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An Internal Geometric Characterization of Strongly Starlike Functions

Wewnętrzna charakteryzacja geometryczna funkcji mocno gwiaździstych

Abstract. The authors prove that a univalent function f is strongly starlike of order a if 
and only if for every W € /(D) a certain lens-shaped region with vertices 0 and W is contained 
in /(D). They also obtain sharp estimates for both the coefficient functional |<J3 — | and the
quantity |Arg{/(z)/z}| for the family of strongly starlike functions of order Q.

1. Introduction. A holomorphic and univalent function / defined on the unit 
disk D = {z : |z| < 1} is said to be strongly starlike of order a, 0 < a < 1, if / is 
normalized by /(0) = /'(0) — 1=0 and satisfies

We denote the set of all such functions by S'(a). This class was introduced by 
Brannan and Kir wan [2], and independently by Stankiewicz ([8], [9], [10]), 
who called functions in the class a-angularly starlike. Brannan, Clunie and 
Kir wan [1] gave sharp upper bounds on the second and third coefficients of functions 
in this class. In general, sharp coefficient bounds for this class remain open. In [2] 
Brannan and K i r w a n obtained a geometric condi t ion .which they called ¿-visibility, 
which is sufficient for / € S*(a). Precisely, they proved that if / is holomorphic and 
univalent in D, normalized by /(0)=/'(0) — 1 = 0, and for every r, 0 < r < 1, 
and every point u e /({z : |z| = r}), the set A(w,ó(r)) C /(|z| < r), then 
/ € S*(a). Here A(w, ¿(r)) is the closed convex hull of the union of the circle 
{w : |w| = ¿(r)} and the two line segments from w which are tangent to this circle 
and ¿(r) = cos(ira/2)max{|/(z)| : |z| = r}. Stankiewicz [9] presented an external 
geometric characterization of strongly starlike functions; it says that a normalized 
holomorphic and univalent function / belongs to the class S*(a) if and only if ev­
ery point w € C \ /(D) is the vertex of an angular sector with opening of measure
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(1 — a)7r/2 which is contained in C \ /(D) and bisected by the radius vector through 
w. He obtained sharp growth and distortion theorems for the family S*(a).

S* = S*(l) is clearly the well-known class of normalized starlike functions. 
There is a simple, internal geometric characterization of starlike functions. A starlike 
function / is defined to be a univalent function such that /(D) is starlike with respect 
to the origin; this means that the line segment [0, to] between 0 and w is contained in 
/(D) for every w G /(D). Note that every strongly starlike function of order a also 
has this simple geometric property, but this condition is not sufficient for a function 
to be strongly starlike of order a when a < 1. The main purpose of this note is to give 
a simple, internal geometric characterization for strongly starlike functions of order a 
that is a natural refinement of the ordinary notion of starlikeness. Roughly speaking, 
we prove that a univalent function / is strongly starlike of order a if and only if for 
every w 6 /(D) a certain lens-shaped region with vertices 0 and w is contained in 
/(D). We also obtain sharp estimates for both the coefficient functional |aj — paj| 
and the quantity |Arg{/(z)/z}| for the family S*(o).

2. The classes of fc-starlike regions and functions. In order to introduce 
the concept of fc-starlikeness, we define certain standard lens-shaped regions. For 
0 < k < 2, we denote by Ek = 15* [0,1] the intersection of the two closed disks of 
radii 1/k both of which have 0 and 1 on their boundaries. When k = 0, we define 
Eo = -E7o[O,1] to be simply [0,1], the straight line segment between 0 and 1. This 
type of lens-shaped region plays an important role in the study of euclidean k-convex 
functions ([6], [5]). Also, for each complex number w, we set wEk — {wr/ : rj 6 £*}. 
A geometric property of the lens-shaped regions Ek will play an important role in our 
later work. Note that as the point z traverses the upper half a of the boundary of Ek 
in a counterclockwise direction from 1 to 0, the angle between the vector iz (which 
is a normal vector to the radial vector from 0 to z) and the tangent vector to a at z 
increases strictly. The maximum value x/2 occurs at the origin, while the minimum 
value arccos(fc/2) is achieved at 1.

