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1. Introduction. An increasing homeomorphism f of the real line/R onto itself is called
K-quasisymmetric (K -qs), if

L<M<x (1)
K [f—-f(x=1) .

holds for x ER, ¢ # 0. A function is quasisymmetric (gs) if it is K -qs for some K. Qs func-
tions are exactly the boundary values ot those quasiconformal mappings of the upper half
plane onto itself that fix the point at infinity [1].

We write

N = {f: fisk-as, [0 =0,f(1)=1],

No(K)= {f: fisK-gs, f(-1)= -1, f()=1] ,
introducing thus two normalizations for qs functions. We define
M K)y=sup {f(x): FENK)]

m (x, K) = inf {f(x): IGN(K)} L
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We define similarly Moy (x, K) and m(x, K) for the clasNy(K) and note that sup (inf) can
be replaced by max (min), since N (K) and Ny(K) are compact [1].
If f is gs, we write

q(f)= inf {K: s isK-qs}

and note that f isq (f)-qs.
Let §; and S, be adjacent line segments, and let | S | be the length of S. Forc 2 1,
K 2 1 there is a number Q such that

R . 1f(S))I
[0} 1£(S52)1

whenever fis Kqsand 1/c<| S, | /| S, | < c. We denote the infimum of such numbers
Q by q (¢, K) and note that (1.2) remains valid for Q = q (¢, K).

Our first result shows the connection between these conceplts.

Theorem 1. We have

<@ 12)

9@, KY+1=M(c+1,K) 1.3)
ana
q (p1,p3) = sup {Q(f: ofi): fi is pygs,i= 1-2} . (1.4)

The functions M (x, K) and m (x, K) are related for x > 1, as our next result shows.
Theorem 2, Assume that x > 1 and y > 1. Then 1 /x + 1/y = | ifand only if

IMx,K)y+1/m@p,K)=1. (1.5)
Moreover, (x — 1) (y — 1) =4 ifand only if

(Mo(x, K) = 1) (mo(r, K) - 1) = 4. (Lo

It seems to be of interest to obtain good bounds for M (x, K) and m (x, K), particularly
in view of Theorem 1. Kelingos proved that for x 2 1 {3, Theorem 1], M (x, K) < (2 x)*°
and m (x, K) > (x/2)® where a = log; (K + 1) and b = log; (1 + 1/K). This together with
Theorem 1 shows e.g. that log, (¢ (¢, K) + 1) < (1 + log; (¢ + 1)) log, (K + 1),

log, (¢ (2 /i) 1) < (1 +logz (@ (fy) + 1)) log, (@( f3) + 1). This is already better
than the estimate for ¢ (f3 © f;) obtained by using quasiconformal extensions of f, and

f1, namely (cf. [3]) log ¢ (/2 ©f;) <(const.) ¢ (£1)q(f3).

We will sharpen the above bounds for M (x, K)and m (x, K), and among other things
we will show (improving the above a and b) that the correct exponent is the exponent
afa>1forM, 0<a<1 for m)suchthat q (g,) =K, whereg, (x) = | x |® signx. The
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functions g, were studied by Beurling and Ahlofors in [1]. Since the precise statement
of our results needs some preparation, we postpone it until the appropriate sections.

Finally we prove a result needed in [2].

Theorem 3. For every K 2 1, the funcrions M(x, K), m(x, K} and q(c, K)are continuous.

2. Proof of Theorems 1 and 2. We recall [3] that if f is qs, if Ly (| = 1, 2) are linear
and if g (x)=—f(— x),thenq(f)=q ) =q (L1 ©f 9 L,).

2.1. Proof of Theorem 1.Let S; and S; be adjacent line segments with 1/c <
< |81/ 18:1 < ¢ > 1. Wecan assume that the shorter of S, and §,, say S}, is [0, 1],
and that S, is [1,2 + 1], 2 <, since this can be achieved by using linear transformations.
It is easy to see that when we are looking for the maximum of | £ (S3) | /| f(Sy) |, we
can assume that the longer of S, and S, is mapped onto the longer of (S, ) and f(S;).

Since now 1f(S2)1/1/(S:)1=f(R+1)—1,2<¢, wededuce g(c, K)SM(c+1,K)—1.
On the other hand, if S; = [0,1],S; = [1,c + 1] and if fEN (K) is such that f(c + 1) =
=M(c+1,K).thenq (¢, )2 1£(S:)I1/1£(S))I=M(c+1,K)— 1. Thisgives (1.3).

