ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

Texas Technical U'niversity
Lubbuck, Texas, USA

R. W. BARNARD

Criteria for Local Variations for Slit Mappinys

Kisteria dla wariacji lokalnych odwzorowzin na obszary bez punktów zewnẹtrznych

> Условия для докалныых вариаииа отображаннй на области без внсиннх точек

Let S be the family of all analytic functions f on the unit disc $U=\{2:|2|<1\}$ normalized by $f(0)=1-f^{\prime}(0)=0$. Consider a dumain $f(U)$, for f in S, having a piecewise smouth boundary which contains piecewise analytic slits. In short note we obtain criteria for this type of domain to be locally varied on its boundary to produce a domain of larger mapping radius. We also apply these criteria to domains bounded by certain 'spiralled' slits.

We shall apply the Julia variational formula as iormulated (based on J. Krazz's work) and described in detail by the author in his Transactions AMS paper [2]. Let f be in S with $D=f(l)$ and $\partial l)$ be piccewise snouth and contain an analytic slit L. Let f also designate the extended function to \bar{U} where appropriate. We obtain a varied function f back in S by making a sufficiently small local perturbation of the slit L. For ϵ sufficiently small. let $\epsilon\left(\begin{array}{l}(1 i) \\ \text {) be a twice continuoushy differentiable variation (zero on } \partial D \backslash L \text {) in the }\end{array}\right.$ direction of the unit normal, $n\left(w^{\prime}\right)$, of the point $w=f(z)$ for $z=e^{i 0}, \theta$ real. The change in mapping radius, denoted by $\Delta m . r$., is given up to $o(\epsilon)$ terms by (continuity arguments enable us to drop the $\mathbf{O}(\epsilon)$ terms in the remaining argument):
$f^{\prime}(0)-f^{\prime}(0)=\frac{\epsilon}{2 \pi i} \int_{\partial D} \frac{\phi\left(w^{0}\right) n\left(w^{\prime}\right) d w^{\prime}}{\left[2 f^{\prime}(z)\right]^{2}}$

In this manner we can vary the slit l. locally by nowing the 'sides' of the slit an equal amount but in opposite directions along their respective interiors and exterior normals to produce another slit L^{\prime}. Let o be 0 un the ∂D except on an arc $w_{0} w_{2}$ of L were $w_{0}=$ $=f\left(z_{0}\right)=f\left(\zeta_{0}\right)$ with correpunding preimages ℓ_{1}, Q_{2} on ∂U, i.e. let $f\left(\ell_{1}\right)=w_{0} W_{2}, f\left(l_{2}\right)=$ $=\boldsymbol{w}_{2} \boldsymbol{w}_{0}$ with z in ℓ_{1} and ζ in ℓ_{2}. Then the $\Delta \mathrm{m}$.r. is given by

$$
\begin{aligned}
& \frac{\epsilon}{2 \pi i}\left\{\int_{w_{0}}^{w_{2}} \frac{\phi(w) n(w) d w}{\left[z f^{\prime}(z)\right]^{2}}-\int_{w_{2}}^{w_{0}} \frac{\phi(w) n(w) d w}{\left[\zeta f^{\prime}(\zeta)\right]^{2}}\right\}= \\
& =\frac{\epsilon}{2 \pi}\left(w_{2}-w_{0}\right)\left\{\frac{1}{w_{2}-w_{0}} \int_{w_{0}}^{w_{2}}\left[\frac{n[f(z)]}{i\left[z f^{\prime}(z)\right]^{2}}+\frac{n[f(\zeta)]}{i\left[\zeta f^{\prime}(\zeta)\right]^{2}}\right]\right\} d w
\end{aligned}
$$

