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Approximation of the Hersch-Pfluger Distortion Function.
Applications

Aproksymacja funkcji znieksztalcenia Herscha--Pflugera.
Zastosowania

Abstract This paper aims at giving a number of applications of an approximation method
of the distortion function ® . As a result some new bounds for the functions p_l , A and g are
established. Moreover, the error in the approximation of functions mentioned above is given which
is helpful for numerical calculations.

0. Introduction. In the theory of plane quasiconformal mappings the function
® i defined as follows

(0.1)  ®k(r)=p"'(u(r)/K), 0<r<l,K>0, &x(0)=0, &x(1)=1,

plays an important role. Here u stands for the module of the Grotzsch extremal
domain B? \ [0, r] and it can be expressed in the form

IKJ(\/I——?)

(0.2) pr)=3 S

0O<r<l,

where

1
K(r) = / dz

o (1 -2?)(1-r2z2)

is the elliptic integral of the first kind. The function @y is called the Hersch-Pfluger

distortion function, cf. [4), and it was studied by many mathematicians. Recently

Anderson, Vamanamurthy , Vuorinen , cf. [1], [9), [10], and Zajgc , cf.

[11], [12] obtained many interesting results concerning the properties of the function
®x and its estimates. Lt

In the paper [8] the functions ¢ k¢, @ k¢, ¥kt ¥k ¢, depending on a real param-

eter t > 1 were introduced, see (1.1) and (1.3). It turns out that these functions are

monotonically convergent to $x as t — oo, cf. {8, Theorem 1.3, Corollary 1.4}, and

the convergence to the function ®y is very fast, cf. [8, Theorem 1.5, Corollary 1.6].

In the section 1 of this paper we complete those considerations. We also examine a

, 0<r<l1,
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pair of sequences Y k,¢, Pk, ¢, t = 2", n =0,1,2,... and we establish Theorem 1.2 and
Corollary 1.3 which give their deviation from the function ® . Since the function x~!
and the distortion function ), cf. [6], 5], introduced by Lehto, Virtanen and Vaisala
in [7] can be expressed by means of the function ®x, see (2.1) and (2.3), we can apply
results from the first section to approximate them, cf. Corollary 2.1. This way we
establish in the second section new upper and lower bounds for the functions u~!,
cf. Theorem 2.2, and )\, cf. Corollaries 2.3, 2.4 which improve some recent results
obtained by Anderson , Vamanamurthy , Vuorinen (1], [9], [10]. We also
apply results from the first section to estimate the module function u but in a slightly
different way. Theorem 2.5 improves some results from (1}, (2], [3], [9], [10]. The last
section 3 is devoted to numerical applications of Theorems 1.1 and 1.2. We study the
error of the approximating sequences Yk 2n, ¥k 27, n = 0,1,2,... for the functions
&k, = and A. It turns out, in view of Theorem 3.1 and Corollaries 3.2, 3.3 that
the approximation methods mentioned above can be used for the calculation of the
values of ®x, u~! and A by a computer. It is worth mentioning that the techniques
developed here and in [8] are alternative to those used by Anderson, Vamanamurthy
and Vuorinen in papers refered to.

1. The main approximation results. In the paper (8] the following functions
PK,t VK,ty Pk, and Y ¢, t > 1, were introduced. We remind below their definitions
for the convenience of the reader.

(1.1) ¢kt =R0opg10® and Yk =R 0¢Yx, 09,
for any K > 0 and t > 1 where .
(12)  pra(z)=2"% and Yx.(z) =min{4""VK/K 1} 0<z<1.
and
(1.3) Fra=hopyx.oh, bre=hop koh, K>0,t>1
where h(z) =(1-z)(1+z)"',0<r < 1.
Some important facts about these functions were established in [8, Theorems 1.3,

1.5 and Corollaries 1.4, 1.6], but for the convenience of the reader we collect them
into the following

Theorem 1.1. For every K > 1 (0 < K < 1) the functions gk ((2), Gx.«(z) of
a real parameter t 2 1 are increasing (decreasing), resp., whereas Yy ((z), J;K'.(z) are
decreasing (increasing), resp., where z is any fized number between 0 and 1. Moreover,
forany0<z<land K>0
dim ¢k () = lim G o(2) = lim dxz) = lim Py (z) = S (2)

and the following estimates hold

(1.4) (=2 1K)y an(z) S Bk(z) S YKan(z), n=2,3,4,...
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(18) 0< dxan(z) - Bx(z) S 2 = h(@)*™")"¥*" —1)hK(z), n=1,2,3,...
as K > 1 and
(18)  xan(z) S Ok(z) S Q-2 ) VK ypan(z), n=1,2,8,....