To prove (1.4), we define

fik)=x, x<1,

@) =1+p,(x—1), x> 1.

Then g (f;) = £, . Let f €N (p,) be such that

filpy +1)=M(p, +1,p,). .1

Then with f = f; 0 f;, we have by (1.3) and (2.1),

[(2)-/(1)
Q)2 ———— = failps + 1) =1 =q (py,p2).
£(1)=£(0) ' )
Hence the right hand side of (1.4) is at least equal to q (p,, p3).
On the other hand, if f is pj-qs, i = 1, 2, and if S, and S, are adjacent segments of
equal length, then

1 < 1f1(51) |

—_—, g ——

Py 1/1(S2) |

so that by the definition of q (¢, K), we have

1
.

1 o 1 f23(fi(S$1)) |
q(pr.p2) Ni(fi(S)) I
Hence q (f; ©f,)<q (py.p3). Theorem 1 is proved.

2.2. Proof of Theorem 2. Assume first that 1/x + 1fy = 1,x, y > 1. If fEN (K),
we define L,(1) = (1 —x) ¢ +x, Ly(t) =(1 —2)t + 2z, where 1/z + 1/f (x) = 1. If

< q9(P1.P2)-
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g=LyofoL,,theng EN(K)andg (v) =z For f(x) =M (x, K), we obtain m (y, K) <
<g(¥)=2 hence 1/m(y,K)+ 1 /M (x, K) > 1. Next we interchange x and y and choose
fso that f () =m (y, K). Then M (x, K) > g (x) = z, where 1/z + 1/m (y, K) = 1. Hence
\m @, K)+ }/M(x, K)<1.Thus I/m (v, K)+ 1/M(x, K) = 1.

On the other hand, assume that (1.5) holds. Let z be such that 1/z + 1/y = 1. Then by
the first part of Theorem 2, we have 1/M (z, K) + 1/m (v, K) = 1. Since (1.5) holds and
since M (x, K) is strictly increasing, we must have z = x.

Next we gote that fo € No(K) if and only if f € N (K), where

F@=% {rEx-n+1}, @.2)
=21 [Bx+D} -1. 2.3)
Therefore

MEK=4% {MQ2x-1,K)+1} , | (2.4)
My(x, K)=2M(%:(x+1),K) -1, (2.5)

and similar equations are true for m (x, K) and mqy(x, K). Now (1.6) follows  from (1.5)
by using these relations. Theorem 2 is proved.

Remark. The values of M (x, K) for x 2 1 naturally determine M (x, K) and m (x, K)
for x < 1. Using linear transformations as in the proof of Theorem 2 we can deduce

M@ K)=1/m(i/xK), 0<x<1, 2.6
m(x, K)=1/M(1/x,K), 0<x<1, 2.7)
and

Mx.K)=1-m(l -x,K), x<0, (2.8)
m@K)=1-M( -x,K), x<0. (29)

Similar results are true for My(x, K) and me(x, K).

3. Estimates for My(x, K) and mg(x, K). In the rest of the paper, the normalization
f(=1)=—1,f() =1 is more convmient, so that we will consider only My(x, K) and
mg(x, K). If not otherwise mentioned, K will be fixed but arbitrary, and we often write
Mo(x) and my(x) instead of My(x, K) and mgy(x, K). By using (2.4), the reader can
obtain the corresponding results for M (x, K) and m (x, K).

The correct orders of magnitude of Mo(x) and mgy(x) are given for suitable a by the
functions

8a(x)=|x | signx @a.1)
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Beurling and Ahlfors [1, p. 132—134] studied these functions and proved the following
result.

Lemma 1. The map g, is qs for a > 0, and q (8o) = K, is determined as follows. Let
to be the solution of

@+ @E-1)""=2, (3.2)
so that | <ty < 2. Further set

Ga=[tat D" =11[ta =1)"+1]) "' =[(ta + D/(ta = 1)]*" ! =
(3.3)

=2(a +1)*" -1,

ThenKy =qofora> 1, Ko =1/qafor0<a<l,and K, =1,

The quantity q, is a continuous strictly increasing function of a. Thus if X > 1, the
equation g, = K has exactly one positive root which we denote by a, (K). Similarly the
equation 1/q, = K has exactly one positive root which we denote by a;(K). Thus a; is
strictly increasing while a, is strictly decreasing. Further, g, and gq, are Kqs.

