anNales universitatis mariae Curie- Sklodowska LUBLIN-POLONIA

VOL. XLV, 10
SECTIO A
1991
Inatytut Matematyki UMCS

J. KUREK

On Natural Transformations of Higher Order Covelocities Functor

O transformacjach naturalnych funktora koprędkości wyższego rzędu

Abstract

In this paper, all natural transformations of the $(2, r)$-covelocities functor $T_{2}^{r *}$ into the $(1, r)$-covelocities functor T_{1}^{r-} and $T_{2}^{r *}$, are determined. We deduce that all natural transformations of $T_{2}^{r *}$ into $T_{1}^{r *}$ form an $\left(2 r+\frac{r(r-1)}{2}\right)$-parameter family linearly generated by the generalized (s, t)-power mixed transformations $A_{a, t}$ for $s=0,1, \ldots, r$ and $t=0,1, \ldots, r$ with $s+t=1, \ldots, r$.

Recently, we have determined in [2] all natural transformations of the r-th order cotangent bundle functor $T^{\text {re }}$ into itself, which constitute the r-parameter family linearly generated by the s-th power natural transformations A_{g} for $s=1, \ldots, r$.

In this paper, we determine all natural transformations of the $(2, r)$-covelocities bundle functor $T_{2}^{r *}$ into the ($1, r$)-covelocities bundle functor $T_{1}^{r *}$. We deduce that all natural transformations of the functor $T_{2}^{r \bullet}$ into the functor $T_{1}^{r \bullet}$ form the $\left(2 r+\frac{r(r-1)}{2}\right)$-parameter family linearly generated by the generalized ($\left.s, t\right)$-power mixed transformations $A_{s, t}$ or $s=1, \ldots, r$ and $t=0,1, \ldots, r$ with $s+t=1, \ldots, r$.

Moreover, we deduce that all natural transformations of the functor $T_{2}^{r *}$ into itself form the $2 \cdot\left(2 r+\frac{r(r-1)}{2}\right)$-parameter family linearly generated for both components by the generalized (s, t)-power mixed transformations $A_{s, t}$ of $T_{2}^{r *}$ into $T_{1}^{r *}$.

The author is grateful to Professor I. Kolár for suggesting the problem, valuable remarks and useful discussions.

1. Let M be a smooth n-dimensional manifold. Let $T_{k}^{r-} M=J^{r}\left(M, R^{k}\right)_{0}$ be the space of all r-jets from a manifold M to R^{k} with target at 0 .

A vector bundle $\pi_{M}: T_{k}^{\bullet \bullet} M \rightarrow M$ with a source r-jet projection is called the (k, r)-covelocities bundle on M.

Every local diffeomorphism $\varphi: M \rightarrow N$ is extended into a vector bundles morphism $T_{k}^{r \cdot} \varphi: T_{k}^{r *} M \rightarrow T_{k}^{r *} N$ defined by $T_{k}^{r *} \varphi: j_{z}^{r} F \mapsto j_{z}^{r}\left(F \circ \varphi^{-1}\right)$, where φ^{-1} is constructed locally. Hence, the (k, r)-covelocities bundle functor T_{k}^{r-} is defined on a category $\mathcal{M} f_{n}$ of smooth n dimensional manifolds with local diffeomorphisms as morphisms and with values in a category $\mathcal{V B}$ of vector bundles.

We have a canonical identification

$$
\begin{equation*}
T_{k}^{r \bullet} M=T_{1}^{r \bullet} M \times \ldots \times T_{1}^{r \bullet} M \quad(k \text {-times }) \tag{1.1}
\end{equation*}
$$

of the form $j_{z}^{r} F=\left(j_{z}^{r} F^{1}, \ldots, j_{z}^{r} \vec{r}^{k}\right)$ for $F=\left(F^{1}, \ldots, F^{k}\right)$.
Consider the $(2, r)$-covelocities bundle functor T_{2}^{r-} and the $(1, r)$ covelocities bundle functor $T_{1}^{r e}$.