(1.7)
0 < Bx(z)Pxae(2) S 2(1-h()¥*"*' Y 1) min {4 KhK(2),1}, n=2,3,4,...

as0< K <1.
Now we shall prove a result complementary to (8, Theorem 1.5

Theorem 1.2. Forany0<z<1andn=0,1,2....

(1.8) eran(z) < YKan(z) < 4(’_1/K)’-.¢K,z.~(z) as K>1
and
(1.9) QU1K 4 an(2) < YK an(z) SPKan(z) s 0< K <1

Proof. Let K > 1 be fixed. Obviously for any 0 < z <1

Yra(2) _ -k
ehy) PR AN |

If n=0,1,2,... is arbitrary then by Theorem 1.1 and the equality

2r
11 =
(1.1) ®a(r) 141’ 0<r<li

we obtain

= Prann(3) | (P2 (®1/2(2)  \Pxan(®1/2(2)
L+ exar(ip@)Y | (wx,,-(x)\"’
\ T bra @ @)) = oo, \okcan(a))

Hence and by (1.10) we conclude that the inequality (1.8) holds. In a similar way we
arrive at the inequality (1.9) which ends the proof.

| < Yran(@) _ ®a(¥xan($12(2))) /!bl\’.r'(q’l/z(’)))lﬁ

As shown in (1]
(1.12) °|/K=h0@;\'0h, K >0,

80 in view of the above theorem we easily obtain a result complementary to [8, Corol-
lary 1.6)
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Corollary 1.3. Forany0<z<1andn=0,1,2,...
(1.13) 0 < xan(z) — Fran(z) 201 - 40K ")hK(z) as K > 1
and

(1.14) 0 < Fxan(z) — Pran(z) <2477 —1)h¥(z) as 0< K <1

Proof. Let K > 1 be any fixed number. By the inequality
|h(z) - h(y)| <20z -yl, 0<Szy<1,
the equalities (1.2), (1.3) and the estimate (1.9) we get for any 0 < z < 1

VK an(z) = Fran(z) = howy k.an 0 h(z) — h oty ke 0 h(z)
< 2Ap1/k . (M(z)) — ¥a/k a7 (R(2)))

< 21— 407K ) g an(B(2)) < 2(1 — 40 R0 )pK(g)

because of Theorem 1.1. This proves the inequality (1.13). In a similar way we derive

the estimate (1.14) and this ends the proof.

2. Estimates of the function ™!

» Ay g« In [8] we have given some estimates

by elementary functions of the distortion function ®x as a consequence of [8, Theorem
1.3, Corollary 1.4]. For this cf. [8, Theorems 2.1, 2.2]. In this section we shall establish
the estimates for the familiar functions u~!, A, 4 by elementary functions.* Since
these functions can be expressed by means of the function #) so we may apply
Theorems 1.1, 1.2 and Corollary 1.3 to approximate them. Namely, it follows from

the equality (0.2) that u(1/v/2) = 7/2. Hence and by (0.1)

(2.1) p'l(%r) = @,;,(:}_-5) , r>0.

Moreover, by an equality shown in [1]

(2.2) ‘b;\‘(z)"“b?/k(Vl—:?): 1

and by the following formula, cf. [1],

_ /2
(2.3) Ar) = _—_Qf/r(l/\/i)
we get
o RTE R CE R

*11~" denoten here and further on the inverse function to I
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and
(2.5) —IJ—:—T—T) =Q1/,(71§.) =u-l(%r) S in 150

As a direct application of Theorem 1.1 to the equalities (2.1) and (2.8) we derive

Corollary 2.1. For everyr 2 1 (0 < r < 1) the functions |p,/,',(l/\ﬁ),
J;,/..',(l/\/i) of a real parameter t 2> 1 are increasing (decreasing) whereas
qpu,l,(lfﬁ), $(1/v/2) are decreasing (increasing), respectively. Moreover,

u—‘(%r) = 71—\%_7\_27) = ,_l,iglmw/r,.(%) = lim &/t (\/ii) -
= ,_l,’i“m'/h/rc(\}i) = '__‘_H”!l’n/u(\;é)

Setting t = 2", n = 0,1,2,... we derive in view of the above corollary the

following estimates
()}
0O<r

“-1( ) m {'/);/rz (7‘) J;/vﬂ
} e

(2.6) l ]
B ( ) mu{m/m(-\/—i).m/m(j-) R |
and
(7 _ 1 . i, 1
ik Iz (5") = W < mm{wn/r.zn (_E)V‘Pl/rﬂ“ (75)}

p! (gr) > m&x{tbx/m- (—}—i).%r,zn (%)} asr 1,

expressed thanks to (1.11) by elementary functions, and the accuracy grows step by
step as n increases to infinity. In particular for n = 2 we get