We note that $n[f(z)]=2 f^{\prime}(z) /\left|z f^{\prime}(z)\right|$ and that $\arg \zeta_{0} f^{\prime}\left(\zeta_{0}\right)=\arg z_{0} f^{\prime}\left(z_{0}\right)-m$.
Letting $z \rightarrow z_{0}$ and $\zeta \rightarrow \zeta_{0}$ along ℓ_{1} and ℓ_{2} resp., we obtain as $w \rightarrow w_{0}$ between w_{2} and w_{0} along L,

$$
\begin{aligned}
& \lim _{w \rightarrow w_{0}} \frac{\epsilon}{2 \pi}\left|w-w_{0}\right| e^{i \arg \left(w-w_{0}\right)} \cdot\left\{\phi (w _ { 0 }) \left[\frac{1}{i\left[z_{0} f^{\prime}\left(z_{0}\right)\right]\left|z_{0} f^{\prime}\left(z_{0}\right)\right|}+\right.\right. \\
& \left.\left.+\frac{1}{i\left[\zeta_{0} f^{\prime}\left(\zeta_{0}\right)\right]\left|\zeta_{0} f^{\prime}\left(\zeta_{0}\right)\right|}\right]\right\}=\frac{\epsilon}{2 \pi} \lim _{w \rightarrow w_{0}}\left|w_{1}-w_{0}\right| e^{i \arg \left|i z_{0} f^{\prime}\left(z_{0}\right)\right|(-i) \phi(w) \cdot} \\
& \cdot\left[\frac{e^{-i \arg z_{0} f^{\prime}\left(z_{0}\right)}}{\left|z_{0} f^{\prime}\left(z_{0}\right)\right|^{2}}+\frac{e^{i\left|w-\arg z_{0} f^{\prime}\left(z_{0}\right)\right|}}{\left|\zeta_{0} f^{\prime}\left(\zeta_{0}\right)\right|^{2}}\right]=
\end{aligned}
$$

$$
=\frac{e}{2 \pi} \lim _{w \rightarrow w_{0}}\left|\frac{w-w_{0}}{z-z_{0}}\right| \lim _{z \rightarrow z_{0}}\left|z-z_{0}\right| e^{i \arg z_{0} f^{\prime}\left(z_{0}\right)} \phi(w) .
$$

$$
\cdot\left[\frac{1}{\left|z_{0} f^{\prime}\left(z_{0}\right)\right|^{2}}-\frac{1}{\left|\zeta_{0} f^{\prime}\left(\zeta_{0}\right)\right|^{2}}\right]=
$$

$$
\begin{equation*}
=\frac{\epsilon}{2 \pi} \lim _{z \rightarrow z_{0}}\left|z-z_{0}\right| \phi(w)\left|1-\left|z_{0} f^{\prime}\left(z_{0}\right)\right|^{2} /\left|\zeta_{0} f^{\prime}\left(\zeta_{0}\right)\right|^{2}\right| /\left|z_{0} f^{\prime}\left(z_{0}\right)\right| \tag{*}
\end{equation*}
$$

Let $w_{0}=f\left(z_{0}\right)=f\left(\zeta_{0}\right)$ be a point on a slit L were $f^{\prime}\left(z_{0}\right)$ and $f^{\prime}\left(\zeta_{0}\right)$ exist (finitely) and are nonzero. It follows from (*) and a standard continuity argument that if $\left|f^{\prime}\left(z_{0}\right)\right|$ \# $\neq\left|f^{\prime}\left(\zeta_{0}\right)\right|$ then a sufficiently short arc $w_{1} w_{0}$ of L can be chosen such that with an appropriate $\phi(w)$ the mapping radius can always be increased. We have shown:

Theorem. A domain $f(U), f \in S$, with a piecewise smooth boundary having an analyric slit which contains a point where the opposing normal exist and are of unequal moduli can always be varied locally on the boundary to produce a dunain of strictly larget mapping radius.

Using this result as a basis we shall be able to conclude that any domain as described above hewing a plecewise analytic slit in this boundary that contains corners with one of
the angle openings equal to $\alpha \pi, 1<\alpha \leqslant 2$, or two angle upenings $\beta \pi$ and $\beta^{\prime} \pi$ where $0<\beta<\beta^{\prime} \leqslant 1$ can be varied as abuve. (The case $\alpha=2$ dues not include the tip of a slit, i.e. requires the point where the corner occurs to have at least two distinct pretmages on $1 \geq 1=1$.) W'e claim a corner of opening $\alpha \pi .1<\alpha \leqslant 2$ will have a neighborhood on the slit containing points where the opposing normals lave unequal modili. We can conclude this from the following Lemma nxodytying a result of Tsuji's.