More precisely, Beurling and Ahlfors showed that for x ER, t >0,

L < Lalx + 1) —ga(x)

< K, (3.4)
Ka 8a(x) —8alx —1)

with equality on the right hand side if # = xt,, x> 0, when a 2 1, and on the left hand
sideif t =xt,,x>0,a<1,

The functions g, belong to both N (K) and Ny (K). This gives immediately

Lemma 2.If x 2 |, we have

Mo(x.K)> x®1 &)
mq(x. K) < x®1(K)
These are the correct bounds up to multiplicative constants depending on K. We

procecd to prove
Theorem 4. Suppose.that we have the inequalities

My(x)<c;x", 0<x, SX<x3, 3.5)
and

mo(x) > c;x, 0<x3 Sx<xq. (3.6)
/]

Xafxy 2 (0 + DI, — 1) =K@ =1, oy =la,, (EN)
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then (3.5) holds for x 2 x, ,and if
Xe/x3 2t H DIt —)=K" "), gy =0, , (3.8)

then (3.6) holds for x 2 x;.
3.1. To prove Theorem 4, we need a lemma.
Lemma 3. Ifa, b > 0, then

Mo(a +2b)< KMo(@) + (K + 1) Mo(b) , (3.9)
mo(a + 2 b) > (1/K)y mo(@) + (1 + 1/K) mo(b) . (3.10)

We set x =b, x —t = —a, so that x + t =u +2b. Then (1.1) shows that for f € No(K)
we have f (a + 2 b) < (K + 1) f(b) — Kf (—a). Since f € No(K), so does — f (— x). Thus
£ (b) K Mq(b) and — f (—a) < My(a), so that f (a + 2b) < (K + 1) Mo(b) + KMq(a). This
gives (3.9). Similarly f(a + 2b) > (1 + 1/K) f(b) — f (—a)/K, and this yields (3.10) and
completes the proof of Lemma 3. We can now complete the proof of Theorem 4. Assume
that (3.5) and (3.7) hold. We write p = ¢, + 1,7 = p/(t; — 1) and suppose that (3.5)
holds for x; < x < x,0", n > 0. This is true for n = 0, so that if we can prove (3.5) for
x,0" < x<x,p"* !, it follows by induction that (3.5) holds for x > x, . To do this, pick
X, x;0" <x<x;0"* ", and apply (3.9) witha + 2 b = x and a = x/r. This gives b =
= x/(t, + 1), and our hypotheses ensure that x, < b = x/p and x, < a < x/p. Thus
Mo(a) < 0™, Mo(D) < ¢, 0%,

We recall that equality holds on the right hand side of (3.4) if @ = a;, K, = K, and
x =b, t = xt, = bt,. This gives (for our x)

x* =K+ 1)b* +Ka. @3.11)
On the other hand, Lemma 3 yields
Mo(x)=Mo(a +2b)<c (Ka® + (1 + K)b™1 )= x%,
by (3.11). Thus (3.5) holds for x 2 x,. Similarly we deduce that (3.6) remains valid for
x 2 x3. This completes the proof of Theorem 4.

Before continuing we note that f, is a strictly increasing function of a. To see this
we write
x=0@+1) "% y=¢—1'""% ot a)=x+y.

Thenifa#1,

1
|l —a
andif ¢ (1, @) =2,

)
= ¢+1)°+@—-1)°>0
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¢ x+y x+y
Vz(l—a)j;=—%(xlos:t+ylosy)<— 5 log ( 3 ) =0,

since x log x is a convex function of x for x > 0. Thus

L g @,
Also as was noted by Beurling and Ahlfors [1], #, tends to 1,4/2 ,2 asTends to 0, 1,

respectively. Thus ¢, increasses strictly from 1 to 2 as a increases from 0 to =5,
4. Estimates for a, (K) and ¢,(K). We define

e(K) = sup Mox, K)x~ () (4.1)
and
ca(K) = }r;fl mo(x, K)x~ ®2(K) 42)

If x, > x;, >0, then the supremum (4.1) over x;, < x < x, {s certainly finite. It follows

from Theorem 4 that ¢; (K) < <=, Similarly, ¢;(K) > 0. Moreover, by Theorem 4 and

