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An Internal Geometric Characterization of Strongly Starlike Functions

Wewnetrzna charakteryzacja geometryczna funkcji mocno gwiazdzistych

Abstract. The authors prove that a univalent function f is strongly starlike of order a if
and only if for every w € f(D) a certain lens—shaped region with vertices 0 and w is contained
in f(D) They also obtain sharp estimates for both the coefficient functional a3 — pa;| and the
quantity |Arg{ f(z)/z}| for the family of strongly starlike functions of order a.

1. Introduction. A holomorphic and univalent function f defined on the unit
disk D = {z : |z|] < 1} is said to be strongly starlike of order a, 0 < a < 1, if f is
normalized by f(0) = f'(0) — 1 = 0 and satisfies

|Arg{’Tf££i))}| < % (:€D).

We denote the set of all such functions by S*(a). This class was introduced by
Brannan and Kirwan (2], and independently by Stankiewicz ([8], [9], [10]),
who called functions in the class a-angularly starlike. Brannan, Clunie and
Kirwan [1] gave sharp upper bounds on the second and third coeflicients of functions
in this class. In general, sharp coefficient bounds for this class remain open. In [2]
Brannanand Kirwan obtained a geometric condition, which they called §-visibility,
which is sufficient for f € S°(a). Precisely, they proved that if f is holomorphic and
univalent in D, normalized by f(0)=f'(0) — 1 = 0, and for every r, 0 < r < 1,
and every point w € f({z : |z| = r}), the set A(w,6(r)) S f(Jz| £ r), then
f € S*(a). Here A(w,é(r)) is the closed convex hull of the union of the circle
{w : |lw| = §(r)} and the two line segments from w which are tangent to this circle
and §(r) = cos(ra/2) max{|f(z)|: |z| =r}. Stankiewicz [9] presented an external
geometric characterization of strongly starlike functions; it says that a normalized
holomorphic and univalent function f belongs to the class S$°(a) if and only if ev-
ery point w € C\ f(D) is the vertex of an angular sector with opening of measure
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(1 — a)n/2 which is contained in C\ f(D) and bisected by the radius vector through
w. He obtained sharp growth and distortion theorems for the family S*(a).

S* = S$°*(1) is clearly the well-known class of normalized starlike functions.
There is a simple, internal geometric characterization of starlike functions. A starlike
function f is defined to be a univalent function such that f(D) is starlike with respect
to the origin; this means that the line segment [0, w] between 0 and w is contained in
f(D) for every w € f(D). Note that every strongly starlike function of order a also
has this simple geometric property, but this condition is not sufficient for a function
to be strongly starlike of order a when a < 1. The main purpose of this note is to give
a simple, internal geometric characterization for strongly starlike functions of order a
that is a natural refinement of the ordinary notion of starlikeness. Roughly speaking,
we prove that a univalent function f is strongly starlike of order a if and only if for
every w € f(D) a certain lens-shaped region with vertices 0 and w is contained in
f(D). We also obtain sharp estimates for both the coefficient functional |ay — paj|
and the quantity |Arg{f(z)/z}] for the family S*(a).

2. The classes of k—starlike regions and functions. In order to introduce
the concept of k-starlikeness, we define certain standard lens-shaped regions. For
0 < k < 2, we denote by Ey = E;[0, 1] the intersection of the two closed disks of
radii 1/k both of which have 0 and 1 on their boundaries. When k = 0, we define
Ey = Ey[0,1] to be simply [0, 1], the straight line segment between 0 and 1. This
type of lens—shaped region plays an important role in the study of euclidean k-convex
functions ([6], [5]). Also, for each complex number w, we set wE; = {wn : n € E;}.
A geometric property of the lens-shaped regions E; will play an important role in our
later work. Note that as the point z traverses the upper half o of the boundary of E;
in a counterclockwise direction from 1 to 0, the angle between the vector iz (which
is a normal vector to the radial vector from 0 to z) and the tangent vector to o at z
increases strictly. The maximum value 7 /2 occurs at the origin, while the minimum
value arccos(k/2) is achieved at 1.

For k € [0,2] a region Q in the complex plane that contains the origin is called
k-starlike (with respect to the origin) if for every w € Q, wE; C Q. Thus, a 0-starlike
region is just an ordinary starlike region while for k > 0, a k-starlike region contains
the lens-shaped region wEj joining 0 and w rather than just the line segment [0, w]
for every w € Q. Observe that if 0 < k' < k < 2 and Q is k-starlike, then Q is also
k'-starlike since E} C E;. If Q is k-starlike for some k € [0, 2], set

k() = sup{k € [0,2]: Q is k-starlike } .