For k € [0,2] a region ft in the complex plane that contains the origin is called 
fc-starlike (with respect to the origin) if for every weft, wE* C ft. Thus, a 0-starlike 
region is just an ordinary starlike region while for k > 0, a ¿-starlike region contains 
the lens-shaped region wEk joining 0 and w rather than just the line segment [0, w] 
for every w G ft. Observe that if 0 < k' < k < 2 and ft is fc-starlike, then ft is also 
¿'-starlike since E'k C Ek- If ft is ¿-starlike for some k G [0,2], set

¿(ft) = supffc G [0,2] : ft is ¿-starlike } .

Note that any disk centered at the origin is 2-starlike. A conformal mapping / of the 
unit disk D onto a region ft with /(0) = 0 is called ¿-starlike if ft is ¿-starlike. In 
this case we set k(f) = k(Q). The hereditary property of starlike functions extends 
to ¿-starlike functions.

Theorem 1. Suppose f : D —» ft, /(0) = 0, is a k-starlike conformal mapping. 
Then for every r G (0,1), the region f({z : |z| < r}) is k-starlike.

Proof. Fix r G (0,1) and set ftr = /({z : |z| < r}). For each w G ftr we want 
to show that wEk C ftr. Note that for each rj G Ek and all w G ft we have rjw G ft.
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Therefore, h(z) = /-1 (»?/(«)) is holomorphic in D with h(0) = 0 and h(D) C D. 
Schwarz’ Lemma implies that h maps {z : |z| < r} into itself. Hence, »/ftr C ftr. 
Since rj € Eh is arbitrary, we conclude that EiSlr £ ftr- In particular, wEk C ftr, so 
ftr is fc-starlike.

3. An internal geometric characterization. To state our main result, we 
introduce some notation and terminology. First, for a function f starlike with respect 
to /(0) = 0, not necessarily normalized by /'(0) = 1, we define

a(/) = sup{^|Arg{^}|:zeD}.

Starlike functions are characterized by Re{z/'(z)//(z)} > 0, z € D, so it makes sense 
to use the principal branch of the logarithm. It is obvious that 0 < <*(/) < 1, and 
a(f) = 0 if and only if /(z) = cz, where c is a non-zero constant.

Now we are ready to state our main result.

Theorem 2. Suppose f is starlike with resvcct to /(0) = 0 in D. Then a(f') = o 
if and only if k(J) = 2cos(ira/2). Consequently, S*(a) = {f ■. f is holomorphic and 
univalent in D with normalization /(0) = /'(0) — 1 = 0 and for every w € /(D), 
wE* C /(D)}, where k = 2cos(7ra/2).

Proof. First, we shall show that

«(/) < -arccos(^y^) .
TT £

Without loss of generality we may assume that k(f) > 0. Actually, it suffices to show 

|Arg{i/(z?}| “ aiccos^ € °)

for any value k > 0 such that ft = /(D) is l’-starlike. This inequality trivially holds 
at the origin. Fix a € D\{0} and set r = |o|. Theorem 1 implies that /({z : |z| < r}) 
is fc-starlike. A simple limit argument then shows that f(a)Ei, C /({z : |z| < r}). 
This implies that the tangent fine to the starlike curve 7 = /(|z| = r) at /(a) cannot 
intersect the interior of f(a)Eit. Therefore, the angle between the tangent ta/'(a) 
to the curve 7 at /(a) (when 7 traversed in a counterclockwise direction) and the 
straight line T : w = (1 + t<)/(a), t 6 R (which is normal to the radial path from the 
origin to /(a) ), is less than or equal to arccos(fc/2). It is not difficult to show that

Therefore, we have established the desired inequality. 
Next, we established the reverse inequality

«(/) > - arccos(^P) , 

7T 2
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or equivalently,
&(/) > 2cos(^y^) .

In fact, it is enough to show that f is fc-starlike for k = 2coa(na(f)/2); we fix this 
value of k. Set a(f) = a. If a = 0, then /(z) = cz and k(f) = 2. So we only need to 
consider the possibility that 0 < a < 1. In this case zf'(z)/f(z) is nonconstant and 
we have

(z € D) .

FYom Theorem 1 it follows that f is a fc-starlike if and only if for every r, 0 < r < 1, 
and every w € /({z : |z| < r}), that wE* C /({z : |z| < r}), where k = 2cos(xa/2). 
If the function f were not fc -starlike, then it would follow that there exists r 6 (0,1) 
and a point w € /({z : |z| < r}) such that wE* is not contained in /({z : lz| < r}). 
However, since f is starlike, the curve 7 = /(|z| = r) is strictly starlike, so there exists 
j > 0 such that wEj is contained in f({z : |z| < r}). Let

J = sup{> : wEj is contained in f({z : |z| < r})} .