Theorem 3, to be proved in section 6, ¢;(K) and ¢;(K) are attained. Clearly ¢,(X) > 1

and c;(K) < 1 (consider x = 1). Now we derive bounds in the opposite direction.
Theorem S. We have for K > 1,

a,(K) log 2<log {1 +2/(K —1)]. (4.3)
Further, we have

¢, (K)x*1 &) & mg(x, K)< x &), x5, (4.9)
where ¢,(K)> 1/9 for all K, and for K > 3,

a(K)>K “* =1+0(gK)K! (4.5)

as K —+oes,
Remark. In fact it can be shown from (3.2) and (3.3) (see also [1, p. 134]) that

ta, =1+ ay(K)log 2+ 0 (aj loga;), a3 >0, (4.6)
and
a(K)=2(Klog2) ' +0(log K)K~ 3, K~+os, 4.7

It follows from Lemma ] that K, @ ® ay(X) and r = ¢, are related by
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1K = 2@+ 1)*" ' =1 (4.8)
and

¢+1)"*+@—-1))"*=2, 49)
This gives

2K/K+ 1)+ { 2KIK+ )00 =] 1eng, (4.10)
or

[2K/(K+ DIVC D =2+ 2 (K + )] VU, (a.11)

which implies
2K/(K + 1] Y09 <2 =@ 4+ 2/(K + )X - @),
ie.
K-D/K+1) <27
This yields (4.3)
Lemma 2 and (4.2) yield (4.4). To prove the estimate for c;(K), we first note that if

a = Y%, then by (4.9),f = 5/4, and by (4.8),K = 3. For | K K < 3, we thus have

r+1
=1

<9,

since ¢ increases with a; and so with 1/K, as we noted at the end of section 3.
Thus, by Theorem 4,

ca(K) = infl  my(x)x 329" %>1/9.
1<x<9
If K > 3 it follows from Theorem 4 that
me(x)x~ %> K~-®i-a) 5 g -2a

caifh), = |<.1ri2‘;("'{""i

since 0 < a < %. Using (4.3) we deduce that
log c3(K)> — 2 (log 2)™ ' (log K) log [(K + 1)/(K = 1)] .

Also for K 2 3,
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Klog [(K+DI(K—=1)] =(/K"")log [(1 + K~ ")(1 =K~ ")) <3log2.

Therefore

ca(K)>exp [-6(1gK)/K] >exp(-2log3)=1/9,

which gives (4.5) and shows that 1/9 € ¢;(K) < | for K > 1, This proves Theorem §.
For later use we apply (3.10) with a = b to obtain mg(3 a) > (1 + 2/K) mq(a). Since

mgo(1) = 1, we get by induction

mo(3")> (1 +2/K)Y", n>0, (4.12)

Taking n = 1 and applying Lemma 2 with x = 3 we deduce that

az(K)log 32 log (1 +2/K).

S. Estimates for a,(K) and ¢, (K). First we prove a result analogous to Theorem S.
Theorem 6. We have

0< d,(K)—log[(3/2XK +1)]/log 3< log [2K/(K +1))/(3 log 3) <

(.0

<log 2/log 27<0.211

Moreover, we have for x > %,
X0 K Mo (x, K) < 0y (K) x &), 52)
where
(K)SK2K +1. (5.3)

Remark. As A =<2, we have
a,(K)log3=logK +ta+0(1)/log K (5.4)

wherea = log 3 — (2/3) log 2 = 0.6365...

It was proved in [1, p. 133] that /2 <1< 2, =1y, a = a;(K). Thus (3.7) is certainly
satisfied if x3/%, 2 (V2 + 1)/ (V2 —1)=3+2y2 ~583.

Suppose that x, = %, x, = 3. We take a = b in (3.9) to obtain Mo(3a)S(2K +1)Mq(a)

Since My (1) = 1, induction gives

M,(3") <K+ 1), n>0. (5.5)

Taking 7 = | and applying Lemma 2 with x = 3 we get
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ay(K)<log (2K +1)/log 3. (5.6)
Thusforh<x<1,
Mo(x)x~°<2° < (2K + 1)lo8 2/lo8 3,

while for 1 <x < 3,Mo(x)x~® <Mo(3)< 2K + 1. Thus (3.5) holds for % < x < 3 with
c; =2K + ] and so for x > %. This proves (5.2) subject to (5.3).