Theorem 2.2. If0<r <1 then
(28) f0V) s w7 (5r) S f@=r iy

where f(z) = ho®y(z) = (Vi+z - YAz (VT+z + Var)™?, 0 <z <1 and
p=®,/; 0 h(1/v2) = 0.0000139494. If r > 1 then

(29)  VI=F =) = &u(4' =) S w7 (37) S VIS F(PT) = @u(p7) -

Proof. Setting n = 2 we conclude by the inequality (2.6) that for 0 < r <1

ﬁ;l/r.A(\%) < p"(%r) < 5.;._4(\’%) :
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But G1/ra(2) = f((f(2))/) and ¥y 4(z) = F(4'7/7(f(2))"/") because of (1.2),
(1.3) and (1.12) which proves the inequality (2.8). The next bounds (2.9) immediately
follow from (2.8) and (2.4).

For r close to 1 the bounds (2.8) and (2.9) are quite precise, see Corollary 3.2.
The equalities (2.5), (1.11) and the inequality (2.9) lead directly to

Corollary 2.3. For any r > 1 the following snequalities hold

(2:10) Ar) € < (04(4"' )+ ;-(T,l_—,;,:;) - % = ;@%ﬂ -1
(2.11) A(r) 2 (04(}’ )+ Dp )\I i % i ﬁ:?; i

From the above inequality we shall derive a slightly more convenient estimate.

Corollary 2.4. For any r > 1 the following inequalities hold

(2.12) AMr)-1< A((%)"l -1)-B(1- (g)m)
where -
A= ”—32—¢;/’(p) % 0.723142
and
1 e (1 1-%:(p) _1-p 1 1-p 1)
2(1+ 0:(p)* 0} (p) 0427~ B(14ppa(p) ' 32 o
% 0.0265396 .

On the other hand

2%3(p) n o 2%(p)
(2.13) Ar)-12> %(p—p ), 33“(7) 3 24068.9

where p is the constant from Theorem 2.8.

Proof. Assume that a, b are arbitrary numbers such that 0 < a < b < 1. It
follows from (1.11) that

1-b 1-b
@3(b) = ¥a(a) > 2“—+5—),(v’5— Va) > ArnAt-

Hence

— ®4(b) =

2. 4 = P4\a) 2
(2.14) D(b) — Pu(a) 22 (1+¢2(b)),°1/2(b)(1+b

),\\/_ Va)
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and

$,(b) - 4’2(a) 1-b

/2,5y &1/2
(2.15) ®,°(b) — 9" (a) 2 2017 (3) (1+b)2¢‘/’(b)

(Vb - Va).

Moreover, in view of (1.11), we get

(2.16)
®;'?(a) - 2,7 (b) <

o' (@) -9 1oy,

-113( )+¢"'”(b)_4 ®, ()(‘/— ‘/;+~/--'\/-)

Setting b = p, a = 4'~"p", r > 1 we obtain by virtue of Corollary 2.3 (2.10) and
(1.11) that

,\(r)-1<1(<m(a) "l“"*@lta) hl(”)

—-m(a) ®(b) + 2 (@”’( )= 832 (8)) + = 587" (a) - #7'2(b)) .

This and the equalities (2.14), (2.15), (2.16) yield the equality (2.12).

On the other hand, it follows from (1.11) that the function ®; is concave. Hence
the function @3 is concave as well, see also [1], which yields the convexity of the
function ®; 2. This and the inequality (2.11) from Corollary 2.3 prove the inequality
(2.13) which ends the proof.

Now, we shall estimate the module function u defined by the equality (0.2). To
this end we shall apply the asymptotic behaviour of u near 0 given by

(2.17) lit‘x,1+(p(r) +logr) = log4 ,
cf. [6]. From (2.17) and by the equality
u(®y k() = p(p™" (Kp(r))) = Ku(r)

we have forany r, 0 < r < 1

3 1

0= lim_ R(u(‘l’n/K)) +log @k (r)) =
. 1
= lim_ (w(r) + — 108 ®y/k(r)) = u(r) + (hm o log @y k(r) -
Thus
; 1

(2.18) u(r) = - Kl_ﬂxm T log®y/k(r), 0<r<i.
Suppose ¥, and ¢y, 0 < t < 1, are arbitrary mappings of the interval [0, 1] into itself

such that
Po(r) S B(r) €pe(r), 0<t<1,0<r<1.
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Hence for every n =0, 1,2,...
(2:19) ®an0hpr 0@y an(r) S Be(r) S Pan 00 Pypan(r), 0<t<1,0<r<1.

