ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN – POLONIA

VOL. XXXVI/XXXVII, 9

SECTIO A

1982/1983

Department of Mathematics Washington University St. Louis, Missouri, USA

J.A. JENKINS

On a Problem of A. A. Goldberg *

O pewnym problemie A. A. Goldberga

Об одной проблеме А. А. Гольдберга

1. Goldberg [2] considered the following problem. Let K_1 denote the class of functions f meromorphic in the unit disc for which the multiplicities with which the values 0, 1 and ∞ are taken are finite and distinct. Let r(f) denote the maximum modulus for a point where one of these values is assumed and let A_1 denote the greatest lower bound of these quantities for $f \in K_1$. Let K_2 , K_3 , K_4 be the classes obtained by replacing meromorphic by regular, rational and polynomial respectively and A_2 , A_3 , A_4 the corresponding greatest lower bounds. Then Goldberg concluded that

 $0 < A_1 = A_3 < A_2 = A_4 .$

He also obtained explicit numerical upper and lower bounds for A_2 and an explicit numerical upper bound for A_1 . He did not however obtain such a lower bound for A_1 . The object of this paper is to provide such a bound (which is better than Goldberg's lower bound for A_2). The same order of ideas also gives an upper bound for A_1 significantly better than Goldberg's, .

I want to express my thanks to James M. Anderson of University College, London, who brought this problem to my attention and supplied the reference to Goldberg's paper.

2. Definition 1. A function f meromorphic in |z| < 1 is said to satisfy condition C if the multiplicities with which f takes the values 0, 1 and ∞ in |z| < 1 are finite and distinct.

Theorem 1. If the function f meromorphic in |z| < 1 satisfies condition C and does not take the value 0, 1 or ∞ in r < |z| < 1, 0 < r < 1, then r > .00037008.

^{*} Research supported in part by the National Science Foundation.

Let Δ denote the sphere punctured at 0, 1, ∞ . The mapping w = f(z) carries a circumference |z| = s, r < s < 1, into a path in Δ . The covering surface of Δ determined by the cyclic subgroup of the fundamental group corresponding to this path is a doubly-connected Riemann domain \mathfrak{Q} . \mathfrak{Q} is conformally equivalent to a domain obtained from the upper half-plane by identifying points congruent under the corresponding subgroup of the group of linear transformations with integral coefficients and determinant 1 generated by a hyperbolic transformation T. If T has fixed points ζ_1 , ζ_2 is has the representation (with suitable choice of notation)

$$\frac{\omega - \zeta_1}{\omega - \zeta_2} = \lambda \frac{\zeta - \zeta_1}{\zeta - \zeta_2} \quad (\lambda > 1)$$

which is to be appropriately modified in case either of ζ_1 , ζ_2 is the point at infinity. In any case ζ_2 has module $\pi (\log \lambda)^{-1}$. It is well known [3, 4] that the module of r < |z| < 1 is at most this size. Thus

t, Coldens (A) contained disclutioning without the Sy directs the d

$$\frac{1}{2\pi} \log r^{-1} \le \pi \left(\log \lambda\right)^{-1}$$

10

 $r \ge \exp\left(-2\pi^2 \left(\log \lambda\right)^{-1}\right).$

On the other hand if T is given by

$$\frac{a\zeta+b}{c\zeta+d}, \quad ad-bc=1,$$

it is well known that

$$\lambda + \lambda^{-1} + 2 = (a + d)^2$$
.

Since T represents a covering transformation of the universal covering surface of Δ it is well known that the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ (taken to have determinant 1) will be congruent modulo 2 to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; see for example [1, p. 270]. Thus $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has the form

$$\begin{pmatrix} 1+2m & 2k \\ 2k & 1+2n \end{pmatrix}$$

k, l, m, n integral, with

$$1+2m+2n+4mn-4k\ell=il$$

so that

 $a+d=2-4mn+4k\ell$

If $a + d = \pm 2$, T is parabolic (or the identity), thus when T is hyperbolic a + d is divisible by 6. Hence

 $\lambda \ge 17 + (288)^{1/2}$.

Carrying out the numerical calculation we find

r≥.00037008.

Definition 2. Let K_1 denote the class of functions f meromorphic in the unit disc satisfying condition C. Let r(f) denote the maximum modulus of a point in |z| < 1where f takes one of the values $0, 1, \infty$. Let $A_1 = g.\ell. b. r(f)$.

 $f \in K_1$

Corollary. $A_1 > .00037$.

3. Lemma. There exists a meromorphic function in K_1 for which all of the points at which it takes the values 0, 1, ∞ lie in a continuum whose complement with respect to the unit disc is a doubly-connected domain whose module is arbitrarily close to

 $\pi (\log (17 + (288)^{1/2}))^{-1}.$

There does exist a path in Δ for which the corresponding linear transformation actually has the value a + d = 6 and which has positive distinct indexes about 0 and 1, for example, a path consisting of one simple loop enclosing 0 and 1 followed by a simple loop enclosing just 1. The associated doubly-connected covering surface $\Delta = 0$ of Δ is conformally equivalent to a ring \Re : s < |z| < 1 under a mapping from \Re onto $\Delta = 0$. The image of $|z| = s + \epsilon$ for sufficiently small $\epsilon > 0$ is an analytic curve Γ which lies on the boundary of the Riemann image $\Delta = 0$ is $z + \epsilon < |z| < 1$. It is well known that there is a Riemann domain Ξ homeomorphic to a disc coverning the sphere, bounded by Γ and lying locally on the opposite side of Γ from $\Delta = 0$. We map Δ conformally onto the unit disc by ψ . Then ψ^{-1} provides the desired function in K_1 .

Theorem 2. $A_1 < .00149$.

If we choose ψ so that the origin lies in $\psi(\Xi)$ in the Lemma it is well known that the diameter of $\psi(\Xi)$ is less than $4(s + \epsilon)$. Since ϵ can be chosen arbitraily close to 0 the result follows.

Evidently more detailed geometric considerations would provide some improvement in this bound.

REFERENCES

- [1] Ahlfors, L. V., Complex Analysis, McGraw-Hill, New York 1966.
- [2] Goldberg, A. A., On a theorem of Landau type, Teor. Funkcil Funkcional. Anal. i Prilozen., 17 (1973), 200-206. (Russian).
- [3] Huber, H., Über analysische Abbildungen Riemannscher Flächen in sich, Comment. Math. Helv., 27 (1953), 1-73.
- [4] Jenkins, J. A., Suita, N., On analytic self-mappings of Riemann surfaces, Math. Ann. 202 (1973), 37-56.

STRESZCZENIE

Niech K_1 będzie klasą funkcji f meromorficznych, które przyjmują każdą z wartości 0, 1, ∞ skończoną i różną ilość razy. Niech

$$r(f) = \max \{ |z| : z \in f^{-1} \{ \{0, 1, -\} \} \}$$

OTEZ

$$A_1 = \inf \left\{ r(f) : f \in K_1 \right\}$$

W pracy otrzymano oszacowanie A_1 od dołu i od góry, ulepszające oszacowanie otrzymane przez Goldberga.

РЕЗЮМЕ

Пусть K_1 , будет классом функций f мероморфных в одиничном круге, которые принциают каждое значение 0, 1, ∞ с конечной и разной кратностью. Пусть

.

$$r(f) = \max \{ |z| : z \in f^{-1} [\{0, 1, \infty\}] \}$$

$$A_1 = \inf \{ r(f) : f \in K_1 \}.$$

В этой работе получены оценки A, свизу и с верху улучшающие оценки полученные Гольдбергом.