ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XLV, 14

SECTIO A

Trandheim College of Education

F. RØNNING

On Starlike Functions Associated with Parabolic Regions

O funkcjach gwiaździstych związanych z obszarami ograniczonymi parabolą

Abstract. This paper continues the investigations of a class of starlike functions S_p given by the property that zf'(z)/f(z) ranges over a parabolic region. We prove a convolution result for this class and we compute the Koebe constant. We also introduce a generalization of the class S_p and obtain some results for the generalized classes.

1. Introduction. In this paper we shall work within the class S of functions $f(z) = \sum_{k=1}^{\infty} a_k z^k$, analytic and univalent in the unit disk U, and normalized by f(0) = f'(0) - 1 = 0. We denote by S_{α} the class of functions $f \in S$ with the property

(1.1) $\operatorname{Re} \frac{zf'(z)}{f(z)} \ge \alpha , \quad z \in U , \quad 0 \le \alpha \le 1 .$

This is the classical family of functions starlike of order α . In [4] we introduced a class of starlike functions called S_p given by the property

(1.2)
$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \operatorname{Re} \frac{zf'(z)}{f(z)}, \quad z \in U$$

In the same way as we can say that the functions with the property (1.1) are associated with a halfplane we could say that the functions satisfying (1.2) are associated with a parabolic region, since |w - 1| = Re w describes a parabola with vertex at $w = \frac{1}{2}$ and $\langle \frac{1}{2}, \infty \rangle$ as symmetry axis. (It is clear that $S_p \subset S_\alpha$ for $0 \le \alpha \le 1/2$ and that for $\alpha > 1/2$ the inclusion does not hold.) The class S_p is in a natural way related to the geometrical property uniform convexity as introduced by $G \circ dman [1]$. A function f is said to be uniformly convex ($\in UCV$) if the image of every circular arc γ contained in U, with center also in U, is convex. We could mention as a remark that in the case that γ is a complete circle within U, then $f(\gamma)$ is convex if f is ε convex function in the classical sense ($\in K_0$) (Study [6] and Robertson [3]). So the concept of uniform convexity is a restriction only if γ is a part of a circle. The relation between UCV and S_p is given in the theorem below, where also an analytic characterization of UCV is stated.

991

Theorem A. Let $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in S$. Then (a) $f \in UCV$ if and only if

(1.3)
$$\operatorname{Re}\left\{1+\frac{(z-\zeta)f''(z)}{f'(z)}\right\} \ge 0 , \quad (z,\zeta) \in U \times U .$$

(b)
$$f \in UCV \iff zf' \in S_p$$
.

Part (a) is proved in [1] and part (b) is proved in [4].

2. Further properties and generalizations of S_p . The class S_p was introduced in [4] where we found, among other results, a sharp upper bound for the modulus |f(z)|, $f \in S_p$ and also some bounds for the coefficients. Improved bounds for the coefficients were given by Ma and Minda [2]. Now we shall prove further results about S_p , and we shall also make a generalization of S_p and adjust some of the results from [4] to the generalized class.

First we prove a result which in particular shows that the class S_p is closed under convolution. This is an application of an important result from convolution theory. We state it in a special version which is sufficient for our purposes.

Lemma 2.1 ([5, p.54-55]). Let $f(z) = \sum_{k=1}^{\infty} a_k z^k$ and $g(z) = \sum_{k=1}^{\infty} b_k z^k$ be in $S_{1/2}$. Denote by f * g the Hadamard product $(f * g)(z) = \sum_{k=1}^{\infty} a_k b_k z^k$. Then, for any function F(z) analytic in U, we have for $z \in U$ that

$$\frac{f(z) * g(z)F(z)}{f(z) * g(z)} \subset \overline{\operatorname{co}}(F(U)) \ .$$

(co denotes the closed convex hull.)

Theorem 2.2. Let $f \in S_{1/2}$, $g \in S_p$. Then $f * g \in S_p$.

Proof. If $g \in S_p$, we have in particular $g \in S_{1/2}$. Assume $f \in S_{1/2}$. Let zg'(z)/g(z) play the role of F in Lemma 2.1, and let $\Omega = \{w \mid |w-1| \leq \text{Re } w\}$. Using the lemma we get for $z \in U$ that

21. 3

$$\frac{z(f*g)'(z)}{(f*g)(z)} = \frac{f(z)*zg'(z)}{(f*g)(z)} = \frac{f(z)*g(z)\frac{zg'(z)}{g(z)}}{(f*g)(z)} \subset \overline{\operatorname{co}}\Big(\frac{zg'(z)}{g(z)}\Big)_{z\in U} \subset \Omega$$

since Ω is convex and $g \in S_p$. This proves that $f * g \in S_p$.

