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1. Introduction. Let A denote the unit disc -{z : | z | < l} and let S* denote the 
class of starlike functions, that is, the class of all functions/(z) which are analytic and 
univalent in A, normalized by/(0) = 0,/'(0) = 1, and which map A onto a region which 
is starshaped with respect to the origin. Let k (z) denote the Koebe function 

fc(z) = z/(l-z)1. (1.1)

Given z0 6 A and r = | z0 1, define the sets 

’A',(r) = (w : w = A'(z), |z|<rj ,

- K (r) = jw : w = logk'(z), |z|<r} (1.2)

jW(z0)= {w:»v = log/'(z0),/e5*J ,

where the branch of the logarithm is fixed by setting log f'(0) = log k'(0) — 0.
We observe that if f (z) e S*, then so is fa(z) = e~f(e ,az), a real, and log/„'(r) = 

= log f \reia). Therefore M (z0) = M ( 1 z0 |) and hence it suffices to let z0 = I z0 I in 
studying M (z0).

In 1932, A. Marx [5] showed that if |z0 | < sin rr/8 = 0.382.., then/'(z0)€Ai (Iz0 j) 
and conjectured that this would be true for any z0 € A. This could be written as the

This work was supported in part by Grant MCS 80-05490 from the National Science Foundation 
to the University of Maryland. A portion of the computer time used was granted by the Computer 
Science Center of the University of Maryland.



70 J. A. Hummel

conjecture that /' (z) k'(z) for any/6 S* (if one allows this use of subordination even
th ough k'(z) is not univalent in A).

Marx’s result was based on the fact that every normalized convex univalent function 
F (z) satisfied the condition Re { F (z) / z J > 54. Hence, the function 2 F (z) / z — 1 is 
a normalized function with positive real part and has a Herglotz representation. Thus, 
there exists a measure /t (x) of total mass 1 on the circle 1 x | - 1 such that

(Marx used the approximation by finite sums.) Since F (z) G S* if and only if f (z) =• 
= zF '(z) for some convex function F(z), it follows that for any f&S* there is a measure 
H (x) of total mass 1 such that

Thus,/'(r) always lies in the closed convex hull of the set Kt(r). Marx obtained his bound 
from this observation.

Robinson [6] studied the relationship between the subordination of two func­
tions and the subordination of transforms of these functions. In particular, he 
considered conditions under which f g implies /’ g'. He was able to prove
that if zf'.{z)lf(z) (1 +z)/(l —z)(as is true for/e5*),then/'(z)^ (1 + z)/(l —*)= 
* k!(z) for | z | < 54 (5 - 17,zl) = 0.438... That is, he showed that the Marx conjecture 
holds for r <0.438...

Somewhat later, Robinson [7] proved that if B and Care any two complex numbers, 
not both 0, then any extremal function for the problem of maximizing Re { B log/'(z) + 
+ Clog/(z)/z} intheclastS* was a function whichmaps Aonto the exterior of at most two 
radial slits. He then proved that log k'(z) is univalent in A, that K (r) is convex if r < 0.6, 
and that the extremal functions have at most one slit if r < 0.62. That is, he proved that

M(r)CK(r) (1.3)

ifr<0.6.
This essentially replaced the original Marx conjecture with what we can call the Marx-

-Robinson Conjecture: that (1.3) holds for all r < 1.
Duren [1 ] improved Robinson’s results to show that (1.3) holds for r < 0.736... Since

the method of proof used the convexity of M (r), Duren calculated the actual radius of 
convexity of M (r) which is r - 0.886...

• Hummel [3) showed the existence of a counterexample to (1.3) when r = 0.99 and 
stated that computations suggested the existence of such counterexamples for r > 0.94.

It is clear that the truth of the Marx-Robinson conjecture for | z | < r implies the 
truth of the original Marx conjecture for the same disc. The converse is true if the region 

K (r) is contained in the strip | Im | < rr. Numerical computations (discussed in sec-
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tion 4 below) show that the boundary of K (r) first touches the lines I Im {»vj | = rr when 
r = 0.810465... However, a counterexample to the Marx-Robinson conjecture will define 
a counterexample to the Marx conjecture even if r is largerthan this value provided that 
w0 = log/ '(r) (r) and the line Re = Re intcrsefs K (r) in a segment of
length less that 2 it.