It remains to prove (5.1). By Lemma 1, K, ¢ and a are related by (¢ + 1)! =@ + (2 —
—1)!'"®=2and K =2(¢t+1)“" ! — 1. Eliminating r we get

2/E+ 1)+ {R/K+D)W D2} 17e=2
or
R/K+DIVO" D=2+ 2K [(K+ 1)V <3, (5.7

since a> 1. Thusa>1 + log [% (K + 1)) /log 3, which is the left hand inequality in (5.1).

On the other hand (5.7) yields [2/(K + 1)) (' =) > 3 [2K/(K + 1)) V20 = @) gince
0 < x < 1 implies 3 x*3 < 2 + x. This gives the second inequality (5.1) and completes
the proof of Theorem 6.

The equation (5.4) follows from a more detailed investigation of (5.7) when K is large.

We also note that log (¢ + 1) = log {Vx K+ l)} / (@ — 1). Here the left hand side
increases strictly from log (1 + /2 ) to log 3 as K increases from 1 to %,

5.1. We sharpen (5.3) for large K.

Theorem 7. We have

¢;(K)log log K ¢;(K)log log K
log 4 < lim inf ;()—u—— < lim sup ——'—(—)—8—8—— < log9. (5.8)
K 4= K K= K
We have seen that
sup Mo(x)x" *<c;(K)S sup Mo(x)x” ¢, (5.9)
1€x<3 ¥B<x<

where a = a,(K). We choose log x = (log K)~ P, where p > 1, and take y > 1 so that
(x—1)(» = 1) =4.Then y — 1 ~4(log K)P asK 0. Now Theorem S yields log mo(y) <
<aylogy<(1+o(1)pa;sloglogK<(1+0(1))p {2/(Klog2)] log log K.
Thus by Theorem 2, Mo(x) — 1 = 4/{(mg(y) — 1) > (1 + o (1)) (log 4) K/(p log log K).

On the other hand, log (x*) = a log x = O (log K)! P =0 (1), since p > 1. Thus for
this particular x, Mo(x) x~ % > (1 + 0 (1)) (log 4) K / (p log log K). Since p was arbitrary,
we obtain the left hand inequality in (5.8).

Nextif 0<p<1,0<logx<(logK) P,andif (x—1)(y —1)=4,theny > (4 +
+ o0 (1)) (log K)P. Thus (4.12) gives log mg(y¥) 2 (1 + 0 (1)) log (1 + 2/K)log y/log 3 >
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>0 + o(1)2p(loglog K)/(Klog3). Thus Mo (x) — | = 4/(me()) — 1) €
< (1 +0(1))2K (log 3)/(ploglog X), so that

Mo(x)x “<(1+0(1))2K (log 3)/(ploglogK). (5.10)

On the other hand, if (log K) ™ ? <log x < log 3, then by (5.5), Mo(x)<2K + 1, and
by (5.1) log x®* =alogx > (! +0(1))log K log x / log 3> (log K)' ~P[2and x* > log K
if K is large. Therefore My(x)x~ ¢ =0 (K)/log K. Similarly if K K x € 1, Mg(x) x ™ <
< 2% = O (K'o# 2/lor 3) by (5.6). Hence (5.9) and (5.10) give

(KY<(1+0(1))2K (log 3)/ (plog log K).

Since p was arbitrary, 0 <p < I, we obtain the right hand inequality (5.8), and Theorem
7 is proved.

§.2. When x is near to one, Mo(x) grows faster than x®1, The following bounds come
from Theorems 2, 5 and 6 by a straightforward calculation.

Theorem 8. Jf | <x < 3, then

2 4 My(x)—1
_< = = < > (s.ll)
3 (x+3) " —(x—1)" (x—1)%
and
4 < 4 mo(x)—l
€, 6% a(x+ 3N —(x—1)n x=1N"

4

i (5.12)
(x4 )" —x— 3

where a; = a;(K), ¢c; = ci(K).i=1,2.Moreover, if 1 <x<1+ 49 K then

Mo(x) — 1 4 < 4!~
(x—1)% ar+3)*r—x=N"  (1+97K) j9—97Kae,

(5.13)

We prove (5.13). Suppose that 1 < x <1+ 4.97X Jand define y by (x —1)(y —1)=4.
Theny > 1 + 9X > 9K By (4.13), we have K, log 3> K log (1 + 2/K), and since
K log (1 + 2/K) increases from log 3to 2 as K increases from 1 to =, we have Ka; 21 and:
»®1 > 9 Thus by theoremn 5, ¢; y¥2 > 1.