Note that any disk centered at the origin is 2-starlike. A conformal mapping f of the
unit disk D onto a region 2 with f(0) = 0 is called k-starlike if Q is k-starlike. In

this case we set k(f) = k(2). The hereditary property of starlike functions extends
to k-starlike functions.

Theorem 1. Suppose f: D — R, f(0) = 0, is a k-starlike conformal mapping.
Then for every r € (0,1), the region f({z :|z| < r}) is k-starlike.

Proof. Fixr € (0,1) and set Q, = f({z: |z| < r}). For each w € Q, we want
to show that wEy C Q.. Note that for each n € E; and all w € Q2 we have qw € Q.
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Therefore, h(z) = f~!(nf(z)) is holomorphic in D with h(0) = 0 and h(D) C D.
Schwarz' Lemma implies that A maps {z : |z| < r} into itself. Hence, nQ, C Q,.
Since n € E, is arbitrary, we conclude that E;Q2, C Q,. In particular, wE, C Q,, so
1, is k-starlike.

3. An internal geometric characterization. To state our main result, we
introduce some notation and terminology. First, for a function f starlike with respect
to f(0) = 0, not necessarily normalized by f'(0) = 1, we define

21, 2f(2)
a(f) =sup{1r|Arg{ 5 }| :2€D}.
Starlike functions are characterized by Re{zf'(z)/f(z)} > 0, z € D, so it makes sense
to use the principal branch of the logarithm. It is obvious that 0 < a(f) < 1, and
a(f) = 0 if and only if f(z) = cz, where c is a non-zero constant.
Now we are ready to state our main result.

Theorem 2. Suppose f is starlike with resvect to f(0) =0sn D. Thena(f)=a
if and only if k(f) = 2cos(ra/2). Consequently, S*(a) = {f : f is holomorphic and
univalent in D with normalization f(0) = f'(0) — 1 = 0 and for every w € f(D),
wE, C f(D)}, where k = 2cos(ra/2).

Proof. First, we shall show that
a(f) < %uccos(k{—;-)) .
Without loss of generality we may assume that k(f) > 0. Actually, it suffices to show

2f'(z) k
IArg{T(zT}l < arccos(E) (zeD)
for any value k > 0 such that Q = f(D) is k-starlike. This inequality trivially holds
at the origin. Fix a € D\ {0} and set r = |a]. Theorem 1 implies that f({z : |z] < r})
is k-starlike. A simple limit argument then shows that f(a)E, C f({z : |z] £ r}).
This implies that the tangent line to the starlike curve y = f(|z| = r) at f(a) cannot
intersect the interior of f(a)Ex. Therefore, the angle ¢ between the tangent iaf'(a)
to the curve v at f(a) (when 4 traversed in a counterclockwise direction) and the
straight line I' : w = (1 +it)f(a), ¢t € R (which is normal to the radial path from the
origin to f(a) ), is less than or equal to arccos(k/2). It is not difficult to show that

o= |ane{ -

Therefore, we have established the desired inequality.
Next, we established the reverse inequality

a(f) 2 %a.rccos(-’fgiz) :
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or equivalently,
k(f)2 2cos(122£'f—)) J

In fact, it is enough to show that f is k-starlike for k = 2cos(mwa(f)/2); we fix this
value of k. Set a(f) = a. If a =0, then f(z) = cz and k( f) = 2. So we only need to
consider the possibility that 0 < a < 1. In this case zf'(2)/f(2) is nonconstant and

we have (2)
zf'(z o
IArg{ ) }l < ‘& (ze D).

From Theorem 1 it follows that f is a k-starlike if and only if for every r, 0 < r < 1,
and every w € f({z:|z] < r}), that wE; C f({z : |z| < r}), where k = 2 cos(ra/2).
If the function f were not k-starlike, then it would follow that there exists r € (0,1)
and a point w € f({z: |z| < r}) such that wE, is not contained in f({z : |z] < r}).
However, since f is starlike, the curve v = f(|z| = r) is strictly starlike, so there exists
J > 0 such that wE; is contained in f({z:|z]| <r}). Let

J =sup{j : wE; is contained in f({z:|z| <r})} .

