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Nonvanishing Univalent Functions. II *

O funkcjach jednoiutnych różnych od zera. Ił

Об отличных от нула однолистных функциях. II

This paper is a continuation of our previous work [1 ] on tAe class 50 of nonvanishing 
univalent functions. The class So consists of all functions /analytic and univalent in the 
unit disc ID, with f (z) * 0 in ID and/(0) = 1. In (1) we used a variational method to 
study linear extremal problems in So. For the special problem of minimum real part we 
obtained detailed information about the extremal functions. The present paper is directed 
primarily to the minimum real part problem. We point out and partially correct an error 
in (11, leaving the main results intact. We also reexamine a conjecture made in [1] and 
introduce a conformal mapping technique which leads to a more accurate calculation of 
a certain bifurcation point, where the character of the extremal function appears to 
change. Finally, we generalize the minimum real part problem and obtain further informa­
tion on the region of values of functions in So at a specified point.

I. Review of previous results. For fixed f e ID we consider the problem of minimizing 
Re £/(f)} among all functions/GSo There is no loss of generality in assuming 0<f < 
< I. Let k0(z) = |(l tz)/(l — z)J2 be the ‘Koebe function’ for So, which maps ID onto 
the complement of the negative real axix. We showed in [1J that Re {/(f)} > *o( ~ f) 
for all f < 3 — \/8 = 0.171..., and that no rotation of ka minimizes Re {/(f)} 
f>2 - >/3 = 0.267...

An extremal function / must map ID onto the complement of an analytic arc T which 
extends from 0 to “> and satisfies

This work was supported in part by grants from the National Science Foundation.



34 P. Dureń, G. Schober

2? (0-1) 
w (w — I) (w — B)

dw2>0, B=f(S). (1)

The omitted arc T is monotonic with respect to the family of ellipses with foci at 0 and 1, 
and makes an angle of less than rr/4 with each orthogonal hyperbola (with foci at 0 and 1) 
it crosses. In view of the differential equation (1), this rr/4 — property is expressed by the 
condition

Re »

which places T in a certain half-plane bounded by a line through B.
In [1] we deduced from (1) that

7 0(0-1) 
w (w — 1) (w—B)

dw > 0

for a suitable determination of the square-root, where Cis the image under/of the linear 
segment from 0 to f. This arc C extends from 1 to B and is a trajectory of the quadratic 
differential (1). It is clear that C does not meet T. Under the normalizing assumption that 
Im {B} >0 , we claimed to prove in [1 ] (Theorem 8) that T lies in the lower half-plane. 
This allowed us to conclude that on the Riemann sphere punctured at 0,1,0, and °°, the 
arc C is homotopic to the linear segment from 1 to B. Parametrizing this segment by

H-=’+(0-l)f, 0<t< 1 ,

we could then express / in the form

B(i—B) 

1-/(1 -B)

1/2
dt

^t(l-t)
(3)

]

Unfortunatelly, the proof of Theorem 8 in (1 j contains an error, leaving the full truth of 
that theorem in doubt. If Re >0, however, it follows immediately from (2) that
the point 1 lies in the half-plane forbidden to T, so that P cannot meet the linear segment 
from 1 to B. This is enough to ensure that J lias the equivalent form (3) when Re {/fj >0

Furthermore, Brown (3) has observed that there is another trajectory of the quadratic 
differential (1) joining 1 to B. Thus T cannot wind around the point 1, and so we are 
always free to deform the arc C to the linear segment from 1 to B. Consequently, / has 
the form (3) in any case.

We found in [1 ] that if B is in the first quadrant it must lie in the quarter-disc defined 
by Re > 0, Im [0| > 0, and | B | < 1. Numerical calculations, as reported in (11, 
show that the locus of points B in the first quadrant satisfying Im £/ (B) J = 0 consists 
of the real segment from 0 to 1 and a curve which leaves the real axis at a point Q =» 0.36
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and goes with monotonic real and imaginary parts to the point i. (See Figure 1.) We 
proved by direct estimation ((1J, § 8) that J (0 > 0 and Im {/ (fi) j # 0 elsewhere on 
the positive imaginary axis, confirming that B = i actually arises from the extremal 
problem. Setting B = i in the differential equation (1), one easily verifies that the (unique) 
trajectory emanating from the origin is simply the radial half-Jine w = — (1 + /) t, t > 0. 
This leads to the sharp inequality ((1J, Theorem 7) Re £/(’)J > 0 forall/eS0 and 
\z\<<A\/2-y/2  ̂0.382...,