Applying Theorems 2 and 5, we obtain

0<c % — 1 Kmg(y)—1=4Mo(x)—1)"".

Since (x — 1)y =x + 3, we have further
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(c3 ¥y* — 1) (x = 1)* =c5(x + 3)" —(x —1)%3,

which gives the left hand inequality (5.13). Since ¢,(x + 3)*3 — (x — 1)®3 is a decreasing
function of x for 1 Kx <1+ 4.97 K we obtain the right hand inequality (5.13).

The proof of (5.11) and (5.12) is similar. Theorem 8 is proved.

6. Inverse functions, Holder-continuity and Hausdorff dimensions. We obtain an
estimate for g (f~ ') intermsof ¢ (f) =K. We write u (K) for the solution of m(y, K) = 2.
Then u (K) is a strictly increasing function of X whith maps [1, ) onto [2,2). Thus u™ !
is strictly increasing and maps[2, ) onto {1, =),

Theorem 9. If f is qs, then

@+ D<q(STH<p@U)-L, (6.1)
which is sharp, and

loga(1 +q (f) '[logs (1 +q (S 'N—1]<1. 6.1

We have to estimate

[T+ (x)
o=

We can assume that x =¢ =1, that £~ *(0) = 0, /~ '(1) = 1 (so that fE N (K)),and
that R > 1. Then R + 1 =y, where f(y) = 2. Thus m (y, K) < 2, which gives the right
hand inequality (6.1). Equality is possible, since N (K)) is compact so that f(y) = m(y, K)
is attained for some f € N (K) and for y = u (K). Interchanging f and f~ ! we obtain the
left hand inequality (6.1), which is likewise sharp.

To prove (6.2) we note that by [3],® < 29* 1 where 8 = log,(1 + g (£) ™ 1), or
loga(1 +q(f) ')log; y <1+ loga(1 +q(f)="). This gives (6.2) and Theorem 9
is proved.

6.1. We also determine the best possible exponent of Holder-continuity.

Theorem 10. Assume that fis K-qs, xy < x3, and write oy = a; (K),i=1,2, M =
=f(x3)—f(xy). Then for x; <x5 <x3,

= R.

(6.3)
(C1(K)2™ ) ( )0 ) & fxa) = )M <(2/c,(K»(———)°=“’
l

X3

The exponents a,(K) and a,(K) are best possible.
We define g EN (K) by

L Sx(x3 —x;)+x)—f(xy)
&) f0rs)— (1) ' £

Assume that x, <x, <Xx3,and write y = (x3 —x,;)(x3 —x; )" !. Then by Theorems 2,
S and 6, and by (2.4) to (2.7) we have
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gSMU.K)=1/mpy™ "}, K)<(Q2fey(K)) y*r &)

and

g ()< Um(, K) =M™, K) = %[Mo(2ly — 1)+ 1] SMe(2/y) <, 2%1y" "1,

This gives (6.3), in view of (6.4).
The exponents afK),i = 1, 2, are best possible, since the functions

fix)=1x %K) genx, i=1,2,

are K-gs. This proves Theorem 10.

6.2. Proof of Theorem 3, In view of (1.3), Theorem 2,and the remark after it, it suffices
to show that M (x, K) is continuous forx 2 1. If | € x <y, let f€ N (K) be such that
S (¥) =M (¥, K). Then we deduce as in the proof of Theorem 10 that

0<M.K)—Mx K)< f()—f(x) <A (y —x)"1&K)

for some constant A which remains finite as y — x — 0. This proves Theorem 3.
In fact, M (x, K) and the related functions are locally Hélder-continuous with the
exponent a,(K), as the preceding proof shows.
Reinark, Let f be a sense-preserving homeomorphism of the uait circle I’ onto itself
and assume that there is a point wo € I’ such that if wy €, 1 €< 3, and
DX A Y s Al i . WSS
Wi —Wa W3 =W,

then

K '<IS(f(Wo), f(W1), f(Wa1). f(W3))I<K .

By using Mobius transformations together with Theorems S, 6 and 10, one can show that

[ is locally Holder continuous with the exponent a;(K), also in the neighbourhood of wy,
or more precisely,

Ay 1wy =wy [ KV | £ (wy) = f(wa)l KAy | wy —w, | KD

for some constants A, and A,, if | w; = w; | is small enough.

