ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

Department of Mathematics, University of Missimsippi
 Instytut Matematyki, UMCS
 Department of Mathematics, University of Cincinnati

W. M. CAUSEY, J. G. KRZYŻ, E. P. MERKES

Some Remarks on a Distortion Lemma

Kilka uwag dotyczacych pewnego lematu o znieksztalceniu

Abstract

The authore consider for $|z|=r$ bounds on $|z / f(z)-1|$ over the claces S of all normalized analytic univalent functions f. In particular, they show that the r.hs. in (1) should be repleced by $2 r+3 r^{2}$. The entimates of $|z / f(z)-1|$ play a role in the determination of the choice of α for the univalence of the integral transform $\left.\int_{0}^{x} \mid f(t) / t\right]^{a} d t$ when $f \in S$. Since (1) is not valid for all $z \in D$, the known bound on $|\boldsymbol{\alpha}|$ remains at $1 / 4$.

1. Introduction. Let S denote the class of normalized analytic univalent functions in the open unit disk \mathbf{D} and let α be a fixed complex number. For many years two of the present authors, as well as many others, have attempted to find the choices of complex a such that the function $G(z)=\int_{0}^{z}[g(t) / t]^{\alpha} d t$ is in S whenever g is in S (cf. e.g. [1], [2], [4], [5]). The best known result is $|\alpha| \leq \frac{1}{4}$ which was first published in 1972 [4]. A result of Royster [9] proves that the modulus of α cannot excoed $1 / 2$ and, in fact, G is in S for all $a,|\alpha| \leq \frac{1}{2}$, provided g is in addition starlike, cf. [B].

In a recent article [6], J. Miazga and A. Wesolowski attempt to prove the bound on $|a|$ is $1 / 3$. Their proof is based on what appears to be a nice general result.

Lemma \mathbf{A} [$\mathbf{6}$]. If f is in S, then for fixed z in \mathbf{D} the inequality

$$
\begin{equation*}
|z / f(z)-1| \leq 2 r+r^{2}, \quad|z|=r \tag{1}
\end{equation*}
$$

holds. The Koebe function $f(z)=z(1+z)^{-2}$ establishes sharpness.
This lemma, however, is incorrect and, as a consequence, the known bound on $|\alpha|$ remains at $1 / 4$. Using a classical 1932 result of Grunsky, cf. e.g. [3, p.323], which is quoted here as Lemma B, it is easily verified that

$$
\begin{equation*}
\sup \{|z / f(z)-1|: f \in S, z \in \mathbf{D}\}=5 \tag{2}
\end{equation*}
$$

and this implies Lemma A, as stated, is incorrect.
Nonetheless, the inequality (1) is indeed true if we restrict f to be in the subclass S^{\bullet} of starlike functions in S (Proposition 2). It is also true for $f \in S$ and r sufficiently small. However, the inequality (1) must be replaced for arbitrary $f \in S, z \in \mathbf{D}$, by

$$
\begin{equation*}
|z / f(z)-1| \leq 2 r+3 r^{2}, \quad|z|=r \tag{3}
\end{equation*}
$$

2. Bounds on $|z / f(z)-1|$. We first quote the classical result of Grunsky as

Lemma B. For each $z,|z|=r<1$, the region $\{\log f(z) / z: f \in S\}$ is the disk

$$
\begin{equation*}
\left\{\zeta:\left|\zeta+\log \left(1-r^{2}\right)\right| \leq \log \frac{1+r}{1-r}\right\} . \tag{4}
\end{equation*}
$$

As an immediate consequence of this result we obtain
Proposition 1. The region $\{z / f(z): f \in S, z \in \mathbf{D}\}$ is the punctured disk $\{w: 0<|w|<4\}$.

In fact, by (4) with $z \in D$ and the natural branch of the complex logarithm we have $\{\log z / f(z): f \in S$ and $|z|<1\}=\{\zeta: \operatorname{Re} \zeta<\log 4\}$ and the Proposition follows by exponentiation.

If we take $w=-4+\varepsilon$, where $0<\varepsilon<1$, then we can find $f \in S$ and $z \in \mathbf{D}$ so that $z / f(z)=w$. Hence $|w-1|=5-\varepsilon$ and we conclude that $|z / f(z)-1|<5$ for z in D and 5 is the best possible bound. This shows that the inequality (1) is incorrect.

Nonetheless, if we restrict f to be in the subclass S^{\bullet} of starlike functions in S, Lemma A is indeed true.