We have defined in [2] the s-th power natural transformations A, of the r-th cotangent bundle functor $T^{r *}=T_{1}^{r *}$ into itself of the form

$$
\begin{equation*}
A_{s}: j_{z}^{r} F \mapsto j_{\Sigma}^{r}(F)^{\theta} \tag{1.2}
\end{equation*}
$$

where $(F)^{d}$ denote the $s-$ th power of F for $s=1, \ldots, r$.
We define a natural transformations $A_{\mathrm{a}, \mathrm{t}}$ of the functor $T_{2}^{r *}$ into the functor $T_{1}{ }^{\text {o }}$ as a generalization of the power transformations A, of the functor $T_{1}^{r *}$ into itself.

Definition 1. A natural transformation $A_{s, t}$ of the $(2, r)$ covelocitiea functor $T_{2}^{r *}$ into the (1,r)-covelocities functor $T_{1}^{r *}$ defined by formula

$$
\begin{equation*}
A_{z, t}: j_{z}^{r} F \mapsto j_{z}^{r}\left(F^{1}\right)^{t}\left(F^{2}\right)^{t} \tag{1.3}
\end{equation*}
$$

where $F=\left(F^{1}, F^{2}\right)$ and $\left(F^{k}\right)^{p}$ denote the p th power of F^{k}, is called the generalized (s, t)-power mixed transformation for $s=0,1, \ldots, r$ and $t=0,1, \ldots, r$ with $s+t=1, \ldots, r$.

If (x^{i}) are some local coordinates on M, then we have the induced fibre coordinates $\left(u_{i}, \ldots, u_{i_{1} \ldots i_{r}}, v_{i}, \ldots, v_{i_{1} \ldots i_{r}}\right)$ on $T_{2}^{r \bullet} M$ (symmetric in all indices) of the form

$$
\begin{align*}
& u_{i}\left(j_{z}^{r} F\right)=\left.\frac{\partial F^{1}}{\partial x^{i}}\right|_{z} \tag{1.4}\\
& \ldots \\
& u_{i_{1} \ldots i_{p}}\left(j_{z}^{r} F\right)=\left.\frac{\partial^{r} F^{1}}{\partial x^{i_{1}} \ldots \partial x^{i_{r}}}\right|_{z} \\
& v_{i}\left(j_{z}^{r} F\right)=\left.\frac{\partial F^{2}}{\partial x^{i}}\right|_{z}
\end{align*}
$$

$$
v_{i_{1} \ldots i_{r}}\left(j_{x}^{r} F\right)=\left.\frac{\partial^{r} F^{2}}{\partial x^{i_{1}} \ldots \partial x^{i_{r}}}\right|_{z}
$$

2. In this part first we determine by an induction method all natural transformations of the functor $T_{i}^{r *}$ into the functor $T_{1}{ }^{\circ}$.

Theorem 1. All natural transformations $A: T_{2}^{r \bullet} \rightarrow T_{1}^{r \bullet}$ of the $(2, r)$-covelocities bundle functor $T_{2}^{r \bullet}$ into the $(1, r)$-covelocities bundle functor T_{1}^{r-} form the $\left(2 r+\frac{r(r-1)}{2}\right)$-parameter family of the form

$$
\begin{align*}
A & =k_{1} A_{1,0}+\ldots+k_{r} A_{r, 0}+l_{1} A_{0,1}+\ldots+l_{r} A_{0, r}+ \tag{2.1}\\
& +m_{1,1} A_{1,1}+\ldots+m_{r-1,1} A_{r-1,1}+\ldots+m_{1, r-1} A_{1, r-1}
\end{align*}
$$

with any real parameters $k_{1}, \ldots, k_{r}, l_{1}, \ldots, l_{r}, m_{1,1}, \ldots, m_{r-1,1}, \ldots, m_{1, r-1} \in R$ and are linearly generated by the generalized (s, t)-power mixed transformations $A_{\mathrm{e}, \mathrm{t}}$ for $s=0,1, \ldots, r$ and $t=0,1, \ldots, r$ with $s+t=1, \ldots, r$.