6.3. We derive the following crude bounds for the change of dimj A, the Hausdorff
dimension of the set A CR.
Theorem 11.If fis Kasand A C R, with dimy A = a, then

afa,(K) < dimy f(4) <afay(K) . (6.5)
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Without loss of generality, we may assume that f € N (K)and A C [0, 1]. Then as in
the proof of Theorein 10 we deduce that

Ay(xa —x)" < f(x3) — [(x)) S Aa(x3 —x,)" (6.6)

for 0 < x, <x, <1 and for some constants A, 4;.

To prove the right hand inequality (6.5), we can suppose thata < 1.Pick b,a<b <1,
and €, § > Q. Thece are intervals [x;, y;] C [0, 1] covering A such that y; — y; < and
o —x)b <eThus E(f () — i)™ < 4% £ (= x)® <eay®®,and
L () —f (xi) < A,86% foralli. Thus dimy f(A) <b/a,. Since b was arbitrary,a <b <
< 1, we obtain the right hand inequality (6.5).

The proof of the left hand inequality (6.5), using the left hand inequality (6.6), is
similar. This proves Theorem 11.

The functions A (r) = (log 7~ ')~ ®, n > 0 are such that if M, is the Hausdorff measure
associated with h, then My ( f(A)) = 0 whenever f is qs and My (4) = 0. More generally,
if h is continuous and non-decreasing with h (0) = 0, and if foralla,0 < a < |, there are
positive numbers r, and Cy such that h (r) < Co h (1), 0<r<r,,then My (f(A)) =0
if fis qs and M, (A) = 0.

One can ask whether or not there is a gs function f and a set A with dimgy A <1 such
that dimy f(4) = 1.

7. Examples. Now we give some examples to illustrate the behaviour of My(x) and
mg(x).

Let f be a strictly increasing continuous piecewise linear function onR. There are
points x;, — 0 S N} €i <N, <9, such that x; <x;, , and f is linear on [x; xj,;].
We say that the x; are critical points. If Ny > — e (N; < o), we also count x = — e
(x = o) as a critical point. Verifying that the critical point x = t oo has a certain property
means checking what happens when x = & oo,

In our examples, the qs functions are piecewise linear. We will leave it to the reader
to verify that a given function is indeed K-qs However, to make this as easy as possible,
we give the following result.

Lemma 4. Let f and the x; be as above. If

1 Jen—I@ _

< K 7.1
K 1) —f—0) Ly

when at least two of the points x —t, x, x + t (t > Q) are cnitical, then (7.1) remuins valid
Jor all x and t. Moreover, if the slopes of [ are increasing between x; and x;, and if the
right hand inequality (7.1) holds whenever x —t = x;, x + t K xjand x or x + 1t is critical,
orx+t=x;,x—t2x;and x or x —tiscritical, or 2x = xg + xy, i Kk, R <jand also

x +t=xjorx —t=x, then (1.1) remains valid for all x and t such that x;, K x—t< .

<x+t<x.

Note that in the situation of increasing slopes, the left hand inequality (7.1) holds
whenever K 2 1 and x; Sx —t <x + ¢ < xy.

Assume that x is fixed, that a < £ <a + 8 and that for some mandnx, Sx —a—8 <



Distortion Estimates for Quasisymmetric Functions 65

<x—a<xy,, andxy Sx+a<x+a+8<xy,,.fnecessary, we make a smaller
and 6 larger so that both for £ = a and for t = a + §, at least one of the pointsx +1¢, x —¢
is critical.

We write u = ¢ — a. Then 0 < u < §, and there are slopes s, , s5 (s; > 0) such that
f(x+t)=f(x+a)+tus, f(x—t)=f(x—a)—us; for0<u<3s. Thus

il J(x+a)=f(x)=(s,/82) (f (x)—f(x—a))
$3 S (x)—f(x—a)+us,

For 0 K u<8,wehave f(x)—f(x —a) +us; =f(x)—f(x—1)>0. Thus R is constant
or a strictly monotonic function of u, so that to find the maximum and minimum of R,
it is in any case sufficient to consider only the cases « = 0 and « = §. But thenx + ¢ or
X — ¢ is critical, Similarly we deduce that one can assume that another point of x, x £ ¢
is also critical.