Then keeping n fixed we derive from the inequality (2.19) and the equality (2.18) that
forany0<r<1

X 1
u(r) 2 - xl_l_lfw K log @20 (p1/K © ®1/2+(r))

ll 2(®;3n-1(p1/Kx °°1/:-(")))'/’
K—+o00 K 1+ @g--n(m/x 0 ®y/3n(r))

. 1

= - KI_{TN oK log Ban-1 (501/1( o @,/3-(1'))

=,.= KET 2"K log sk © @172 (r) .
Similarly

. 1

u(r) < - KET.» 4 log ¥1/K © @y/2n(r) .

Thus setting for any fixed m = 1,2,...
pe(r) = (1 =r" )27 gy g (r) Ye(r) = Py am(r)

we obtain by virtue of Theorem 1.1 and (1.1), (1.2) the following bounds

x 1
u(r) € - hm ﬁ log ¥1/k,2m © ®1/2~(r)

= K_li& ""K log ®2m 0 ¥y /x 1 © By p3m 0 B /3 (r)

= — Kli&:m ﬁ- log ®2m (¥1/k,1 © By 3mea(r))

. 1 2("1--‘(0'»'1;1( 1 °¢lf:'~"(")))lﬁ
Y H L
K=Foo 27K 5 14 Bam-1 (Y171 0 B1jamen(r))

. 1
= - Kl_l.liloo m log ®3m-1 (¢1/K.1 ° ‘1’1/:""*" ("))

. 1
5oy W KI-“TM 2"_+"._K- l084l K01/2m+n(r) 108 4¢l/2,,,+,,(r)

and hence

. 1
p(r) 2 - “!}g}m ﬁ logpy/x 0 ®y/3n(r)

=k 2"}{ log(1 = (®1/2+(r))*™"" )= K727
_“l-i."-m 2" lOS'/)l/K 2m 0¢l/2,(r)

=g 1081 = (810 (F™) 4 o 9849 (1)
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This way we have proved the following

Theorem 2.5. Foranyn=0,1,2,..., m=1,2,... and 0 < r < 1 the following
bounds hold

1

0< 2—,,}"—, log A8}y a(r) = H(r) S =3 1081 = (B1/an()2™") .

The above estimates are improvements of the classical bounds for the function u
given in [6]. They improve as well recent results of Vuorinen, Vamanamurthy
and Anderson, cf. [1], [3], [9], [10]. Setting, for example, n = 0,1 and m = 1 we
obtain by Theorem 2.5 the following inequalities

;.
Oslosu—r-)—u(r)s—%los(l—r‘)
and
1. 20+VI=r)(1+ V1=-17)? 1 _ . \
0< 2105 r2 "l‘(")S 4l°8(l (1+\/i——72‘)’} ’

respectively, where r ranges from 0 to 1.

3. Numerical applications. The functions ¢ xa~, Yi2~, PK.an, JK_,-,
n =012,...,, K > 0, can be applied for numerical calculations of the function
®x (and also of u~! and A because of (2.5)) with an arbitrarily preassigned accuracy.
In this section we shall estimate the error of the approximation as an application of
Theorems 1.1, 1.2 and Corollary 1.3.

Theorem 3.1. If K > 1 and p is an arbitrarily fized number such that
h(v0.1) < p < $3(0.1) then

(31) 0 S d)K'zn(.‘l‘) - <I’K(z)
< min{( & )’"“/K 411K (4(1-1/K)3™" _ l):'/"'} < (0.1)2"/K
¥ 141 =22 Y
as0<z<pandn=203,... but
(3:2) 0< Pxan — Bx(2) < min3h(z)™*" 201 - 40-K1 " )K(2)} < 3. (01"
asp<r<landn=1,23,...
Proof. By the equality (1.11) we have

49, /2(2) = 4®y 30 D) p(2) 2 "?:/.(1) , t21,0<z<1.
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from which

Yak, © ®1y24(2) = min{4"1/"(0:;:f(z), l} > min{4l"/K 0:;‘"(:), 1} >
2vkao®ipu(z), t21,0<z<1.

Hence for every ¢, K 21 and0<z <1
YK,(z) = oo 0 Dy /(z) S Beovany 2 Dyjae(2) = Yok, (B1/a(2)) -
Then, applying (1.4) we get for any n =2,3,...