Then J < k and the boundary of wEj is tangent to the curve 7 at some point which 
is an interior point w = /(£), |(| = r, of one of the circular arcs bounding wEj. As 
we noted at the start of Section 2, the angle between the normal to [0,w] and the 
tangent to the boundary of wEj at u> is at least arccos(J/2). This implies that

J k
arccos — > arccos — =

2 2
ira 
~2 '

This is a contradiction, so f is in fact fc-starlike. The proof is now complete.

Note that our result implies the sufficient condition of Brannan and 
Kirwan [2] because f(z)Ei, C A(/(z), |/(z)| cos(7ra/2)) C A(/(z),6(r)) follows 
from k = 2cos(7roi/2).

4. Sharp bounds on |<J3 — Maal ®nd |Arg{/(z)/z}|. Define the function ka on 
the unit disk by ka(0) = fc[,(0) — 1=0 and

ka(z) \l-z) ’

Then it is clear that ko € S*(a) and

For many extremal problems for the class S*(o) this function plays the role of Koebe 
function (see [2], [9], [10]). Moreover, we define g\(z) and h\(z), 0 < A < 1, by 
<?a(0) = Z»>(0) = <75,(0) - 1 = h'A(0) - 1 = 0 and
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respectively. Then it is obvious that both g\ and h\, 0 < A < 1, belong to S*(a).

Theorem 3. £e</(«) = « d-aj«2 d-aj«3+ •••€ S*(a). Then we have the »harp 
bounds

f a2(3 - 4p), -oo < p < (3 - l/a)/4;
|a3 — I < < a, (3 - l/a)/4 < p < (3 d- l/a)/4;

( a2(4p - 3), (3 + l/a)/4 < p < oo.

For —oo < p < (3 — l/a)/4 and (3 + l/a)/4 < p < oo, equality holds if and only if 
f is a rotation of ka. If (3 — l/a)/4 < p < (3 d- l/a)/4, then equality holds if and 
only if f is a rotation of g\/2- For p = (3 — l/a)/4, equality holds if and only if f is 
a rotation of g\, 0 < A < 1. Finally, equality holds if and only if f is a rotation of 
hx, 0 < A < 1, w/ten p = (3 d- l/a)/!.

In the case a = 1, the bounds above were given by Keogh and Merkes [4].

Proof. First, we note that to prove the desired inequalities it is enough to 
show either Re{aj — pa$) or Refpa? — °j} has the given upper bounds. If /(«) = 
i + ajz3 +a3Z3 + • • • € S’ (a), then there exists a holomorphic function p with p(0) = 1 
and positive real part in D such that

Assume p(z) = 1 + biz + b^z3 + . We express Re{o3 — pa?} in terms of the
coefficients of p. It is easy to verify that

aj = o&i

and

so that

oj — + ~Q<(3a - 1)6?

a3 - pa] - ^(b, + ^(3a - 4pa - 1)6?) .

By the Herglotz representation formula for holomorphic functions on the unit disk 
with positive real part [7, p.40], there exists a probability measure i/(f) on [0,2?r] such 
that

Thus,

and

6„ = 2jf e~inidu(t) (n-1,2,...)

Re{a3 — pa2} =

cos(2<)d«/(<) + (3a - 4pa - l)^y cos(<)dt/(f)) ~ (^ 8in(f)dt/(<)) J).
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Now, we consider various cases according to the value of If /z < (3 — l/a)/4, 
then 3« — 4/za — 1 > 0 and

Re{a3 — /za2} < cos(2<)di/(<) + (3a — 4/za — 1)(jf cos(<)dv(t)^ J

, r2n r2" 1
< a| I cos(2t)di/(<) + (3a — 4/za — 1) / cos2(<)dz/(t) J < a2(3 — 4/z) .

The second case is n > (3 — l/a)/4, or equivalently, 4/za + 1 — 3a > 0. Then

{.** Z rin \21
— I cos(2<)dt'(<) + (4/za + 1 — 3a)^ f cos(t)di/(<)J J

, r2* r2* 1< a| — / cos(2<)di/(t) + (4/za + 1 — 3a) / cos2(<)di/(<) J

z2’
<a I [l + (4/za — 1 — 3a)cos2(<)]dz/(t) ,

which is less than or equal to a if fi < (3 + l/a)/4, and less than or equal to a2(4/z —3) 
if M > (3 + l/a)/4.