Proof. The (2,r)-covelocities bundle functor $T_{2}{ }^{* *}$ is defined on the category $\mathcal{M f}_{n}$ of n-dimensional smooth manifolds with local diffeomorphisms as morphisms and is of order r. Then, its standard fibre $S=\left(T_{2}^{r *} R^{n}\right)_{0}$ is G_{n}^{r}-space, where G_{n}^{r} means a group of all invertible r-jets from R^{n} into R^{n} with source and target at 0.

According to a general theory, $[1]$, the natural transformations $A: T_{2}^{r^{*}} \rightarrow T_{1}^{r \bullet}$ are in bijection with G_{n}^{r}-equivariant maps of the standard fibres $f:\left(T_{2}{ }^{\bullet} R^{n}\right)_{0} \rightarrow$ $\left(T_{1}^{r *} R^{n}\right)_{0}$.

Let $\tilde{a}=a^{-1}$ denote the inverse element in G_{n}^{r} and let ($i_{1} \ldots i_{r}$) denote the symmetrization of indices.

By (1.4) the action of an element $\left(a_{j}^{i}, a_{j_{1} j_{2}}^{i}, \ldots, a_{j_{1}}^{i} \ldots j_{r}\right) \in G_{n}^{r}$ on $\left(u_{i}, \ldots, u_{i_{1} \ldots i_{r}}, v_{i}, \ldots, v_{i_{1}} \ldots i_{r}\right) \in\left(T_{2}^{r *} R^{n}\right)_{0}$ and on $\left(w_{i}, \ldots, w_{i_{1}} \ldots i_{r}\right) \in\left(T_{1}^{r *} R^{n}\right)_{0}$ is of the form

$$
\begin{align*}
& \bar{u}_{i}=u_{j} \tilde{a}_{i}^{j} \tag{2.2}\\
& \bar{u}_{i_{1} i_{2}}=u_{j_{1} j_{2}} \tilde{a}_{i_{1}}^{j_{1}} \tilde{a}_{i_{2}}^{j_{2}}+u_{j_{1}} \tilde{a}_{i_{1} i_{2}}^{j_{1}} \\
& \bar{u}_{i_{1} \ldots i_{r}}=u_{j_{1} \ldots j_{r}} \tilde{a}_{i_{1}}^{j_{1}} \ldots \tilde{a}_{i_{r}}^{j_{r}}+ \\
& +u_{j_{1} \ldots j_{r-1}} \frac{r!}{(r-2)!2!} \tilde{a}_{\left(i_{1}\right.}^{j_{1}} \ldots \tilde{a}_{i_{r-2}}^{j_{r-2}} \tilde{a}_{\left.i_{r-1} i_{r}\right)}^{j_{r-1}}+ \\
& +\ldots+u_{j_{1} j_{2}}\left[\frac{r!}{(r-1)!1!} \tilde{a}_{\left(i_{1}\right.}^{j_{1}} \tilde{a}_{\left.i_{2} \ldots i_{r}\right)}^{j_{2}}+\ldots\right]+ \\
& +u_{j_{1}}{\tilde{a_{i_{1}} \ldots i_{r}}}_{j_{1}}
\end{align*}
$$

and is of the same form on coordinates $v_{i_{1}} \ldots i_{1}, w_{i_{1} \ldots i_{s}}$, for $s=1, \ldots, r$.
I. In the first induction step we consider the case $r=2$. Considering equivariancy of G_{n}^{2}-equivariant map $f=\left(f_{i}, f_{i j}\right):\left(T_{2}^{2 *} R^{n}\right)_{0} \rightarrow\left(T_{1}^{2 *} R^{n}\right)_{0}$ in the form

$$
\begin{align*}
& w_{i}=f_{i}\left(u_{i}, u_{i j}, v_{i}, v_{i j}\right) \tag{2.3}\\
& w_{i j}=f_{i j}\left(u_{i}, u_{i j}, v_{i}, v_{i j}\right)
\end{align*}
$$

with respect to homotheties in $G_{n}^{2}: \tilde{a}_{j}^{i}=k \delta_{j}^{i}, \tilde{a}_{j k}^{i}=0$, we get a homogeneity condition

$$
\begin{align*}
& k f_{i}\left(u, u_{i j}, v_{i}, v_{i j}\right)=f_{i}\left(k u_{i}, k^{2} u_{i j}, k v_{i,}, k^{2} v_{i j}\right) \tag{2.4}\\
& k^{2} f_{i j}\left(u_{i}, u_{i j}, v_{i}, v_{i j}\right)=f_{j}\left(k u_{i}, k^{2} u_{i j}, k v_{i}, k^{2} v_{i j}\right) .
\end{align*}
$$

By the homogeneous function theorem, [1], we deduce firstly that f_{i} is linear in u_{i} and v_{i} and is independent on $u_{i j}$ and $v_{i j}$ and is bilinear in u_{i}, v_{j} and is quadratic in u_{i} and v_{i}.