Proposition 2. If f is in S^{\bullet}, then for a fixed z in \mathbf{D} the inequality (1) holds. Equality holds in (1) if and only if $f(z)=z\left(1+e^{i \theta} z\right)^{-2}, \theta$ real, i.e. a Koebe function.

Proof. It is a well-known result due to A. Marx and E. Strohhäcker (cf. e.g. $\left[8\right.$, p.50]), that for a fixed $z,|z|=r<1$, and $f \in S^{\bullet}$ the point $w=[z / f(z)]^{1 / 2}$ rangea over the disk $|w-1| \leq r$. Furthermore equality holds if and only if $f(z)=z\left(1+e^{i \theta} z\right)^{-2}$, θ real. Thus $[z / f(z)]^{1 / 2}=1+\rho e^{i \theta}$, where $|z| \leq r$ and $\rho \leq r$. This implies that $z / f(z)-1=2 \rho e^{i \theta}+\rho^{2} e^{2 i \theta}$ and the Proposition follows.

As observed by P. Pawtowski in a paper to be published in this volume, the inequality (1) is also true for close-to-convex functions.

From Lemma B we can obtain for $|z| \leq r<1$ a sharp inequality for the supremum of the expression on the left in (1) for all $f \in S$. Unfortunately the result is rather complicated and implicit. Indeed, the boundary of the range of $z / f(z)$, for $f \in S$, $|z|=r$, can by (4) be parametrized as

$$
w=w_{r}(t)=A(t)(\cos \psi(t)+i \sin \psi(t)), \quad-\pi \leq t \leq \pi,
$$

where

$$
\begin{equation*}
A(t)=A_{r}(t)=\left(1-r^{2}\right)\left(\frac{1+r}{1-r}\right)^{\cos t}, \quad \psi(t)=\psi_{r}(t)=\sin t \log \frac{1+r}{1-r} \tag{5}
\end{equation*}
$$

By a standard calculus argument, we obtain the following
Theorem 1. If f is in S and $|z|=r<1$, then

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right| \leq\left[A^{2}\left(t_{0}\right)-2 A\left(t_{0}\right) \cos \psi\left(t_{0}\right)+1\right]^{1 / 2} \tag{6}
\end{equation*}
$$

where A, ψ are defined by (5) and $t_{0}=t_{0}(r)$ is a suitable zero of the function

$$
\begin{equation*}
D_{r}(t)=\sin \left(t+\psi_{r}(t)\right)-A_{r}(t) \sin t . \tag{7}
\end{equation*}
$$

For each $r \in(0 ; 1)$ there is a function in S such that the equality holds in (6).
Due to symmetry we may assume that $0 \leq t \leq \pi$. Obviously the end points of the interval $(0 ; \pi)$ are zeros of (7). However, $\cos \psi(t)=1$ for $t=0, \pi$ and so the r.h.s. in (6) becomes $|A(t)-1|$. Since $|A(\pi)-1|=2 r-r^{2}<|A(0)-1|=2 r+r^{2}$, the case $t_{0}=\pi$ must be rejected.

Numerical work using MAPLE indicates that the only zeros of $D_{r}(t)$ on the interval $[0 ; \pi]$ are the end points (and so $t_{0}=0$) when $r \leq 0.819497$. When $|z|=r$ is restricted to this range, the Koebe function is extremal and (1) is correct. For $r \geq 0.819498$, however, $D_{r}(t)$ has a finite number of additional zeros and, in particular, $0<t_{0}<\pi$. When $r=0.95$, for example, t_{0} is approximately equat to 0.32142 and the bound on the right in (6) is approximately 2.8987.

Although Theorem 1 gives sharp bounds, it depends on the deep theorem of Grunsky quoted as Lemma B and the final result is implicit. There is a simpler, explicit, and more attractive, although less sharp, form that can be proved by elementary methods. At the same time it is a correct version of Lemma A with the majorant being a polynomial in r of degree at most 2 . We have the following

Proposition 3. If $f(z)=z+a_{2} z^{2}+\ldots$ is in S and $0<|z|=r<1$, then

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right|<\left|a_{2}\right| r+3 r^{2} \leq 2 r+3 r^{2} \tag{8}
\end{equation*}
$$

