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06 IKCTpe MANBHBIX H ONOPHBIX TOYKAX KJIAcca S

Let S be the usual class of normalized univalent functions on the unit disc A = {z eq:
I 21 <1} . A function f € S is called a support point of S if there exists a continuous
lincar functional J on the space #(A) of holomorphic functions on A such that

ReJ(h)<ReJ(f) forallhe€e § )
and
ReJ(h)<ReJ(f) forsomeh€S. Q)

11 S ($) denotes the set of all support points of S, and £ (¢o S) the set  of extreme points
of the clused convex hull of S, it is well known that ¢6°S is compact and that E(co S)C S
{3, p. 440], but it is not known either whether £ (co S) C S(S)or S(S)CE(coS). In this
paper we shall prove the second inclusion except for certain special support points which
we call terminal support points of S. These are defined in the next paragraph.

Albert Pfluger (8] and later L. Brickman and D. R. Wilken [2] showed that if f € S(S),
then @\ f(4) is a single analytic arc extending to =, Pfluger also proved that if a.(half
closed) subarc is removed from @ \ f (4), beginning at the finite tip, then the resulting
region-after being contracted by a suitable numerical factor-again corresponds to a support
puint of S. (We include a simple proof below.)

Definition. A support point of S obtained by the procedure just described will be said
10 be obtained by arc truncation. More explicitly: the support point g is obtained from
the support point f by arc truncation if for some number r > l,f{;g (f is subordinate to
rg). A support point of S that can be ubtained by arc truncation is called a nonterminal
suppoit point; vne that cannot be su obtained is called a terminal support point.
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Remarks, (i) Stated in reverse a terminal support point is one whose omitted arc
cannot be lengthened to produce-after normalization by a factor greater than 1-another
suppart point. It may be mentioned, however, that the omitted arc of any support point
of S admits an analytic extension [2, Lemma S].

(ii) A Koebe function is nonterminal because it can be obtained by truncation ol its
own omitted arc.

(iii) Examples of terminal support points can be found among the support points
recently discovered by K. Pearce [6]. The omitted arcs of his termunal support points are
half-lines making an angle of n/4 with the radius vector to the tip.

(iv) An interesting question is whether every nonterminal support point of S is obtain-
able from some terminal support point by arc truncation. In other words do the terminal
support points generate all others? (Actually the Koebe functions would have to be
obtained as limits as the length of arc removed becomes infinite. That such a limut always pro-
duces a Koebe function was by shown Pfluger [8], who made use of the fact that the omitted
arc of any support point of S has an asymptotic line at «.) In any case terminal support
points appear to be rather special and relatively rare in S (S). for each such support point
is ‘at the base of” an uncountable family of nonterminal support points.

Very recently W. E. Kirwan and G. Schober [5], one of the present authors (unpubhshed),
and perhaps others have found easy proofs of Pfluger’s result that arc truncation preserves
support points of S. (It should be mentioned that {S] treats nonlinear functionals as well as
linear ones, and classes other than S as well as S.) Since some of these recent proofs have
not made (2), the nonconstancy requirement for support points, sufficiently clear, and
since Pfluger’s result admits an easy generalization (Proposition 1) which may prove
useful, we present a proof here (Proposition 2).

Proposition 1. Ler T be a continuous lincar operator on H (A) such that T (S) C S but
T(S)Z S(S). Then

gES, TER)ES(S)= g€S(S).

Proof. Let T (g) = fand let J be a continuous hnear functional related to fas in (1)
and (2). Define the continuous linear functional K by A =J « T. Then for any s € S there
follows T (W) € S and hence, by (1),

Re K (h)=ReJ (T (h))<ReJ (f)=ReJ (T'(g)) = Re K (&).

Thus g and K satisfy (1). To prove (2) for g and K we choose h € S such that T(h) € S(S).
Then Re J (T (h)) <ReJ (1), that is Re K (h) < Re K (g) as required.

Proposition 2. (Plluger). Let f € S (S) and let g € S be obtained from f by urc trunca-
tion. Then g €S (S).