Lemma. Let (i be a region on the we plane with boundary curve C passing through $\boldsymbol{w}^{\prime}=1$. The part of C which lies in a small neighborhond of $\boldsymbol{w}^{=}=1$ is divided by $w=1$ into two parts C_{1} and C_{2}, which we assumbe are analy'ric Jordan arcs making an interior angle $\alpha \pi,(0<\alpha<2)$ ut $w=1$. We let $w=w(=)$ conformully' map \cup onto G such that $w(0)=0$ and $w(1)=1$. Lct $\Delta=\{z: 1<1 z-1|\leqslant p,|z| \leqslant 1\}$ be a 'half ncighborhood' of 1 . Then, if $\rho>0$ is sufficiently snuall

$$
A|z-1|^{\alpha-1} \leqslant\left|\frac{d w}{d z}\right| \leqslant B|z-1|^{\alpha-1}, z \in J .
$$

where $A>0, B>0$ are constants.
Proof. The result follows directly from Tsuji's result [S, pp. 365] by a dinear transformation taking the upper hati plane into U and by noting that the argument is a bocal arguinent hence the sufticiency of piecewise analyticity in a neighborhood of $w=1$. Also the map $w^{1 / a}$ when $\alpha=2$ satisfies the required properties for the proof to be valid in this casc.

To apply this result we consider the corners as separate superimposed boundary arcs. Also the analytic extensions across these boundary arcs are considered as lying on their superimposed, but distinct. Riemann surfaces with their analytic properties being described by the limiting behaviour from inside the domain $f(U)$. A given point may have any linte integer greater than one of comers with their appropriate edges superimposed. It is cleat from the geometry of the cormers that if there existra corner at w_{0} of opening $\alpha \pi .1<\alpha \leqslant 2$ then the other one or note corners at w_{0} will have opening $\beta \pi, 0<\beta<1$. From the Lemma the derivative will approach 0 from inside and along the edges of the cormer at w_{0} of upennu! $\alpha \pi, 1<\alpha<2$ while the derivative will a pproarch ∞ from inside and along the edpes of the vther corners at wo of copening $\beta \pi, 0<\beta<1$. The case when $\beta=0$ does not lollow direcily from the Lemma. The case can occur in two ways. Either with an adjacelt cotner of opening $\beta^{\prime} \pi, 0<\beta^{\prime}<1$ which can be handled as above, or the original cornc: has opening $\alpha \pi, \alpha=2$ where $f^{\prime}(z) \rightarrow 0$ along the boundary. In this case, of an interior cusp of opening 0π, the guaranteed locally univalent extensions (on its distinct Riemann surface) in neighborhood of the analytic edges would contradict the property of any analytic extension actoss an analytic arc where $f^{\prime}(\zeta) \rightarrow 0$ must be locally nonunivalent (i.e., the existence of an asymptutic value (approached along on analytic arc) of zero for the derivative assures nonconformality).

Our claim as to the existence of points in a neighborhood along the slit of a corner of opeming $a \pi, 1<\alpha<2$ where the upposing mormals have unequal moduli will then follow by continuity. In the case when there exist corners at w_{0} with angle openings $\beta \pi$ and $\beta^{\prime} \pi, 0<\beta<\beta^{\prime} \leqslant 1$ the lemma nay again be applied (noting the different rates the deriva-
tives would have to change) along with continuity to obtain opposing nurmals with unequal moduli near wo