Let

(2.1)
$$P(z) = 1 + \frac{2}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2$$

If $f \in S_p$ then $zf'(z)/f(z) \prec P(z)$ [4]. Let k(z) be the function, analytic in U, specified by k(0) = k'(0) - 1 = 0 and zk'(z)/k(z) = P(z). Ma and Minda [2]

proved that this function is extremal for some problems in S_p . (The actually worked with the function $\bar{k} \in UCV$ related to our k by $k = z\bar{k}'$. This is of course equivalent due to Theorem A (b).) One of the results in [2] about k is that for $f \in S_p$ we have $f(z)/z \prec k(z)$ and as a consequence of this subordination follows a distortion theorem in UCV which becomes a growth theorem in S_p . We state the result from [2] as

Theorem B. Assume $f \in S_p$ and |z| = r < 1. Then

$$(2.2) -k(-r) \leq |f(z)| \leq k(r)$$

with equality for $z \neq 0$ only if f is a rotation of k.

The new contribution that we now make, is that we are able to give the upper and lower bounds in (2.2) more explicitly.

Theorem 2.3. Assume $f \in S_p$ and |z| = r < 1. Then

(2.3)
$$-\frac{8}{\pi^2} \int_0^r \frac{1}{t} (\tan^{-1}\sqrt{t})^2 dt \le \log \left|\frac{f(z)}{z}\right| \le \frac{2}{\pi^2} \int_0^r \frac{1}{t} \left(\log \frac{1+\sqrt{t}}{1-\sqrt{t}}\right)^2 dt$$

with equality for $z \neq 0$ only if f is a rotation of k.

Proof. Let $\varphi(z) = z f'(z)/f(z)$ and let P(z) be as in (2.1). Then

$$\log \frac{f(z)}{z} = \int_0^z (\varphi(\xi) - 1) \frac{d\xi}{\xi}$$

and with $s = re^{i\theta}$

$$\log \left| \frac{f(z)}{z} \right| = \int_0^t \operatorname{Re}(\varphi(te^{i\theta}) - 1) \frac{dt}{t}$$

Since $\varphi \prec P$ and P maps |z| = r to a convex curve, symmetric about the *z*-axis, it follows that

$$P(-t) \leq \operatorname{Re} \varphi(te^{i\theta}) \leq P(t)$$
.

Now the right hand side of (2.3) follows immediately. To get the left hand side note that

$$\left(\log \frac{1+\sqrt{-t}}{1-\sqrt{-t}}\right)^2 = -4(\tan^{-1}\sqrt{t})^2$$
.

The function k is continuous on \overline{U} [2], so k(1) and k(-1) make sense. This means that the limit as $r \to 1$ in (2.3) exists. Doing that on the right hand side gives the upper bound on |f(z)| which was proved in this way in [4]. Taking the limit of the left hand side we obtain a new result about S_p (covering theorem, Koebe constant).

For a given subclass \mathcal{F} of \mathcal{S} , denote by $\mathcal{K}(\mathcal{F})$ the radius of the largest disk contained in $\bigcap_{f \in \mathcal{F}} f(U)$. The number $\mathcal{K}(\mathcal{F})$ is called the Koebe constant in \mathcal{F} . It is e.g. well known that $\mathcal{K}(\mathcal{S}) = \mathcal{K}(S_0) = 1/4$ and $\mathcal{K}(K_0) = 1/2$.

Starting from (2.3) we get

$$\lim_{r \to 1} -\frac{8}{\pi^2} \int_0^r \frac{1}{t} (\tan^{-1}\sqrt{t})^2 = \lim_{r \to 1} -\frac{4}{\pi^2} \int_0^{2\tan^{-1}\sqrt{r}} \frac{t^2}{\sin t} dt$$
$$= -\frac{4}{\pi^2} \int_0^{\pi/2} \frac{t^2}{\sin t} dt := \mathcal{I} .$$

This proves

Corollary 2.4.

$$\mathcal{K}(S_n) = -k(-1) = e^{\mathcal{I}} = 0.53399\dots$$

(The value of \mathcal{I} is found by numerical integration.)

One way to generalize the class S_p could be to introduce a parameter α and define classes $S_p(\alpha)$ by

(2.4)
$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \operatorname{Re} \frac{zf'(z)}{f(z)} - \alpha$$

We see that (2.4) also defines a region bounded by a parabola. This parabola has its vertex at $w = (1 + \alpha)/2$, and when α grows, the parabola becomes narrower until it degenerates for $\alpha = 1$. Our previous class S_p corresponds to $\alpha = 0$, and we see that we get starlike functions (Re zf'(z))/ $f(z) \ge 0$ for all α down to $\alpha = -1$. Hence, the functions from $S_p(\alpha)$ are in particular univalent for $\alpha \ge -1$. And also, if we go below -1 with α then $S_p(\alpha)$ must contain non-univalent functions. That is because then the parabola will contain the origin, and for no $f \in S$ can zf'(z)/f(z) = 0, $z \in U$.