Now we determine all possible extremal functions. It is elementary to check that 
equality holds for those functions as stated in the theorem. Note that if equality holds 
in one of the inequalities for some /, then there is a rotation of f that is extremal for 
the functional Re{a3 — f/ajj or Re{/za2 — a3}.

Suppose — oo < fi < (3 — l/a)/4. If Re{a3 — /zaj} = a2(3 — 4/z), then we have

/ COS(2*)<M<) = (jf cos(f)di/(<)) = 1 ,

which implies that

Thus v = Xvq + (1 — A)i/k, where 0 < A < 1 and z/0 and i/w are point masses at 0 and 
tt, respectively. Therefore,

1 = ( / cos(<)di/(<)) = (2A - l)2 .

This implies that A must be equal to 1 or 0, that is, either v = i/0 or v = vK. 
Equivalently, /(z) = ka(z) or -ka(-z).

In a similar fashion, we can show the desired result when /z satisfies the inequal­
ities (3 + l/a)/4 < /z < oo.

Now assume (3 - l/a)/4 < /z < (3 + l/a)/4. If Re{/za^ - a3} = a, then

cos2(t)di/(t) = 0,
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which yields v = At/,,/2 + (1 — A)t/3fr/2, 0 < A < 1. Also,

0 = i sin(<)dt'(<) = A — (1 — A)

gives that A = 1/2, or equivalently, /(*) = —«ffj/ii»*).
If p = (3 — l/o)/4 and Re{a3 — pa2} = «, then

2r 2<r
1= / cos(2<)di/(<) = — 1 + 2 I cos2(f)dt/(<)

implies that v = Xvq + (1 — X)v„, 0 < A < 1. This yields /(s) = g\(z).
If p = (3 + l/a)/4 and Re{pa2 — a3} = a, then a = yRe{62 — 62}. Define q(z)

by q(z) = l/p(z) = 1 + cjz + c2z2 + ..., then q also has positive real part in D and 
c2 = b? — 62. We know that (for example, see [7, p.41j) Re c2 =2 if and only if

i(,)==Al±£+(l_A)Lzi , O<A<1.

Consequently, f(z) — h\(z). This completes the proof of Theorem 3.

Next, we give the sharp upper bound on |fliT&{f(z)/z}| for the family ^’(a). 

Theorem 4. Let f 6 S*(a) and |z| = r < 1. Then

lAr«{/(*)/*}| < max Arg{fca(*)/*) •
|«|=r

Equality holds for some |z| = r, 0 < r < 1, if and only if f is equal to ka or one of 
Us rotations.

Proof. If f € S*(o), then there exists a holomorphic function p(z) with p(0) = 1 
and positive real part in D such that

This implies that
/(z) = zexp|jf |[p(t)° - 1] dtj

and
Arg{/(«)/*} = Im|jf ^[p(0“ “ 1] <*<} •

Since p(z)a — 1 is subordinate to the convex univalent function — 1, we have
[3] (see also [7, p.50]) that the function
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is subordinate to
/&']*■*>•

Because zG'(z) is convex, we see that G(z) is convex; also, the power series for G has 
real coefficients. Thus, by using the subordination principle, we get

|Arg{/(z)/z}| < |lm{j‘ |[p(t)“ - l]dt}|

< max Im G(z) = max Arg{fco(z)/z} .
|»|=r l«|—r

When we used the subordination principle, the inequality becomes an equality only 
if p(z) is equal to for some 6 £ R, so equality can hold in our theorem only for
some rotation of ka(z). On the other hand, it is clear that the inequality becomes an 
equality for some |z| = r if f(z) is fco(z) or one of its rotations. This completes our 
proof.
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STRESZCZENIE

Autorzy wykazują, że funkcja jednolistna f jest mocno gwiaździsta rządu a wtedy i tylko 
wtedy, gdy dla każdego punktu W € /(D) pewien obszar o kształcie soczewki z wierzchołkami 0, W 
zawiera sią w /(D). Otrzymali oni również dokładne oszacowanie dla wspólczyników funkcjonału 
|«3 — ftcijl oraz dla wartoźci |Arg{/(«)/z}| w rodzinie funkcji mocno wypukłych rządu O.
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