Then J < k and the boundary of wE; is tangent to the curve 4 at some point which
is an interior point w = f(¢), (| = r, of one of the circular arcs bounding wE;. As
we noted at the start of Section 2, the angle between the normal to [0,w] and the
tangent to the boundary of wE; at w is at least arccos(J/2). This implies that
g J k  ra
IArg{C‘f (C)}l

2 8Iccos — > arccos — = — ,
f(<) 2 2 2

This is a contradiction, so f is iu fact k-starlike. The proof is now complete.

Note that our result implies the sufficient condition of Brannan and
Kirwan [2] because f(z)Ex C A(f(2),|f(2)|cos(ra/2)) C A(f(z),6(r)) follows
from k = 2 cos(ra/2).

4. Sharp bounds on |a3 — paj| and |Arg{f(z)/z}|. Define the function k, on
the unit disk by ko(0) = k., (0) — 1 = 0 and

k! (z a
za(z) +z)

Then it is clear that k, € S*(a) and

= [(29) 1))

For many e::tremal problems for the class $°(a) this function plays the role of Koebe
function (see (2], [9], [10]). Moreover, we define g)(z) and hy(z), 0 < A < 1, by
92(0) = hx(0) = g4(0) — 1 = K,(0) — 1'= 0 and

1 - z)"

zg&(z)= (/\ l+z+(l_
T

9x(2) ¥
zh)\(z) 142
h;\(z) 2 (A - +(1 v
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respectively. Then it is obvious that both gx and hy, 0 < A < 1, belong to S*(a).

Theorem 8. Let f(s) = 3+a32% +a32* +::- € S*(a). Then we have the sharp
bound
.y [0 e <nS - L
las — paj| < ¢ a, (3-1/a)/4 S p<(3+1/a)/4;
a?(4u—-3), 3+1/a)/4 < p<oo.

For —0o < p < (3—1/a)/4 and (3 +1/a)/4 < pu < oo, equality holds if and only if
f is a rotation of k.. If (3 — 1/a)/4 < p < (3 + 1/a)/4, then equality holds if and
only if f is a rotation of gy /5. For p = (3 —1/a)/4, equality holds if and only if f is
a rotation of gy, 0 < A < 1. Finally, equality holds if and only if f is a rotation of
hxr, 0SS A<, vhen y=(3+1/a)/4.

In the case a = 1, the bounds above were given by Keogh and Merkes [4].

Proof. First, we note that to prove the desired inequalities it is enough to
show either Re{a; — pa3} or Re{ua} — a3} has the given upper bounds. If f(z) =
z+a3x? +a3z®+- -+ € S°(a), then there exists a holomorphic function p with p(0) = 1
and positive real part in D such that

) _ e
i P

Assume p(z) = 1+ byz + byz? 4+ :-- . We express Re{as — pa}} in terms of the
coeflicients of p. It is easy to verify that

az = ab,

and . 4
ag = inb; + ;0(30 - l)bi
so that Y
a3 — pal = g'(bz + 5(30 - 4pa - l)bg) .

By the Herglotz representation formula for holomorphic functions on the unit disk
with positive real part (7, p.40], there exists a probability measure v(t) on [0, 27| such

that & -
p(z)::/; Hnm.
Thue,
am
by = 2A e Mdu(t)  (n=1,2,...)
and

Re{a; — paj} =

" con(2t)du(t) + (3a — 4pa — 1) [( ﬁ A co.(:)atu(:))3 = ( A i sin(t)du(t))’] }

2

a{ﬁ
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Now, we consider various cases according to the value of u. If u < (3 — 1/a)/4,
then 3a — 4pua — 1 > 0 and

Re{a; — paj} < Q{Lh cos(2t)dv(t) + (3a — 4pa — 1)(%2‘r cos(t)du(t)):}
< a{ L" cos(2t)dv(t) + (3a — 4pa — 1) j/:' cos’(t)dv(t)} <a®(3-4p).

The second case is 4 > (3 — 1/a)/4, or equivalently, 4ua + 1 — 3a > 0. Then

2

Re{paj — a3} < a{— jlc;" cos(2t)dy(t) + (4pa + 1 — 3a) (j{; . cos(t)du(t))z}

2n 2w
< a{— l cos(2t)dv(t) + (4pa + 1 — 3a) }{ cos’(t)du(t)}

in
fa [ [1 + (4pa — 1 = 3a) cos®(t)] dv(t) ,

Jo

which is less than or equal to a if 4 < (3+1/a)/4, and less than or equal to a?(4u —3)
ifu>(3+1/a)/4.