Hence we have

Theorem 2.5.

$$S_{p}(\alpha) \subset S_{0} \quad \text{for} \quad -1 \leq \alpha < 1$$

$$S_{n}(\alpha) \not \subset S \quad \text{for} \quad \alpha < -1$$

Now, let f and g be functions such that f = zg'. Rewriting (2.4) with zg' instead of f we get

(2.5)
$$\left|\frac{zg''(z)}{g'(z)}\right| \le \operatorname{Re}\left\{1 + \frac{zg''(z)}{g'(z)}\right\} - \alpha$$

In [4] we applied the Minimum principle for harmonic functions to get the connection between (1.2) and (1.3) which is the statement in Theorem A (b). This can be carried out in the same way to see that (2.5) is equivalent to

12.21

Let ζ be an arbitrary point in U, and let γ be a circular arc also in U, centered in ζ and with radius r. A point on γ can then be written $z = \zeta + re^{i\theta}$, $\theta \in \langle \theta_1, \theta_2 \rangle$, $0 \le \theta_1 < \theta_2 \le 2\pi$. Then (2.6) states that

(2.7)
$$\frac{d}{d\theta} \left(\arg \left\{ \frac{d}{d\theta} g(\zeta + re^{i\theta}) \right\} \right) \ge \alpha , \quad \theta \in \langle \theta_1, \theta_2 \rangle .$$

This suggests an interpretation of (2.6) which in a natural way gives rise to a concept one could call uniform convexity of order α . If we denote by $UCV(\alpha)$ the functions satisfying (2.6), we find the following interesting observation, using Theorem 2.5 and Alexander's theorem ($f \in K_0 \iff zf' \in S_0$).

Theorem 2.6. If $-1 \leq \alpha < 1$, then $UCV(\alpha) \subset K_0$.

If (2.7) takes a value $\alpha < 0$ for some γ then $g(\gamma)$ is no longer convex, but the value of α in a sense measures how much the tangent of $g(\gamma)$ is allowed to turn back. However, if this α is not less than -1 Theorem 2.6 states that the corresponding function g will still map complete circles in U to convex curves.

In the case $\alpha = 0$, which is our former class S_p , the Caretheodory function mapping U onto the parabolic region and 0 to 1 is the function P(z) in (2.1). For $\alpha \neq 0$ we get similarly

(2.8)
$$P_{\alpha}(z) = 1 + \frac{2(1-\alpha)}{\pi^2} \left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^2$$

Finally we mention that all the classes $S_p(\alpha)$, $-1 \le \alpha < 1$, consist only of functions that are bounded in the unit disk. We proved this in the case $\alpha = 0$ in [4] (as mentioned after the proof of Theorem 2.3), and this proof can also be translated to the case $\alpha \ne 0$ without problems using P_{α} in (2.8) instead of P. The idea of the proof in [4] was to let $r \rightarrow 1$ in the right hand side of (2.3). In the same way we can get the Koebe constant in $S_p(\alpha)$. This will give

Theorem 2.7. Assume $-1 \le \alpha < 1$. (a) If $f \in S_p(\alpha)$ then

$$\left|\frac{f(z)}{z}\right| \le \exp\left(\frac{14(1-\alpha)}{\pi^2} \zeta(3)\right)$$

for |z| < 1. The bound is sharp. $(\zeta(t) \text{ is the Riemann zeta function.})$ (b) $\mathcal{K}(S_p(\alpha)) = e^{(1-\alpha)\mathcal{I}} = (0.53399...)^{1-\alpha}$.

Note as an example that $\mathcal{K}(S_p(-1)) = 0.2852... > \frac{1}{4} = \mathcal{K}(S_0)$ which fits nicely in with the inclusion in Theorem 2.5.

REFERENCES

- Goodman, A. W., On uniformly convex functions, Annales Polonici Mathematici LVI.1 (1991), 87-92.
- [2] Ma, W., Minda, D., Uniformly convex functions, Ann. Univ. Mariae Curie-Sklodowska, Sec.A (to appear).
- [3] Robertson, M.S., On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
- [4] Rønning, F., Uniformly convex functions and corresponding class of starlike functions, Proc. Amer. Math. Soc. (to appear).
- [5] Ruscheweyh, St., Convolutions i Geometric Function Theory, Sem. Math. Sup. 83, Presses Univ. de Montreal, 1982.
- [6] Study, E., Konforme Abbildung Einfachzusammenhängender Bereiche, Vorleaungen über ausgewählte Gegenstände der Geometrie, Heft 2, Leipzig Berlin, Treubner (1913).

STRESZCZENIE

W pracy tej kontynuowane są badania funkcji gwiaździstych f klasy S_p , dla których wyrażenie zf'(z)/f(z) zawiera się, przy z należącym do kola jednostkowego, w części prawej półpłaszczyzny ograniczonej parabolą. Dla klasy tej otrzymano pewien rezultat dotyczący spłotu oraz wyznaczono stałą Koebego. Wprowadzono również pewne uogólnienie klasy S_p i otrzymano kilka wyników dotyczących tej uogólnionej klasy.

(received February 12, 1992)