Figure 1. K <r) fore “ 0.99

Figure 1 shows the region K (r) for r = 0.99. The dashed curve follows the values of 
log/'(r) for the functions in S* of the form/(z) = z (1 — eia‘z)" 1 ' g(l — e'“Jz)_ * * g, 

a, = 2.2089323,02 = 5.9854563, as n varies between — 1 and + 1. The value nr is marked 
on the imaginary axis. It is clear that some of the p define functions which are counter­
examples to the Marx conjecture. Computations discussed in section 4 of this paper in­
dicate that such counterexamples exist for r> 0.93919... In every case, such counter­
examples seeinto produce only points which are properly contained in the convex hull 
of K (r). We note that the radius of convexity of A' (r), 0.886.., does not appear to be the 
bound for the Marx-Robinson conjecture, as was observed by Robinson. See [ 1 ].

Based on the nutnberical results of this paper, it seems reasonable to conjecture that
1) M (r) C K (r) for r < 0.9391924... and for no larger r.
2) The original Marx conjecture holds in the same range.
3) M (r) is properly contained in the convex hull of K (r) for r> 0.8863486...
The set Kt(r) is doubly connected for r > 0.810465... We know, as Marx showed in 

his original paper, that if /£ S* then / '(r) is in the convex hull of However, all 
of the counterexamples discovered are such that f'(r) in fact lies in the hole in the center 
of A'i(r) (i.e. in the bounded component of C — Ai(r)). This was pointed^put to the 
writer in a personal comunication by R. Boutellier who suggests the addition'/conjecture

4) For any /6 S*, f'(r) lies in the region bounded by the outer boundary of K\(jr).
2. Results based on variational methods. In this section, and in the next, many of

our results will be based on functions of the form (2.5) given in Theorem 2 below. These 
are the “two slit functions’. These functions depend on three real parameters, , a2,
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and p. In addition, we use the real parameter r = | 2 |. We find it convenient to introduce
the conventions

2, = rela', 2, =re,a*.

The following two theorems are direct consequences of the results of [2], and follow 
from variational methods. For these theorems we do not need to use convexity of K (r) 
(or M (/)) since any boundary point of M(r) must be associated with a function f(z)&S* 
which is locally extremal for Re {/[ f ] where J[f ] is the function X log/'(r) and 

X is a complex number with magnitude one. (See [4].)
Theorem 1. If w0 is a boundary point of M (/) for a given r, 0 < r < 1, then w0 = 

= log f'(r) where f(z)ES* satisfies the differential equation

zf'V)
/(*)

where

^W = GO), (2.1)

f + 2 f(r) Z t 1T?(2) = X( — )-2X( —— + 2/Im {xj -

— rz+ 1 _ /(/)-x(—r)+2X(-^f)
rz — 1

GW = x (i + rf\r)

f\r)

f'(r) ' (r-2)1

2
Z'(r) ' («-!)’

) (■ ■) - X
2rz

(2.2)

rf"(r) /2+1
+ X (1 + TT7-) (------- r)~ X

(r-2)1

2/2

+ 2 Re

(23)

/'(/) ' ' rz-l ’ " (rz-l)J ’

and \isa complex parameter with | X | = 1 such that

r — 2

f + 2

r — 2
w

,m ,0.
I/O-) J

(2.4)

Theorem 2. Any f (2) e 5* satisfying the conditions of Theorem 1 is of the form

z
/0) = (l-e/“>2)‘+»‘(l-e'“»2)'-»‘ (2.5)

where a,. a2, and p are real, and - 1 < p < 1.
We now observe a consequence of (2.5).
Theorem 3. Let f (2) be an arbitrary function of the form (2.5). Let X be such that
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(2.4) holds. Let the functions R (z) and Q (z) be defined by formulas (2.2) and (2.3). 
//bor/i

7?(e",Ol) = 0, (2.6)

rt(e-'“») = (>, (2.7)

then the function f (z) satisfies the differential equation (2.1).
Proof. From (2.2) and (2.3), R (z) is purely imaginary and Q (z) is purely real when

I z | = 1. Further, both are rational functions of order 4 and hence are determined com­
pletely by their principial parts at z = r and their values at z = 0.