We observe that for a function f in S is a boundary slit $L=f\left(l_{1}\right)=\int\left(\mathbb{l}_{2}\right)$, for R_{1}, R_{3} subarcs of ∂U, has the property that $\left|f^{\prime}(z)\right|=\left|f^{\prime}(\zeta)\right|$ whenever $f(z)=f(\zeta) \in L$, then the lenght, $\left|\ell_{1}\right|$ of ℓ_{1} equals the length, $\left|\ell_{2}\right|$ of ℓ_{2}. This follows since

$$
\begin{aligned}
& \left|\ell_{1}\right|=\int_{R_{1}}|d z|=\int_{R_{1}}\left|\frac{d f^{-1}(w)}{d w}\right||d w(z)|=\int_{R_{1}} \frac{|d w(z)|}{\left|\int^{\prime}(z)\right|}=\int_{R_{2}} \frac{\left|d w^{\prime}(\zeta)\right|}{\left|\int^{\prime}(\zeta)\right|}= \\
& =\int_{R_{2}}|d \zeta|=\left|R_{2}\right| .
\end{aligned}
$$

We then observe from V. R. Kü hnau's $\{3\}$ extension of Löwner's Lemma that if a slit L is the only boundary of a domain $f(U)$ for f in S and has the property that the two 'sides', say L_{1} and \boldsymbol{L}_{2}, do not change curvature (i.e. fromi positive to negative) then theil preomages $R_{1}=f^{-1}\left(L_{1}\right)$ and $R_{2}=f^{-1}\left(I_{-2}\right)$ are of equal length iff L is ageodesic. In our case L must be a half line pointing of the origin. We note that the only hali line for f in S with the above property is a radial line. Although this is clear from the geometry of the sphere we also note that the extended mapping lunction f in S determining a straght line $\mathcal{L}=f\left(\ell_{1}\right)=f\left(\ell_{2}\right)$ is given by (up to rotation) $f(z)=z[1-(x z)] /(1-z)^{2}$ where $x=$ $=\left(1+e^{\theta}\right) / 2,0<\theta<2 \pi$. Since $f^{\prime}(z)=\{1+(1-2 x) 2] /(1-z)^{3}$ it follows that the end points of ℓ_{1} and ℓ_{2} are 1 and $e^{-i \theta}$. So that $\left|\ell_{1}\right|=\left|\ell_{2}\right|$ i|f $0=\pi$.

Consider a domain $f(U)$, for f in S, buunded by an analytic slit L with sides' that do not change curvature. It follows from our arguments that this type of domitin can be locally varied in such a way as to increase the mapping radius unless L is a radial line. Althuggh a similar and indeed more gencral result would follow from the properties of circulat symmetrization the local nature of the ubservations in this paper will hopelully add 10 the generality of their applications.

We also note here that a domain may be bounded by an arbitrary number of radial slits so arranged as to have the upposing normals at every poillt oll each slat be of épual noduli. A typical example would be the k-symmetric form $f(z)=z\left(1-z^{k}\right)^{-2 k}$, while a non-2-symmetric form would be $f(z)=2 /\left(1-2 z\right.$ cos $\left.t+z^{2}\right)$. However a standard Goluzin type variation or a variation on the jumps as was done ill $|4|$ can be used to control the size of the mupping radius. Another inethod by which this contiol call be obtained is a local variation using the Lowser differential equation representation for slit mappings to locally extend and contract the tips of slits as was done in [1].

REEF:RENCIS

[1] Barnard, R. W., A variational rechnique for bounded starlike funcrions, Canad. J. Math. XiVII. 2, (1975), 337-347.
[2] Burnard, R. W., On bounded univalens funcrions whose ranges comtain a fixed disk. Trans. Anier. Math. Soc. 225, (1977), 123-144.
[3] Kühnau, V. R.. Randver:errung bei tonformer .Abbildung in der euklidischen, eltiprischen und hyperbolischen Ebene, Math. Nachr, 34, (1967), 317-325.
[4] Tammi, O. Note on symmerric schlicht domains of bounded boundery rotation, Ann. Acad. Sci. Fenn. Ser. A. I. 198 (1955), 10.
[5] Tsuji, M.. Porential Theory, Chelsea 1975.

STRESZCZENIE

Ourzymuje siç warunki jakie powinien spelniać obszas jednospojny o brzegu kawalkani gtadkim i zawierajacym kawatkami analityczne naciecia, aby przez lokalna deformacje brzegu można byto zeń otrzymac obszar 0 wiȩksy'm konforemnym promieniu wewnẹtranym.

PL:30ME.