Using invariant tensor theorem for G_{n}^{1}, [1], we obtain f in the form

$$
\begin{align*}
& f_{i}=k_{1} u_{i}+l_{1} v_{i} \tag{2.5}\\
& f_{i j}=k_{2} u_{i} u_{j}+k_{3} u_{i j}+l_{2} v_{i} v_{j}+l_{3} v_{i j}+m_{1,1} u_{(i} v_{j)}
\end{align*}
$$

with any real parameters $k_{1}, k_{2}, k_{3}, l_{1}, l_{2}, l_{3}, m_{1,1} \in R$.
The equivariancy of f in the form (2.5) with respect to the kernel of the projection $G_{n}^{2} \rightarrow G_{n}^{1}: \tilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\tilde{a}_{j k}^{i}$ arbitrary, gives relationship for parameters

$$
\begin{equation*}
k_{3}=k_{1}, l_{3}=l_{1} \tag{2.6}
\end{equation*}
$$

This gives the 5 -parameter family of natural transformations in the form $A=k_{1} A_{1,0}+$ $k_{2} A_{2,0}+l_{1} A_{0,1}+l_{2} A_{0,2}+m_{1,1} A_{1,1}$ with any real parametrs $k_{1}, k_{2}, l_{1}, l_{2}, m_{1,1} \in R$ and proves our theorem for $r=2$.
II. In the second induction step for $(r-1)$, we assume that G_{n}^{r-1}-equivariant $\operatorname{map} f=\left(f_{i}, \ldots, f_{i_{1} \ldots i_{r-1}}\right):\left(T_{2}^{(r-1) *} R^{n}\right)_{0} \rightarrow\left(T_{1}^{(r-1) *} R^{n}\right)_{0}$ define the $\left(2(r-1)+\frac{(r-1)(r-2)}{2}\right)$-parameter family

$$
\begin{align*}
A= & k_{1} A_{1,0}+\ldots+k_{r-1} A_{r-1,0}+l_{1} A_{0,1}+\ldots+l_{r-1} A_{0, r-1}+ \tag{2.7}\\
& +m_{1,1} A_{1,1}+\ldots+m_{r-2,1} A_{r-2,1}+\ldots+m_{1, r-2} A_{1, r-2}
\end{align*}
$$

with any real parameters $k_{1}, \ldots, k_{r-1}, l_{1}, \ldots, l_{r-1}, m_{1,1}, \ldots, m_{r-2,1}, \ldots, m_{1, r-2} \in R$. We assume that G_{n}^{r}-equivariant map $\bar{f}:\left(T_{2}^{r *} R^{n}\right)_{0} \rightarrow\left(T_{1}^{r \bullet} R^{n}\right)_{0}$ is of the form $\bar{f}=\left(f_{i}, \ldots, f_{i_{1}} \ldots r-1, f_{i_{1}} \ldots, i_{r}\right)$ provided that f is of the form $f=\left(f_{i}, \ldots, f_{i_{1}} \ldots i_{r-1}\right)$.