If/(z) is of the form (2.5) then

z/"(z) (14-m) Zl+e,a-z\ + (1-p) Z l+efa»z 
Z(z) 2 ^l-e'a>z ) 2 I l-e'“«z (2.8)

and

Z"(z) p(e/o- -e<tt»)-2ef(a‘*<>»)z (2+M)e/a- J2-m)c^_

Z'(z) 1+p(ef“> —e/a«)z —e,(“‘*“,^zJ 1 —e'Olz (1 — e'“’z)

Setting z = r and putting these into (2.3), simple computations show that Q (0) = X and

2r’X 2? X/»//’(/■)+4rX , _
2 (2) = - - ------ --------------------;------ ;-------------- + s (z)

(z-r)1 (z-r)

where g (z) is regular at z = r. (The hypothesis that \f"(r) If'(f) is real is needed in this 
computation.)

This defines the right hand side of (2.1). If L (z) is the left hand side of (2.1), we see 
that L (z) appears to be a rational function of order 6.' However, since by hypothesis 
A (e ' la>) = R (e"/ai) = 0, the poles of (2.8) are cancelled. That is, L (z) is a rational 
function of order 4. Further, from (2.8), zf '(z) / f (z) is purely imaginary on | z | — 1, 
Thus L (z) is also determined completely by its value at 0 and its principal part at z = r. 
Again, straightforward -calculations show that L(0) = X and £(z) has the same principal 
part as Q (z) at z = r. It follows that £(z) = Q (z), i.e. f (z) satisfies the differential 
equation.

At this point, we seem to have the problem under control. The functions (2.5) depend 
on three real parameters, (2.4) defines X, and hence when (2.6) and (2.7) are satisfied, 
we expect to have a single free parameter left which will then define the boundary of 
M (r). Unfortunately, we have the following two theorems.

Theorem 4. For every real a, the Koebe function ka (z) = z / (1 — ela z)2 satisfies 
(2.1) if X is chosen so that X k& (r) / k^ (r) is real.

Proof. Set
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r + z
-R»(x)-\(-------)-

r—z
2X/(r)
/'«

z

(r-z)1

2Xr

(r-z)
+ X

Then we see from (2.2) that R(z) =>/?j(z) —/Jj(l / z ) holds in general. However, if 
I z | = 1 this implies

7?(z) = 2/Im p?i(z)] , |z| = l. (2-10)

Thus, if I z | ** 1 and R i(z) is real, then R (z) = 0.
If we set /(z) = ka (z), then a straightforward calculation shows that

_fa _ 2X re'“ (2+ /*'*) = _ \rf"(r)
J (1 —rela)(l +re‘a) f'(r)

which is real by hypothesis. Hence R (e~la) — 0 and the conclusion of the theorem 
follows from Theorem 3. setting ûi = aa = a.

Theorem 5. Let a,, aa, and n be given, with' -I <y < 1. Define f(z) by (2.5) and let 
X be such that(2 A) is satisfied. If (26) holds, then so does (2.7).

Proof. The hypothesis of the theorem is equivalent to Rl(e'la' ) being real, where 
7?,(z) is defined by (2.9), since (2.10) holds in this case. Similarly, it suffices to prove 
that A!(<■'“*) Is real.

One verifies easily that iff (z) is of the form (2.5) then

2Xz, [2-Zj-ZjZi + g(z| -za)] 

(1-zi) [l-z,Zj+p(z,-Zj))

2Xza [2 — z, -z,za 4-M(zt -za)] 

(1-Zj) [1 -Z,Zj + p(z,-Zj)]

where we use the convention z„ = relav as mentioned at the beginning of this section. Set

0 = 2Xr/'(r)//"(r) = 2X (
,M(zi-za)-2z1za 

1 -z1z2 + p(z,-zj)

(2 + aQz, + 
(1- z.)

(2~p)za

(l-*s)
)(2.11)

and

Ci = + 2, Gt
P

Ki(e‘ia>)
+ 2. (2.12).

+

P
K.oH“*)

Then a straightforward but somewhat tedious computation shows that
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f G = ~2^ [2~2zlZi+n(Zï ~Z2)]
2,(1-Zj) [2-Zi-ZlZ2 +

" (2.13)
G (1 + M)(z, — ~2 ) [2 —2z,z2 + g(z, -z2)]

V * Zj(l ~ Zj) (2~■ z2 - z,z2 + g (z, — z2)]

and more easily that

1 -M 
G,

+ (2.15)

If neither G, nor G2 is zero or °°, then this implies the conclusion of the theorem 
since by hypothesis, /?,(«’'“') is real, and so is/3 as defined by (2.11). Thus from (2.12), 
G, is real and (2.14) implies G2 is real, which in turn implies A,(e"'“») real from (2.12).