Because k0 (- %) = 0.36, we conjecture in [1] that Q = 0.36 and that the sharp 
inequality

Re {/(z)J ,

holds for | z | < !4 but not for | z | > M. In the next section, however, we present a new 
approach which yields the more accurate value Q — 0.36019..., corresponding to z = 
= 0.24987... . This imposes a slight modification on the conjecture and removes all 
hope of an elementary solution.

In § 3 we establish some properties of the omitted arc T which serve as partial sub­
stitutes for those asserted in Theorem 8 of (1J. In § 4 we generalize the minimum real 
part problem and the phenomenon of the isolated radial-slit solution. This gives new 
information on the region of values of /(f) at a fixed point f e ID as/ranges over the 
class So- Although Hamilton (2 J has described this region in terms of the elliptic modular 
function, its specific properties are not easily deduced.

2. Calculation of the bifurcation point. We now turn to the more accurate calculation 
of the bifurcation point Q of the curve Im (B)j = 0, where / is defined as the integral 

(3). It is convenient to introduce the function
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J(Z) =
_______dt______

\/(t-Z)t(l -t)
z= 1/(1 -B).

1
f
o

Without loss of generality we may assume 1m > 0, or Im {zj > 0.
We study first the behavior of J (z) on the real axis. As z increases from — °° to 0 on

the negative real axis, J (z) is positive and increases from 0 to °°. Asz increases from 1 to 
°° on the positive real axis, J (z) comes monotonically down the imaginary axis from/00 
to 0. On the segment 0 < z < 1, the real and imaginary parts of J (z) are

* -i *J,(z) = Re {J (zjj = f —............ —

and

r -i z dtJ2(z)= 1m fJ(z)t = / —.
l o V(z-O/(1

Asz increases trom 0 to 1, the function J^z) is positive and decreases from °° to it, while 
Jj(z) increases from rr to °°. Because of the identity J|(z) = J2(l — z), the function J 
maps the segment (0, 1) onto a curve which is symmetric about the ray inclined at 45°. 
Since J is univalent on the real axis, it maps the upper half-plane univalently onto a 
region in the first quadrant as shown in Figure 2.

Z-plane w-plane

Figure 2. The mapping ca “ J (z>

Next observe that the function z = 1/(1 — Д) maps the upper half-plane onto itself 
as shown in Figure 3.
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B-plane z-plane

Figure 3. The mapping z » 1 /(1 - fl)

Now consider the mapping

w = J(B) = —i\/B J (1/(1 -fl).

As fl increases along the positive real axis from 1 to «>, it is clear that J (fl) falls mono- 
tically down the negative inaginary axis from 0 to — i«. As B fncreases along the negative 
real axis from — °° to 0, it is easily seen that Re £ J (fl)^ = — B J,(1/(1 — fl)) de­

creases from °° to 0, while Im > J (fl)^ = —B J2(1/(1 — B)) - (1 —z)lz J2(z)is

positive. A closer inspection reveals that 1m [j (B) j goes from “»to 0 as B increases 
from — 0» to 0.

For 0 < B < 1, we already know that J (fl) > 0, and we will show that J (fl) increases 
from 0 to a maximum value and then decreases to 0. Putting all of this information to­
gether, we conclude that J maps the upper half-plane univalently onto a domain in the 
right half-plane as shown in Figure 4.

l igure 4. The mapping w * J (fl)
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The univalence of J in the upper half-plane is a consequence of its univalence on the 
boundary, regarding the image of the segment (0, 1) as a two-sided slit. The set where 
J (B) > 0 is now seen to consist of the segment (0, 1) together with the curve which is 
the preimage of the part of the positive real axis which lies inside the range of J. This 
curve joins the real axis at a point £ in the interval (0,1) where = 0.