Considering equivariancy of \bar{f} with respect to homotheties in $G_{n}^{r}: \tilde{a}_{j}^{i}=k \delta_{j}^{i}$, $\tilde{a}_{j_{1} j_{2}}^{i}=0, \ldots, \tilde{a}_{j_{1} \ldots j_{r}}^{i}=0$, we obtain for the r-th component $f_{i_{1} \ldots i_{r}}$ a homogeneity condition

$$
\begin{align*}
& k^{r} f_{i_{1} \ldots i_{r}}\left(u_{i}, \ldots, u_{i_{1}, \ldots i_{r}}, v_{i}, \ldots, v_{i_{1}, \ldots i_{r}}\right)= \tag{2.8}\\
& =f_{i_{1}} \ldots i_{r}\left(k u_{i}, \ldots, k^{r} u_{i_{1}} \ldots i_{r}, k v_{i}, \ldots, k^{r} v_{i_{1}} \ldots i_{i_{r}}\right) .
\end{align*}
$$

By the homogeneous function theorem and by the invariant tensor theorem, [1], we deduce that $f_{i_{1} \ldots i,}$, is of the general form

$$
\begin{align*}
f_{i_{1} \ldots i_{r}} & =p_{1} u_{i_{1} \ldots i_{r}}+p_{2,1} u_{\left(i_{1}\right.} u_{\left.i_{2} \ldots i_{r}\right)}+p_{2,2} u_{\left(i_{1} i_{2} u_{\left.i_{g} \ldots i_{r}\right)}+\right.}+ \tag{2.9}\\
& +\ldots+p_{r-1} u_{\left(i_{1}\right.} \ldots u_{i_{r-2}} u_{\left.i_{r-1} i_{r}\right)}+p_{r} u_{i_{1}} \ldots u_{i_{r}}+ \\
& +q_{1} v_{i_{1} \ldots i_{r}}+q_{2,1} v_{\left(i_{1}\right.} v_{\left.i_{2} \ldots i_{r}\right)}+q_{2,2} v_{\left(i_{1} i_{2}\right.} v_{\left.i_{3} \ldots i_{r}\right)}+ \\
& +\ldots+q_{r-1} v_{\left(i_{1} \ldots v_{i_{r-}} v_{\left.i_{r-1} i_{r}\right)}+q_{r} v_{i_{1}} \ldots v_{i_{r}}\right.}+ \\
& +n_{1,1} u_{\left(i_{1} \ldots i_{r-1}\right.} v_{\left.i_{r}\right)}+\ldots+\bar{n}_{1,1} u_{\left(i_{1}\right.} v_{\left.i_{2} \ldots i_{r}\right)}+ \\
& +\ldots+n_{r-2,1} u_{\left(i_{1}\right.} \ldots u_{i_{r-2}} v_{\left.i_{r-1} i_{r}\right)}+\ldots+ \\
& +n_{1, r-2} u_{\left(i_{1} i_{2}\right.} v_{i_{g}} \ldots v_{\left.i_{r}\right)}+n_{r-1,1} u_{\left(i_{1} \ldots u_{i_{r-1}} v_{\left.i_{r}\right)}+\right.}+ \\
& +\ldots+n_{1, r-1} u_{\left(i_{1}\right.} v_{i_{2}} \ldots v_{\left.i_{r}\right)} .
\end{align*}
$$

Equivariancy of \bar{f} with respect to the kernel of the projection $G_{n}^{r} \rightarrow G_{n}^{r-1}$: $\tilde{a}_{j}^{i}=\delta_{j}^{i}, \tilde{a}_{j_{1} j_{2}}^{i}=0, \ldots, \tilde{a}_{j_{1} \ldots j_{r-1}}^{i}=0$ and $\tilde{a}_{j_{1} \ldots j,}^{i}$ arbitrary, gives relationship

$$
\begin{equation*}
p_{1}=k_{1}, q_{1}=l_{1} . \tag{2.10}
\end{equation*}
$$

Now, consdering equivariancy of \bar{f} with respect to the kernel of the projection $G_{n}^{r-1} \rightarrow$ $G_{n}^{1}: \tilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\tilde{a}_{j_{1} j_{2}}^{i}, \ldots, \tilde{a}_{j_{1} \ldots j_{r-1}}^{i}$ are arbitrary and $\tilde{a}_{j_{1} \ldots j_{r}}^{i}=0$ in G_{n}^{r}, we obtain following relationship for parameters