The theorem holds trivially if a, = a2, so we may assume z, =#= z2. If G, = «> then 
2 — z2 — z, z2 + g(z, — z2) = 0 and clearly G2 =#=«>. Then from (2.14) G2 is real and 
the conclusion follows as before. If G, = 1 — g, then G2 = »».but then A,(e",ai) = 0 
and the conclusion still follows.

We see that G, = 0 if and only if g = 2 (z, z2 — 1) /(z, —z2) and that G2 = 0 if and 
only if G, = 0. However, the given conditions, — 1 <g< 1 , |z, I = I z2 | =r,z, ¥=z2 
make this impossible, as is seen by considering the linear fractional transformation u = 
= 2 (z, f — l)/(z, — f).G, = 0 if and only if w = g when f = z2. Here, £ «= 1, - 1, 
and l/z, map to u = 2, - 2, and 0 respectively. Hence the line segment [- 2,2] is an 
arc of a circle from - 1 to + 1 passing through l/z, (or the real axis less the interval 
(-1,1) if z, is real). In any case, this arc is exterior to the unit circle, and the image 
of | £1 = r cannot cross the real axis between — 1 and +1.

At this point we see that one of the needed conditions has evaporated, and, since [3] 
shows that not all Koebe functions are extremal, the set of solutions of (2.1) contains 
functions which are extraneous.

3. The envelope of the family of two slit functions. Since the differential equation 
does not contain (directly) sufficient information, we turn to a study of the family of 
two slit functions (2.5). If f (z) is of the form (2.5), we compute IV = log/'(r) and set

1 — z2
W(z-, a,.a2.g) = log [1 + g(z, -z2)-z,z2) - 21og(l-z,)(J-z2)+glog(-------- )

1 “Z,

(3.1)

where as before z„ = reia». The branch of log f '(z) is fixed by letting log f '(0) = 0. 
We assume that the branches of the terms in (3.1) are chosen to give this value of 
l°g /'(»•)•

If we fix r, a,, and a2, then as g varies from — 1 to + 1, the values of W (r, a,, a2, g) 
trace out an arc, which must be contained in M (r). From Theorems 1 and 2, every
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boundary point of A/ (r) must be contained in one of these ares. We thus turn tomelope 
theory and prove:

Theorem 6. Lei r with 0 < r < 1 he given. Suppose w0 is a boundary point of M (r) 
which is not log k'a(r) for some Koebe function ka(z) — z/(l — eiaz)1. Then there exist 
a, and o2 with a, =#= a2, and p with — 1 < p < 1 such that the three complex numbers 
bW / baitbW / 3a2, and bW / bp at thisr, ct|, o2, and p are linearly dependent over the 
reals. This is equivalent to the three quantities

Wv=avp + bv, v= 1,2,3, (3.2)

being linearly dependent over the reals, where
ai = iz,(z, — z2)/(l -z,). bt = iZi(2—Zj ~ZiZ2)/(l -zt),

a2 =iz2(z, —z2)/(l -z2), hj = iz2(2-z, -z,z2)/(l -z2), (3.3)

a, =(zj -*z2)log(l -z,)(l -z2), bt =(z, -z2) + (l -z,z2) logf--^1).
1 ~z2

Proof. We remark that it is easy to show that when the conditions of this theorem are 
satisfied, not only will the three quantities bW / bat, bW / ba2 ,bW / bp lie on the same 
straight line through the origin, but also bW / 3a, and bW]3a2 (or equivalently IV, and 
W2) will in fact lie on a single ray from the origin.

If w0 is a boundary point of M (r) bot not of K (r), then there exist a», a2, and p as 
in the theorem. Since -1 < p < +1, each of these three can be varied freely in some 
neighborhood and W (r, cq , a2, p) will cover a neighborhood of w0 unless the rank of 
the Jacobian matrix (31V / 3aj, 31V / 3a2, 31V / bp) is less than two, i.e. unless these 
three quantities are linearly dependent over the reals.

One easily varifies that the W„ are real multiples of [(1 — z2z2) + p (z, — z3)] times 
the respective partial derivatives. Using a proof similar to that given to Theorem 5, it 
is easily shown that this common factor is non-zero.