In order to calculate £?, we respect to formula (3) and appeal to the binomial expansion 

(l-x)-^= 2 c„xn, c„ = 2-’« P«) , 

ta obtain

-B) 2 c„ (1 -B)n s' S^~=- = 
n-o 0 Vf(l~0

= -B) 2 c’(l — B)n, 0<B< 1 .
n ■ 0

2 __________ ,
An easy calculation now gives — v B (1 — B) J (B) - 2 dn (1 — B) ~ 1. where

jt n - I

= 2 n c’ _ t — (2 n + 1) e’ > 0. Thus s/fl (1 — flj J (B) is decreasing and so J'(B)

vanishes only once in the interval (0, 1). The point Q is therefore determined by the con­
dition J - 0, or

2 </„ (1 -<2)" = 1 . 0<<2< 1 - (4)
It“ s

Observe also that J'(B)> 0 for 0 <B < Q, while ./'(#) < 0 for Q < B < 1. This shows 
that J has the monotonic property described above.

A numerical calculation based on the formula (4) gives Q = 0.36019... and f =
= 0.24987... as the number for which k0 ( — f) = Q.

We are very much indebted to Friedrich Huckcmann for suggesting this method for 
the calculation of Q.

3. Properties of the omitted arc. The differential equation (1) can used to obtain 
further information about the omitted arc T. We know that T lies in the half-plane de­
fined by (2) and that it has the ir/4-property with respect to the family of hyperbolas 
with foci at 0 and 1. Because T is monotonic with respect to the family of ellipses with 
foci at 0 and 1, it cannot meet the real segment (0,1J except for its tip at 0.

Now let

w-B

Let P and N be the quarter-planes where the half-plane Re { (w)} > 0 intersects the
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half-planes Im { 4» (w)J >0andlm {'I'(*')4 < 0. respectively. Because the hyperbobs 
with foci at Oand 1 are the trajectories of du‘ / to (u> — 1)> 0, the differential equation 
(1) shows that wherever T meets one of these hyperbolas, the angle arg fdw / du\ be­
tween the two curves is positive in P and negative in N. This has the geometric interpretation 
that as a point w moves along T from 0 to it crosses the hyperbolic arc in a ‘clockwise’ 
direction in P, and in a ‘counterclockwise’ direction in N. On the half-line

w = B + (fl-l)f. t >0, (S)

which divides P from N, the arc T must be tangent to any of these hyperbolas it meets. 
Under the assumption that Im pf'• > 0, it is cleat that 0 e P. The asymptotic half-line

of T, which is given by

w = H (fl+ l) + fl(fl-l)f, f>0,

is parallel to (5) and also lies eventually in P. The btter statement follows from the in-
C 1 Z/ *)equably Im ) —7) J > 0> or 1™ ~ (1 + 2 IB )’) B^ < 0, or 2 x <

< 1 + 2 (xJ + _>•’), where B - x + iy and v > u.
We now assert that the arc T is entirely confined to the qqarter-plane P. Indeed, if it

ever enters N, it must violate its elliptic monotonicity as it crosses the boundary (S) in 
order to appioach its asymptotic half-line in P. Thus T moves in a clockwise direction 
with respect to the confocal hyperbolic arcs.

Figure}. Location of r for Re >0
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If Re ^B^ > 0, then Re {♦(I)} <0 and so the point 1 lies in the half-plane 
forbidden to r. Ttiis prohibits T from winding around the segment [0, IJ and actually 
confines it to the part of the lower half-plane between the half-line (5) and the hyperbolic 
arc with asymptote w = 14 + B (B — 1) t, t > 0, (See shaded region in Figure 5.) 
Indeed, if T ever crosses this hyperbolic arc, it must later recross in the opposite (counter­
clockwise) direction in order to approach its asymptotic half-line.

We claimed in [1J (Theorem 8) that arg j w — is monotonic on T and that T is in 
a sector in the lower half-plane, but the proof was incorrect. Recently, however, Brown 
[3] has shown that arg w is monotonic on T and that is in a sector in the lower half-plane.