Proof. If $f \in S$, then $h(\zeta) \equiv 1 / f(z), \zeta=1 / z$, is in the familiar class Σ of meromorphic univalent functions and $h(\zeta) \neq 0$ for $|\zeta|>1$. We have

$$
h(\zeta)=\zeta+b_{0}+b_{1} / \zeta+\ldots=b_{0}+h_{0}(\zeta) .
$$

Now, we have $\left|b_{0}\right| \leq 2$ for a non-vanishing $h \in \Sigma$ and $\left|h_{0}(\zeta)-\zeta\right|<3|\zeta|^{-1}$ for $h_{0}(\zeta)=\zeta+b_{1} / \zeta+\ldots$, cf. [7, p. 25 (Ex.139, 144)]. We conclude

$$
|h(\zeta)-\zeta|=\left|h_{0}(\zeta)-\zeta+b_{0}\right|<\left|b_{0}\right|+3 /|\zeta|
$$

and since $b_{0}=-a_{2}, 1 /|\zeta|=r$, we have

$$
\left|\frac{z}{f(z)}-1\right|=\left|\frac{h(\zeta)}{\zeta}-1\right|<\frac{\left|b_{0}\right|}{|\zeta|}+\frac{3}{|\zeta|^{2}}=\left|a_{2}\right| r+3 r^{2} \leq 2 r+3 r^{2}
$$

The bound (8) is sharp in the limit as $r \rightarrow 1$.
When $r=0.95$, we obtain the value 4.6078 for this bound while the sharp bound in Theorem 1 is less than 2.8988.

Note that $\left|a_{2}\right| r+3 r^{2}=2 r+r^{2}+2 r\left[r-\left(1-\frac{1}{2}\left|a_{2}\right|\right)\right]<2 r+r^{2}$ for $0<r<1-\frac{1}{2}\left|a_{2}\right|$. This establishes

Corollary 1. If f is not a Koebe function, then (1) holds for all $|z|=r$ in the interval ($\left.0 ; 1-\frac{1}{2}\left|a_{2}\right|\right)$.

In particular, (1) is valid for $z \in D$ if $f \in S$ and $f^{\prime \prime}(0)=0$. By the argument in [6], we have a new result on the integral transform:

Corollary 2. Let $g(z)=z+a_{3} z^{3}+a_{4} z^{4}+\ldots$ be in S. Then $G(z)=\int_{0}^{z}[g(t) / t]^{a} d t$ is also in S if $|a| \leq 1 / 3$.
3. Concluding remarks. In [6] the authors by variational methods essentially prove the cited result of Grunsky but state that the expression (6) is maximized when $t_{0}=0$. The latter is not always the case. The remaining arguments in their paper are all valid but, for the full class $S, 1 / 5$ is the best bound for $|\alpha|$ we can obtain by their argument and the corrected Lemma A, i.e. the inequality (8).

REFERENCES

[1] Causey, W. M. , The close-to-convesity mivalence and integral, Math. Z., 99 (1987), 207-212.
[2] Causey, W. M. , The univalence of an integral, Proc. Amer. Math. Soc., S (1971), 800-802.
[J] Duren, P. L. , Univalent Functione, Springer Verlag, 1983.
[4] Kim, Y. J., Merkes, E. P. , On the integral of powers of a spirallike function, Kyungpook Math. J., 12 (1972), 240-283.
[8] Merkee, E. P. , Univalence of en integral traneform, Contemporary Math., Amer. Math. Soc., 38 (1985), 113-119.
[8] Miesge, J., Wesolowaki, A. On univalence of a certain integral, Zeasyty Nauk. Politech. Rseasowakiej, Mat. Fis. 9 (1989), 25-31.
[7] Pólya, G. , Szegö , G. , Aufgsben und Lehraätze aue der Analyais , Vol.II, Dover Publ., New York 1948.
[8] Pommerenke, Chr. , Univalent functions, Vandenhoeck and Ruprecht, Göttingen 1075.
[9] Royeter, W. C. , On the enivalence of a carlain integral, Mich. Math. J. 12 (1985), 385-387.

STRESZCZENIE

W pracy tej rozwȧ̇ane aq ossacowania wyrażenia $|z / f(z)-1|$ dla $|z|=r w$ klasie S unor mowanych funkcji jednolistnych f. W ascrególnodci wykazano, że w nierównosci (1) naleíy enatapíd prawa strone prsez wyraienie $2 r+3 r^{2}$. Oszacowanis wyraienia $|z / f(z)-1|$ eq wykorzystywane pray wyenaczaniu licsb a takich, że tranaformacja calkowa $S \ni f \mapsto \int_{0}^{z}[f(t) / t]^{a} d t$ zachowuje jednoliatnode. Poniewaz nierównobé (1) nie jest apelniona dla wazyatkich $z \in D$, wipc znane oazarcowanie na $|\alpha|$ równe $1 / 4$ nadal pozostaje w mocy.
(received September 23, 1091)