The following theorem offers an interesting insight into Theorem 3.
Theorem 7. Let f (z) be of the form (2.5). Suppose \ satisfies (2.4) and R (e~'“«) = 0. 

Then bW 13a [ and bW / 3a2 are linearly dependent over the reals.
Proof. Front (2.13) and (3.3) it follows that Gj IV, + G21V2 =0 or equivalently that 

bW bW

The hypotheses of the theorem imply that Gx and G2 are real. Neither is zero, as was 
shown in the proof of Theorem 5. So if neither Gt nor G2 is °°, the theorem follows. 
However, if G,, say, is <», then from (2.13) and (3.3) it is clear that 31V / dcq =0 and 
the theorem still holds.

From these results, we see that the entire content of the variational method is con­
tained in Theorem 2. Thus it is necessary to base the study of the problem on a study of 
the family of two slit functions.
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4. Methods of computation. Numerical methods were used to investigate this 
problem. Where possible, standard, well tested subroutines were used. Thus, for example, 
the problem of finding the value of r = 0.810465... at which the boundary of K (r) lirst 
touches the line Im = ir was solved purely numerically as follows.

Set <j> (2) = log X-'(z) = log (1 + z) - 3 log (1 — 2). Then = 2 z (2 + z) / (1 — zJ). 
Let 2 = reia. For a fixed r, a standard zero-finding routine was used to solve for the a 
for which Re {z0'(z) j = 0. This locates the Top’ point on K (r) and allows one to 
comoute 0 (2) as a function of r. Another copy of the same zero finding routine was 
used to solve for the r at which this Im {0 (2)} = rr. This was easy to program and required 
a negligible amount of computer time. All computations were done in double precision 
(about 18 decimal places accuracy). This allowed all results to be obtained with more 
than eight digit accuracy without any dificulty with roundoff errors.

The major computational work was based on Theorem 6. Two functions, P(r, tti ,a2) 
and G (r, a,, a2) where defined as follows. Given any r, a,, and a2, set zt = relat and 
z2 = re'“», and define the complex numbers av,.b„, v = 1, 2, 3 by (3.3). When the 
Wv = + b„ are linearly dependent over the reals, we must have

= Im * W„ IVj, j = A„/t2 + B„n + Cv = 0, 

for v = 1,2, where the quantities A„. Bv, C„ arc defined by

'A„ = Im ,

' Bv = Im {h„a, + b3av^ , (4.1)

Cv = Im {bvaj\ 

for f = 1,2.
Treat P, and P2 as polynomials in p and apply the Euclidean algorithm to eliminate /a. 

Thus when P, = P2 = 0 we must have Dvn + Ev = 0 for v = 1,2 where

Di — AjBi -A1B1

£1 = 4,C, — A1.C1

D2 = At Ci ~ AiC\ —~E

= Bi Ci ~ BiC,.

(4.2)

Then, these two linear expressions being zero simultaneously implies £>1£2 + E2 — 0. 
If D, p + £, = 0 and £>, * 0 then p = - £, / £>,, so | n | < 1 if and only if I £>, | >
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> | Et |. However in any case, if Dx p + £, =0 and | p | < 1, then | D, | — | Ex | > 0. 
Thus if we set

'F(r, a2) = D,£j + £?
(4.3)

G(r,a1,ai') = |£>, |-If, |, 

we have proved
Theorem 8. Let r with 0 <r < 1 be given. Suppose >v0 is a boundary point of M (r) 

which is not a boundary point of K (r). Then there exists a function of the form (2.5) 
such that w0 ~W (r, ax, a2, ju) and

'Ffr,ax,a2) = 0,
(4.4)

Gfr.cq.a,) > 0.

We observe that condition (4.4) is necessary but not sufficient for W (r, a,, a2, p) to 
be a boundary point. In particular, whenever HS = 0,F= 0 even though Wx and W2 may 
not be linearly dependent.

Given r, tt1, and a2 we set z, = rela‘ and z2 - rela*. Then using (3.3), (4.1), (4.2), 

and (4.3) we can readily compute F (r, at, a2) and G (r, a,, a2). The behavior of these 
functions is indicated in Figures 2 and 3 which show the curves along which F = 0 and 
G - 0 for r = 0.99 and r = 0.935, respectively. These are shown in the triangular region 
0 < ax < 2jt,0 <a2 <a, ,0 <o2 < 2rr-ai since an inspection of the definitions shows 
that F (r, -a,,-a2) = F(r, a, ,a2),G (r,-a, ,-q2) = G (r, a,, q2), F(r, a2, a,) = 
= F (r, oil, a2), and G (r, a2, ctj) = G (r, co, a2). Of course, both Fand G are periodic 
in both a, and a2 with period 2rr.