4. A more general problem. For a fixed angle a in the interval — ir < a < rr, we now 
consider the more general extremal problem

min Re [e'“/(f)J , 0<f < 1, (6)
/ G

Because is preserved under conjugation, we may suppose without loss of generality 
that 0 < a < t. The minimum is attained for some function /6 So, and not for/(z) = 1. 
For instance,

Re je/tt(l =cosa-f< I. (t> a)

The choice a = ir corresponds to the maximum real part problem, equivalent to the 
maximum modulus problem and solved by the Koebe function k0.

An application of the variational method shows as in (11 that an extremal function/ 
for the problem (6) must map ID onto the complement of an analytic arc T extending 
from 0 to °° and satisfying

e!aB(B~l) 

w (w — 1) (w — B)
dw1 > 0, ß=/(t). (7)

The rr/4-property (2) generalizes to

f e~la (w — B) )
Re I--------1--------- k > 0, w e r. w * 0. (8)J. B(B-l) J
Because 0 < a < n, it is geometrically clear that we may assume Im [ w} >0.

For what values of a and f is it possible for the omitted arc P to be a linear ray?
Substitution of the curve w = ei"11 into (7) gives

—7-------------j-------— > 0, I > 0.
(e,y t — (e,y t — B)

For t — 0 this implies

el (“*7) (B — 1)> 0, (9)

so that
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(ebr-l)(B‘‘ eiy r —1)>0, t>0. (10)

Now let t -*■ °° in (10) to obtain

e,/’=B/|B|. (11)

Set t = | B I in (10) and use (11) to conclude that

(ely |B | — l)(e'<7 — l)>0. (12)

There are now two cases.
Case I: e'y = — 1. Then B > 0, by (11). It follows from (9) that either e'a - 1 and 

0 <B < 1, or e’° = — 1 and B > 1. The choice eia = 1 has been treated in the previous 
sections and, at least for 0 < f < 3 — s/8 , has k0 (— z) as its extremal function. The 
choice eia = — 1, as mentioned earlier, is equivalent to the maximum modulus problem 
and is solved for all f, 0 < f < 1, by k0 (z).

Case II: e'y # — 1. Since eiy 1, this means that Im {e<7j =#= 0, so that (12) implies 
I B | = 1. Thus B - eiiyr, and (9) gives ie^“ B sin y > 0. Therefore, either sin y > 0 and 
B = — re* or sin 7 < 0 and B = ie~la. In the other hand, (6 a) shows Re {e'“ B } < 0 

if rr/2 < a < it. Thus 0 < a < rr/2, and the requirement that Im £b} > 0 eliminates 

the possibility that B = — ie~ We conclude that B = ie~ and ely — — ~
We will show presently that some choice of f actually produces B = ie~la as the value 

of an extremal function for the problem (6), where 0 < or < rr/2. It will then follow from 
what we have just observed that this extremal function f maps ID onto the complement 
of a linear ray in the direction — <,/4 " Consequently,/must have the form

I + ei (» « a
/(*) = ------------- ---------- - f (13)

1 — e p z

where the rotation factor e,(J is determined by the condition/(f) = ie~ia. A straightfor­
ward calculation leads to the values e,(J = e'O’'* * “'♦) an(j f = sin (rr/8 — a/4). These 
results are summarized by the following theorem.

Theorem 1. For each / 6 So and for 0 < a < rr/2, the inequality Re {ez* / (z)} > 0 
holds in the disc | i | < sin (rr/8 — a/4), and this radius is sharp for each a.. If z = f = 
= sin (e/8 -a/4)and 0<a<t/2,then Re {e<a/(f)J = 0 if and only iff is the function 
(13), with P = 3ir/8 + a/4 and f (f) = re ' ia. /fz = S = sin rr/8, then Re {/(f)} = 0
if and only if fis either function (13), with a = 0 and P — 3rr/8 and f (f) = i, or its con­
jugate function f (z ).

For a = 0 this theorem is equivalent to Theorem 7 in [1). There is a curious geometric 
corollary. _______

Corollary I. For 0 < f < sin (rr/8) = V2 - >/2 , the region of values

vt={f(t): /es0]
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lies in the right half-plane Re £w } > 0. Each supporting line through the origin meets 
at exactly one point, and this point has unit modulus.
Among the solutions to a linear problem such as (6) there must be an extreme point of 

So. Therefore, on the basis of Theorem 1, we can identify some extreme points in addi­
tion to k0 (e^ z), 0 < <p < 2tr.