Proof. The hypothesis means that f érg for some r > 1. We deline ¢ by the equation
f=rg + ¢ and then the operator T on i (A) by T (h) = rh *¢. It is easy to verify that
T (S) C 8. Also, il h (z) = z (the identity function), then T (h) = r¢. This function is
bounded and therefore not a support point of S. Thus T (S)Z S (S). Finally, since Tg =

. =f€S8(8S), the desired conclusion follows at once from Proposition | .
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We now state our theorem. We do not know whether ‘nonterminal’ can be eliminated.

Theorem. Every nonterminal support point of S is an extreme point of o S.

Proof. Let g be a support point of S obtained from the support point f by arc trunca-
tion. We express the relationship between f and g explicitly s follows. Let f be imbedded
in a Loewner chain F (2, r):

F@En=e'z+.., F@20)=f() (€A 0<t< =) )

(See [9. pp. 156—164| for the required information concerning subordination chains.)
Then for some 1> 0 we have

g)=e "F@. 1) (2€4) 4)
We must show g EE (0 S).

Assoctated with the chain F (2, r) there is a *subordinating fuaction’ w (2, s, ¢) sati sfy-
ing the conditions

wEsn=e""24+..., lw@sDI<|z] €A ILsSt < ™), )
F(s)=F(w(zs1),1) (ZEA,0Ks< 1 o), 6)
wEs=w(w(s)1r) EAOISsSIKT). 7)

We now deline

P()=w(0,1) (2€3) (8)
and obtain, as a special vt (6),

Fi0)=F(e()1 (:€4).

By (3) and (4) this becomes

f@)=¢g () EA). ©)

Next we employ Choquet's theorem [7, pp. 19-20] to obtain a probability measure
pon £ (co S)such that

Re L (g)=f Re L (h)ydu (h) (10)

for every continuous linear tunctional L on H (A). We now let J be a functional associated
with fasn (1) and (2), and choose

L)y=J(c"h-¢) (hE I (A)). (1)
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By (9), (10) then becomes
ReJ(f)=fReJ(eTh -¢)du(h). 12)

The function e™h « ¢ in the integrand is univalent because ¢ is univalent and £ (co S) C S.
Moreover by (5) and (8), e"h - ¢ has the required normalization for S. Hence, by (1),

ReJ(e'h -¢)<ReJ(f) h€EE (D).

Thus, writing (12) as

J[ReJ(f)—ReJ(¢Th <¢)] du(h)=0,

and noting that the integrand in continuous, we can conclude that Re J (f) =
= Re J (e"h « ¢) for every h € E (co S) in the suppoit of the measure u. (We say h is the
support of u if u (V) > 0 for every neighborhood ¥ of h.) Thus we can choose a function
h such that

hEE(D S), eTh -¢ES(S). (13)
We shall complete the proof by showing that the second condition in (13) implies that

h=g. Theng EE (c0 S) as required,
For h satisfying (13) we define the finite subordination chain G (z, ¢) by

G t)y=eTh(w(zt 1) (2EA0SIST), (19)
and note

G@at)=ez+.. (2€A,0<t<7) (15)
and

G(z,0)=e"h(¢(z)ES(S). (16)

Applying h to equation (7) and multiplying the result by ¢™ we obtain, by (14),

G(z,5)=G(w@s. . (€A 0<s<I<T). (17)
Thus G (2, ¢) is a normalized subordination chain with the some subordinatiog function,
namely w (2, s, t), as the Loewner chain £ (z, 1). (Compaie (6) and (17).) Finully we

imbed G (z, 0) in a Loewner chain // (2, t):

H@ =ez+.., H(z 0)=G(20) (ZEA0<I<x) (18)
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For 0 € ¢t < rand 2 € A we must have H (2, t) = G (2, t). Indeed for any ¢ satisfying
0 <1 < 7, the mapping G (£, 0) is subordinate to both G (2, ¢) and H (2, t). But G (2, 0),
by (16), is a slit mapping. It follows that one of the mappings G (2, t), H(z, t) is subordinate
to the other. But both are normalized. (Derivative at 0 equals e’.) Thus these mappings
must be the same. We can now replace (17) by

H@E s)=H(w(.s.1),t) (2EA0KsSI<T). 19)
In the appendix we shall show that (19) leads by analytic continuation to
He s)=H(w(2.s1),t) CE€EA0SsSI<™). (20)