The curves of Figures 2 and 3 were prepared by computing points along these curves. 
Starting at an approximate zero, a numerical approximation to the gradient was computed 
and a zero of the function was searched for along this gradient. The next starting point 
was found by moving a short distance orthogonal to the gradient. Fhasa zero of order S in

Figure 2. /•»0.99
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(a, - a2), so near the line a, = a2 the gradient of F was approximated by (1,1) or 
(-1, —1) rather than being computed. All computations of Fand G were done in double 
precision and appear to be accurate to about 14 decimal places. The zeros of Fand G 
were located with an accuracy of 10'4 or better, which is less than the width of the 
plotted curve.

In both of these figures, the curve of G = 0 extends from the point (jr, tr) to the point 
(2rr, 0). G is greater than zero to the right of this curve. Thq curve along which F = 0 
joins two points on the line a, = a2 and is tangent to the line a2 = 0 at (it, 0). The 
portion of this curve extending to the left (smaller values of a!) from (it, 0) is the arc on 
which It'3 = 0 and hence represents the spurious zeros of F mentioned above. However, 
we sec that G < 0 along all points of this portion of the curve so none are candidates for 
extreme points on 3 M (r) — 3 K (r).

Figure 4? M (r) - K (r) for r “ 0.99
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In Figure 3, we see that the curves of F - 0 and G - 0 are disjoint, and hence we 
suspect that the Marx-Robinson conjecture must hold for r = 0.935. We would be sure of 
this if we knew that there are no points at which F = 0 or G — 0 not shown in Figure 3.

To investigate this, the values of F and G were computed for r ~ 0.935 and for (a,,a2) 
at the set of more than 261,000 points at a mesh of rr/512 in the triangle. The resulting 
data were inspected for sign changes which would indicate the presence of a zero. None 
were found other than those already shown in Figure 3. This does not prove that there 
are no others. It is always possible that a rapid change might occur inside this mesh. Because 
of the complexity of the functions F and G, attemps at rigorous proofs would probably 
best start fresh from Theorem 6.

The functions F and G defined above can be used to study the Marx region. For 
example, Figure 4 shows the boundaries of A' (r) and M (r) in the second quadrant for 
r = 0.99. (Compare Figure 1.) The points of 3 M (r) not in 3 K (r) were computed by 
fixing ana, and searching for an a2 at whichF(r,a! ,a2)-0. Then if G >0 at this point 
the value of p ( = — I Dj) was determined and Wq = W(r.at, a2, p) was calculated. 
This was done for enough a, to give enough points to produce Figure 4. The symmetric 
points would of course also occur in the third quadrant.

Figures. Values of zr, a,, a,, for which F=G-0
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Observe that the arc of 3 M (r) — 3 K (r) has a slight curvature and lies properly inside 
the convex hull of K (r) (by about 0.001). Thus, it seems reasonable to conjecture that 
if M(r)=tK (r) then M (f) is properly contained in the convex hull of K (r).

What is the minimum r for which M(r)<£K (r) (the Marx-Robinson radius)? To attempt 
to determine this, we observe that G = 0 at the end points ofthe arc of 3M(r) — <JK(r) since 
these points are on 3 K (r) and hence have p = ± 1. A simple secant method zero finding 
routine for functions of two variables was used to find simultaneous zeros of F(r, crj ,a2) 
and G (r, a,, q2) for fixed atj. Figure 5 shows the resulting values of r and a2 as functions 
of at. A standard (golden section) minimization routine was used to solve for the 
giving the minimum r. The values found were

a» = 2.644398...

aa = 5.8675868...

r = 0.9391922419...

This value of r was computed to 14 places and the digits shown are certainly accurate. 
The values of a! and a} are of course only accurate to half as many places.

If the functions F and G have no other zeros than those along the curves indicated in 
Figure 2 and 3, then these computations would constitute a pr;oof of the conjecture that 
the above r is the actual Marx-Robinson radius.
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Autor omawia dotychczasowe wyniki, otrzymuje nowe rezultaty i stawia nowe hipotezy doty­
czące problemu postawionego przez A. Marksa.
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