Corollary 2. For 0 < a < rr/2, let f (z) be given by (13) with (3 = 3n/& + a/4. Then the

J(B) = f 
0

functions defined by f (e^ z) and f (e^z) for 0 <.<{>< 2n are extreme points of So.
The proof of Theorem 1 is contingent upon a demonstration that B = ie~ ,a actually 

occurs as the value of an extremal function for the problem (6) for some choice of f-. As in 
the case where a = 0, the condition Re {e'“ b\ > 0 assures that the point 1 lies outside 
the half-plane (8) containing the omitted arc I’, so T cannot cross the line segment joining 
1 to B. It follows that B must satisfy eiM2 J (B) > 0, where / is expressed by the integral 
(3). Thus the desired result is a consequence of the following theorem, a generalization 
of Theorem 9 in [1 ],

Theorem 2. For 0 < a < ir/2, the integral J (fl) given in (3) has the properties 
ela'2 J(ie~,a)> 0,

Im {elan J(ibe-‘a)] >0 for 0<b< 1,

and

Im [elan J (ibe~'“)} < 0 for 1 < Z> < ~.

Corollary. The condition ela'2 J (B) > 0 is satisfied at B = ie ~la and at no other point 
on the ray B = ibe~ ia, 0 < b < Thus B = ie~ ia = /(f) for some f in the interval 
0 < f < 1, where f is an extremal function for the corresponding problem (6).

Proof of Theorem 2. The proof is similar to that of Theorem 9 in [1 ], with a few 
simplifications. The substitution t = 1 — j for H < I < 1 reduces the integral to 

BQ -B) I*'J f B(\-B) 11/1 } dt

l-Z(l-B) J 4 L B + t (1 — B) J J Vr (1-,)

A calculation gives

elal2J(ibe-‘a)=y/b fV2 { l/Z.l*72 4-.
o J V t (1 —/)

f1/2

where

//, =//, (f, b, a) =
b cos a + i ((1 — /) — tb2 + (2 t — 1) b sin a] 

(1 — t)2 + t2b2 + 2t (1 — t) b sin a

and
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tf} = H2 (r. b. a) =
b cos a + i [(1 — f) b1 — t + (2t — 1) b sina] 

(1 — tfb2 + t2 + 21 (1 — f) b sin a

It is now apparent that Hx (I. 1, a) - H2 (t. 1 ■ a) and that e,CUJ J (je~ia) > 0.
Now let [///]1/2 = (x/ + t}y),/2 = +h7/.For the remainder of the proof it is sufficient

to show that rji > rjj in the interval 0<Z<Viif0<Z>< 1, while rjt < t?j if 1 < b < °°. 
Since (t, 1/b, a) = H2 (f, b, a), it is enough to consider the case 0 < b < 1. Then 
0 < xt < x2, an inequality equivalent to (1 — 2 f) (1 — b2 ) > 0. Another calculation 
shows that the inequality y2 <yt is equivalent to

f (1 — f)(l — b4)+ [(1 -2r) + 2f’] (1 - b2)b sin a > 0.

which is obviously true. Observe next that > 0 because

(1 — b sina) + (2b sina — b2 — 1)z

is a linear function of t which is positive both for t = 0 and for t = Vi. Ify2 < 0, then it is 
obvious that r?i > r)2. If y2 >0.then we have 0<x, <x2 and0<yj <J’i,so that a simple 
graphical argument (cf. [1], p. 213) shows that rj, > nj-This completes the proof.
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STRESZCZENIE

Autorzy rozważają problem wyznaczenia min ^Rc { (z)} w klasie funkcji holomorficznych 

i jedno Ustnych w kole |z | < 1 i unormowanych przez warunki:/(z) * 0, f'0) = 1.

РЕЗЮМЕ

Авторы изучают проблему min ^Re/(z)| в классе голоморфных и однолистных функций 
в единичном круге I z | < 1 нормированных через условия: /(z) е 0, /(0) = 1.