$$
\begin{align*}
& p_{2,1}=\frac{r!}{(r-1)!1!} k_{2}, p_{2,2}=\frac{r!}{(r-2)!2!} k_{2}, \ldots, \tag{2.11}\\
& p_{r-1}=\frac{r!}{(r-2)!2!} k_{r-1}, \\
& q_{2,1}=\frac{r!}{(r-1)!1!} l_{2}, q_{2,2}=\frac{r!}{(r-2)!2!} l_{2}, \ldots, \\
& q_{r-1}=\frac{r!}{(r-2)!2!} l_{r-1} \\
& n_{1,1}=\frac{r!}{(r-1)!1!} m_{1,1}, \ldots, \bar{n}_{1,1}=\frac{r!}{(r-1)!1!} m_{1,1}
\end{align*}
$$

$$
n_{r-1,1}=\frac{r!}{(r-2)!2!} m_{r-2,1}, \ldots, n_{1, r-2}=\frac{r!}{(r-2)!2!} m_{1, r-2}
$$

If we put for parameters $p_{r}=k_{r}, g_{r}=l_{r}, n_{r-1,1}=m_{r-1,1}, \ldots, n_{1, r-1}=m_{1, r-1}$, then we obtain A in the form (2.1). This proves our theorem.

At last, we determine all natural transformations of the $(2, r)$ covelocities bundle functor $T_{2}^{r o}$ into itself.

Using the canonical identification (1.1), $T_{2}^{r^{\bullet}} M=T_{1}^{r e} M \times T_{1}^{r^{\bullet}} M$, any natural tranaformation $A: T_{2}^{r^{*}} \rightarrow T_{2}^{r *}$ correspond bijectively to G_{n}^{r}-equivariant map $f:=\left(f_{i}, \ldots, f_{i_{1} \ldots i_{r}} ; g_{i^{\prime}}, \ldots, g_{i_{1} \ldots i_{r}}\right):\left(T_{2}^{r \bullet} R^{n}\right)_{0} \rightarrow\left(T_{1}^{r \bullet} R^{n}\right)_{0} \times\left(T_{1}^{r \bullet} R^{n}\right)_{0}$. Considering G_{n}^{r}-equivariancy of f, we deduce from theorem 1 that both components $\left(f_{i}, \ldots, f_{i_{1}} \ldots i_{r}\right)$ and $\left(g_{i}, \ldots, g_{i_{1}} \ldots i_{p}\right)$ define the $\left(2 r+\frac{r(r-1)}{2}\right)$-parameter families of natural transformations $T_{2}^{r \bullet} \rightarrow T_{1}^{r \bullet}$ of the form (2.1).

Corollary 2. All natural transformetions $A: T_{2}^{r *} \rightarrow T_{2}^{r *}$ of the $(2, r)$-covelocities bundle functor T_{2}^{r} into itself form the $2 \cdot\left(2 r+\frac{r(r-1)}{2}\right)$-parameter family of the form (2.1) for both componento and are linearly generated for both componenets by the generalized (s, t)-power mized transformations $A_{s, \ell}$ for $s=0,1, \ldots, r$ and $t=0,1, \ldots, r$ with $s+t=1, \ldots, r$.

REFERENCES

[1] Kolar, I., Michor, P., Slovak, J., Natural Operations in Differential Geometry. (to appear)
[2] Kurek, J., Natural transformations of higher onder cotangent bundles functor, Aun. Polon. Math. (to appear)

STRESZCZENIE

W pracy wysnacsa siq wasystkie transformacje naturalne funktors ($2, r$)-kopradkodci $T_{2}^{r e}$ w funktory ($1, r$)-koprgdkosci $T_{1}^{r *}$ oras $T_{2}^{r e}$. Podstawowymi transformacjami tego typu sa uogolnione transformacje (s, t)-potqgowe mieazane $A_{e, \ell}$ dla $s=0,1, \ldots, r$ oraz $t=0,1, \ldots, r$ spelniajacych $s+t=1, ., r$.

Wasyatkie tranaformacje funktora $T_{2}^{r *}$ w $T_{1}^{\text {re }}$ atenowis $\left(2 r+\frac{r(r-1)}{2}\right)$-parametrowa rodzine generowans liniowo se pomoca uogolnionych transformacji (s, t)-potegowych miessanych $\boldsymbol{A}_{s, \mathrm{t}}$.