0 < Ykan(z) ~ Bk(z) < Yak,a~(P1/2(2)) — B2k (®1/2(2))
< (@1/2(2))*"" ¥ Yagc an (81 2(2)) < (B12(2)* /% < (0.1)" /% as0<z<p.

On the other hand, taking into account (1.8), we obtain the inequality (3.1). Now, we
prove the second inequality. Let ¢ = 2™"K where K > 0, n = 1,2,... are arbitrarily
fixed. Setting r(g,v) = 2((1 — v)~* — 1)v?/? we get by (1.5)

(3.3) 0 < PK.an(z) — k(z) S (g b)), 0<z<1.

If0<q<1then

1 \ 2v9/2
(3.4) r(g,v) < 2(1—_-; - 1ot = ]

v<3vasv<O0.1.

If1 <q<2then

(3.5) r(q,v)$2((l—_1;)—’—1)v'/’ < %ﬂvs2vuv50.l.

If ¢ > 2 then

(36) r(q,v) < 2oy T iy

All these four inequalities (3.3)-(3.8) give after a substitution v = h(z)*""" the fol-
lowing estimate

v?/3 2 v!/? \e-2 2
(1_”) ~v5mvs3vuvso.l.

0 < Pran(z) — Pk(z) < 3h(z)" " map<z <.
This together with (1.13) proves the inequality (3.2) and ends the proof.
From the above theorem and the equalities (2.1), (2.4) we derive
Corollary 3.2. If0 < r <1 then for everyn =1,2,3,...

(3.7) 0< ¥y jpam (%) _ (;-r)
< min{3(s/§— 1)2"‘""2(1 A 4(I—I/r)2'”)(\/§ 1y l)’/r} <3. (\/5 _ 1)2"‘"
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whereas for r > 1

(38) 0<u™ (%f) - (‘ . 33-1'(%))

< 9r-1/2 min{3(\/§ ) l)i‘*’-r+l'2(l ar 4(!—1‘)2"‘)(\/5 - l)wn} a

1/2

Proof. The inequality (3.7) is an immediate consequence of (3.2) and the equal-
ity (2.1). Assume that r > 1 is arbitrary. By (1.2), (1.3) and Theorem 1.1 we obtain
for any n = 1,2,...

(3.9) 1 _ 1 _1
TT1=92.(1/V2)  hovran(1/V2) (1+¢,,,-(1/f))’

1 1
'l’n/rz-(h(l/\/-)) (1 +1/V2p <3

Since, in view of (2.4) and (3.7),

@10)0<u” (3r) - (1- ¥ (‘L@))"’
$220(1/V2) = (u~" (x/2r))? %E(l/\/_) B I("/2')
\/1—(p"(x/2r))’ + \/1 G (1/VE) \/l - ¥2,.(1/V2)

n =1,2,..., so applying the inequalities (3.7) and (3.9) we obtain the inequality (3.8)
which ends the proof.

4r(\/'_1)1 -3 .

The equality (2.3) implies A(1/r) = 1/A(r), r > 0, 80 in the following corollary
we may restrict ourselves to the case r > 1.

Corollary 3.3. For anyr2>1andn=1,23,...

(311) 0< (1=, (é))-' ~1=X(r)
<2. 4rem(r-1/7) min{3(\/§— 1)2""'+2—2r f 2(\/5 - 1)2(1 - 4(l—r)2"‘)} .

Proof. It follows from (2.2) and (2.3) that
®21/V2) V2 1 b
Gy A= ¥, 08 - T-eavD e T .
This and (3.2) imply
1 T ¥220(1/V2) - 93(1/V2)
1-92,.(1/V?2) (1 - 92,.(1/V2)(1 - 92(1/V?2))

'l"rl"(l/\/_) r(llf) ()
" 1- r2"(1/\/-)

(313) 0<
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Since A(r) < e™™=1/7) cf. (1], we derive by (3.7) and (3.9) the inequality (3.11),
which ends the proof.

Corollary 3.3 shows that the above considered approximation of the function A
is good rather for small r, i.e. 1 < r < 10. Therefore the estimate (3.11) completes,
in the case of small r, the following estimate, cf. [1],

1 1
&g 2
Alr) € T 2 + &8(r)

where e™"" < §(r) < 2¢~"".
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STRESZCZENIE
Celem pracy jest podanie szeregu zastosowaih metody aproksymacji funkeji dystorsji @ jc. W re-

sultacie usyskano nowe oesacowania funkeji ﬂ-l, A, p. Ponadto podano blyd wspomnianej wyiej
aproksymacji, usytecsny w oblicseniach numerycsnych.

(received May 7, 1892)