Now we determine all possible extremal functions. It is elementary to check that
equality holds for those functions as stated in the theorem. Note that if equality holds
in one of the inequalities for some f, then there is a rotation of f that is extremal for
the functional Re{a; — pa?} or Re{ua3 — a;3}.

Suppose —oo < p < (3 — 1/a)/4. If Re{a; — paj} = a?(3 — 4u), then we have

2

A " cos(2t)du(t) = ( A

2n

/ cos?(t)dv(t) =1.
0

Thus v = Ayg + (1 — A)ve, where 0 < A < 1 and vy and v, are point masses at 0 and
«, respectively. Therefore,

i cos(t)du(t))2 =1,

which implies that

bl

S ( L cos(t)du(t))! =22 -1).

This implies that A must be equal to 1 or 0, that is, either v = vy or v = v,.
Equivalently, f(z) = ka(2) or —kqo(—2).

In a similar fashion, we can show the desired result when u satisfies the inequal-
ities (3 + 1/a)/4 < p < 0.

Now assume (3 — 1/a)/4 < p < (3 + 1/a)/4. If Re{ua3 — a3} = a, then

2

/ cos?(t)du(t) =0 ,
0
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which yields v = Avy 3 + (1 — A)vapz, 0 S A < 1. Also,

0= [' sin(t)dv(t) = A — (1 - \)

gives that A = 1/2, or equivalently, f(z) = —ig,/2(12).
If p =(3-1/a)/4 and Re{a; — paj} = a, then

1= /Q'CO.(zt)du(¢)= a2 j{hcos’(t)du(t)

implies that v = Ayg + (1 — A)vy, 0 < A < 1. This yields f(z) = ga(2).

If p =(3+1/a)/4 and Re{uaj — a3} = a, then a = $Re{b} — b;}. Define ¢(z)
by ¢(z) = 1/p(z) = 1 + ¢;z + c32* + ..., then ¢ aleo has positive real part in D and
c3 = b} — b;. We know that (for example, see (7, p.41]) Re c; = 2 if and only if

142 1-2
1-)
1—z+( )l+z

q(z) =) , 0<A<L.

Consequently, f(z) = h)(z). This completes the proof of Theorem 3.
Next, we give the sharp upper bound on |Arg{f(z)/2}| for the family S$*(a).
Theorem 4. Let f € S*(a) and |z| =1 < 1. Then

|Arg{f(z)/2}| < fHtax Arg{ka(2)/2} .

Equality holds for some |z| =1, 0 < r < 1, if and only if f is equal to k, or one of
tts rotations.

Proof. If f € §°(a), then there exists a holomorphic function p(z) with p(0) = 1
and positive real part in D such that

off oy
fis) =P -

This implies that -
f(z) = zexp{.l %[p(t)“ -1] dt}
and

Arg{f(2)/z} = Im{l[ -:-[p(g)a -1] dt} !

Since p(z)* — 1 is subordinate to the convex univalent function ({-'l'_—})o — 1, we have
[3] (see also [7, p.50]) that the function

1 i
A S lp(t)" 1] at
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/ H( i’:: ~1]dt=G(s).

Because zG'(z) is convex, we see that G(z) is convex; also, the power series for G has
real coefficients. Thus, by using the subordination principle, we get

is subordinate to

|Acg{f(2)/}] < llm{/ [pt)” - 1] at}|
< max Im G(z2) = ma.x Arg{ka(2)/z} .

|3|=r

When we used the aubordination principle, the inequality becomes an equality only
if p(z) is equal to %f for some 8 € R, so equality can hold in our theorem only for
some rotation of k,,(z) On the other hand, it is clear that the inequality becomes an
equality for some |z| = r if f(z) is ko(2) or one of its rotations. This completes our
proof.
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STRESZCZENIE

Autorsy wykasujy, #e funkcja jednolistna f jest mocno gwiaddzista reedu a wtedy i tylko
wtedy, gdy dla katdego punktu w € f(ID) pewien obszar o ksztalcie soczewki s wierecholkami 0, w
sawiera si¢ w f(ID). Otrsymali oni réwniet dokladne oszacowanie dla wapélceynikéw funkejonalu
|as - ya%| oraz dla wartodei |Arg{ f(z)/z}| w rodeinie funkcji mocno wypuklych rzedu ar.
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