Intuitively, the fact that the omitted arc ot G (2, 0) is analytic implies that the Loewner
chain H (z, 1) of (18) is analytic in both variables. Similarly the omitted arc of F (2, 0) is
analytic, so the function w (2, s, t) is analytic in all three variables. Hence (19) implies
(20). Thus, by (6) and (20), the Loewner chains F (2, t) and H (2, ¢) have the same
subordinating function w (2, 8, f). Therefore these chains must be identical. Indeed

F@t)y=limedw(@z t,bu)=H@. 1) (€A 0< 1<),

U~s=
Inparticulat F(2, )= H (2, 1) =G (2, 1) = e"h(w (2, 1. 7)) = eTh(2). (See (5).) Therefore
h@)=¢" " F(2, 1) =g (2)as claimed.

APPENDIX

The tollowing theorem provides the (inal step in the proof of the main theorem in the
text. It will be used to show how equation (20) follows from equation (19).

Theorem A: Ler f(2) € S be such that @\ f(A) = v is a single arc, analytic everywhere
inclhuding at the base point and at . Then there exists a normalized subordination chain
F (2, t) with F (z, 0) = [ (z) and such that F (z, t) is analytic in 1.

Proof: By the analyticity of 7 there exist open sets U and V and a functior w such that

1)) UD {{ =x+iy.x20,y= 0} and €\ U is compact,
i) ¥Dyand @\ V is compact,
i) w:U-Visone 40-one, onto, and analytic with w (0) = base point of y.

Also without loss of generality we can assume there exist € > 0, R > 0 such that U=
= f{ =x+iy:x>—elyi<e L L8] >R] . Consider the ‘vatiation’ given by

z*=z°(z,0)=w|w t(z)+r}, 120, 2EV

Then 2® is an analytic function of both z and ¢ and, expressed as a power series in ¢,
looks like

=z +tV, Q)+ PV ()Y
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For a fixed r consider the arc y, = w [w™ ! (7) + 7] and the associated domain @ \ v,.
In[4] it is shown that, using a variation such as the one given above, if one considers the
analytic completion of the Green's functions associated with the varied domains then
these functions vary analytically with ¢ and conscquently so do the associated mapping
functinns. That is, if we let F'(z, £) denote the associated mapping function for a given ¢,
then F (z, ¢) is a subordination chain such that F'(z, 0) = f (z) and F'(z, 1) is analytic in .
If we write F'(z, t) = (#) z + ... Then the analyticity and the strict subordination imply
that n (¢) has an analytic inverse.

Define F(z, £) = F(z, n~ ' (¢/)). Then F (z, 1) =€’ z + ... and F (2, £) 1s the desired
normalized subordination chain.

Finally to obtain equation (20) it suffices to show for each fixed 2, w (2, s, 1) is
analytic in both s and ¢. Recall (6) which states

F@E s)=F(w(zs1),1).

For any f(2) analytic and univalent in A and any R, 0< R < 1,if w=f(z)and |z | <R,
then ({1], p. 153)

= 8¢

2 1g1=R f(§)—w 3

If we set w = F (z, s) then (6) implies

1 F'¢, 0d
W= — SEEDdE R
2ni ig1=R  F@ 0)—F(,9)
and the result follows.
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STRESZCZENIE

Niech S oznacza klas¢ unormowanych funkcy holomorficznych i jednolistnych w kole jednostko-
wym, S (S) - zbiér punktéw podpierajgcych klasy S zaf £ (G5 S) zbiér punktéw ekstremalnych dom-
Khigte) otoczki wypoktej klasy S.

Autorzy dowodzg, e wyjgwszy punkty podpierajace pewnego specjalnego typu, ma miejsce
inkluzja S (S) C £ (&5 S).

PE3IOME

TMycrs S xnacc HOpMHPOBAHHLIX, TONOMOPHHBIX H ONHONHCTHLIX PYHKUHA B eAHHHYMOM KpYyTe,
S (S) - MHOXECTBO ONOpHBIX TOweK Knacca S, £ (00 S) — MHOMECTBO IKCTpEMANBHAIX TOYEK
3aMKHYTOR, BuiykNOR 060nouxK Knacea S.

ARTOpM NOKAIWBAIT, NTO WCKIIOWAR ONOpPHLIC TONKM HEKOTOPOIO CNCUMANBHOIO TMNA, MMeCT
MecTo BxnowHns S (S) C £ (65 S).






