.
There does exist a path in Δ for which the corresponding linear transformation actually has the value $a+d=6$ and which has positive distinct indexes about 0 and 1 , for example, a path consisting of one simple loop enclosing 0 and 1 followed by a simple loop enclosing just 1 . The associated doubly-connected covering surface $d 8$ of Δ is conformally equivalent to a ring R : $s<|z|<1$ under a napping from R onto $t Q$. The image of $|z|=s+\epsilon$ for sufficiently small $\in>0$ is an analytic curve Γ which lies on the boundary of the Riemann image de, of $s+\epsilon<|z|<1$. It is well known that there is a Riemann domain Ξ homeomorphic to a disc coverning the sphere, bounded by Γ and lying locally on the opposite side of Γ from $\& e_{e}$ I and dle together make up a simply-connected hyperbolic Riemann surface δ. We map \& conformally onto the unit disc by ψ. Then ψ^{-1} provides the desired function in K_{1}.

Theorem 2. $A_{1}<.00149$.
If we choose ψ so that the origin lies in $\psi(\bar{\Xi})$ in the Lemma it is well known that the diameter of $\psi(\overline{\underline{Z}})$ is less than $4(s+\epsilon)$. Since e can be chosen arbitraily close to 0 the result follows.

Evidently more detailed geometric considerations would provide some improvement in this bound.

REFERENCES

[1] Ahlfors, L. V Complex Analysis, MoGraw-Hil, New York 1966.
[2] Goldberg, A. A., On a theorem of Landau rype, Teor. Funk cill Funtcional. Anal i Pribožen., 17 (1973), 200-206. (Russian).
[3] Huber, H., Öber analyrische Abbildungen Riemannscher Flächen in sich, Comment. Math. Hetv., 27 (1953), 1-73.
[4] Jenkins, J. A., Suita, N., On analytic self-mapptngs of Riemarn surfaces, Math. Ann. 202 (1973), 37-56.

STRESZCZENIE

Niech K_{1} będzie klasq funkcji \int meromorficznych, które przyjmuja kaidą z wartoíci: $0,1, \ldots$ skoniczonq i rożna ilotć razy. Niech
$r(f)=\max \left\{|z|: z \in f^{-1}|\{0,1, \infty\}|\right\}$
ork
$A_{1}=\inf \left\{r(f): f \in K_{1}\right\}$.
W pracy otrzymano oseacowanic A_{1} od dolu i od góry, ulepszajqce oszacowanie otzzymane przez Goldberga.

PE31OME

Пусть K_{1} будет классом функьии f мероморфных в одиничном круге, которыо ариниа ют кахдюе эначение $0,1, \infty$ с конечнои и разно月 хратностьо. Пусть
$r(f)=\max \left\{|z|: z \in f^{-1} \mid\{0,1, \infty\} \quad 1\right\}$.
$A_{1}=\inf \left\{r(f): f \in K_{1}\right\}$.
В зтои работо получены оиенки A_{1} самзу и с верху улучшаюшно оценкк полученныо Голидбергом.

[^0]: - Research supported in part by the National Science Foundation.