The sccond statement of the lemma can be derived from the following fact. If the
slopes are increasing as said, and if x * is fixed, x; <x <xy, then (f (x + 1) — f(x))/¢t is
increasing and ( f (x) — f (x — 2))/¢ is decreasing as a function of ¢ for £ > 0 as long
asx; <x —trand x + ¢ <x;. This proves Lemma 4.

7.1. Our next result shows which power of K the function My(x, K) resembles for a
fixed x as K = oo,

Thcorem 12, Assume that n > 0 and that 3" <x < 3"* !, Then

R:

log Mo(x, K
fim —SMe XY L 1.2)
A <= l()gK

By (5.5),Mo(x, K) S (2K + 1Y** !, so that

) log Mo(x, K)
fim sup =

<n+1l, 1.3)
K= log K (

To get the opposite inequality, we define f by

[(=x)=—f(x),
f(x) =x,0<x<1,
f(x) =K+ +%K(K+1)3]"(x=3").3"<x<3"* ', n>0.

If K > 3, then f€ No(K). Thus if 37 <x < 3"*, then Mo(x, K)> f(x)> K" 137" (x—
= 3"), so that

log Modx, K
lim inf —U-g——i‘(—l— >n+1l, (7.9)
K- log K

Now(7.2) follows from (7.3) and (7.4) and Theorem 12 is proved.
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72. Let X be fixed, K > 1. The functions M (x, K) and m (x, K) are strictly increasing,
and by Theorem 3, they are continuous. Thus they are differentiable at almost every
point, even though we do not know any such point. However, we can show that these
functions are not differentiable at certain points.

Theorem 13, We have M(2,K)=K+ 1, M(4,K)=(K+ 1), M(5,K)=2K* + 2K + 1,
MO, K=K>+4K* +3K+1,andm (2, K) =1+ 1)K, m(4,K)=(Q +/K)). If
K > 1, then M (x, K) is not differentiable at x = 2,4, S and m (x, K) is not differentiable
atx =5/4,4/3,2.

By a result of Kelingos [3], we have M(2?, K)< (K +1)Y'andm (2", K) 2 (1 + 1 /K)".
By (5.5), Mo(9, K) € (2K + 1)?, so that (2.4) shows that M (S, K) < 2K? + 2K + 1.
Moreover, M (9, K) K M(4,K)+ K (M (4, K)—m (— 1,K)] KK +4K* + 3K + 1.

To get the opposite inequalities, we define f to be the piecewise linear continuous
function with £ (0) = 0 and with the following slopes:

K} —-4<x<—30r4<x<S$,
KK+1)2,-3<x<—1or2<x<4,

K -1€x<0o0r}1<x<2,
1,0€x<1,

K(K+1)*/4, x>50rx<—4.

ThenfENK)LMQ,K)2f(D=K+1, MG, K)>2f(@)=K+1).M5,K)>
21(5)=2K*+2K+ 1, M. K)>f(9)=K>+4K* + 3K + 1.

If M (x, K) is differentiable at x = 2, with right hand and left hand derivatives R and
L, then M (x, K) 2 f (x) shows that K (K + 1)/2 < R, L € K which is impossible since
K > 1. Similarly we deduce that M (x, K) is not differentiable at x = 4 and x = 5. Now it
follows from Theorem 2 that m (2,K) =1+ 1/K and that m (x, K) is not differentiable
atx=5/4,4/30r2,since(5/4)"' +5 ' =1=(4/3)"' +4" ' =271 + 2"},

The desired lower bound for m (4, K) is obtained by considering the piccewise linear
continuous functions g with g (0) = 0 and with the slopes

1,0€x<1
1K, x<0orl1 €x<2
K+ 1)/2K?*), x> 2,
since we have g E N (K). Theorem 13 is proved.
In view of Theorem 13, it might be interesting to know whether or not M (x, K) (or

m (x, K)) is completely singular, and what the set 4 looks like where M (x, K) is not
differentiable. For instance, does A contain all rational numbers?
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STRESZCZENIE

Otrzymano szereg twierdzefh o znieksztatceniu dia funkcji kwazisymetrycznych i odpowiednio
unormowanych.

PE3IOME

Monyueto paN TeOpeM O HCKANEHHH AR KBIIHCHME TPHUCCKH X QYHKUHA, Haane ¥aumm 06palom
HOPMH POBAHHAIX.






