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Strong Limit Theorems for the Growth of Increments 
of Additive Processes in Groups. Part II. Additive Processes in Groups

Abstract. This is a continuation of the paper under the same title published in the previous 
issue of this journal. In this part we apply maximal symmetrization inequality to obtain sufficient 
conditions ensuring that given families of neighbourhoods of points are upper or lower classes of 
sets characterizing the increments of additive processes in groups on asymptotically small and large 
intervals.

4. Asymptotic and local properties of realizations for additive pro­
cesses in groups. Let X = {JY4, t € R+} be an additive stochastic process taking 
values in a To topological Abelian group G with the Baire ff-field Q. In this section 
we are interested in a description of local behaviour of A.Y(< 0, <)) as t becomes close 
to the lower-left boundary dRq+ of the index set Rv+ and asymptotic properties of 
the same quantities as t grows to infinity. More precisely, we assume that t varies 
in a set B = .4i x ••• x A,, where each A, is a one-dimensional interval (0, oo), 
(0, >,< Ci,oo) or < Ci, Ci >, but not all of them are equal to < c,,C4 >; say
Ai have left endpoints c,(u) > 0 for 1 < u < p and right endpoints C,>(,,) < oo for 
1 < v < r, while their remaining endpoints are 0 or oo respectively. We shall investi­
gate limiting properties of A.Y(< 0, f)) for t € B\ < T^n,,T^n^ > with Tj"’ \ 0 and 

2 / x as n -* oo. In such a situation we write for brevity < —» 0 or oo. The
behaviour of increments AA'(< 0,t)) may be described by means of limits

liminf Dt = [J Q Dt ,
«—Ooroo 0<T,<T3I<<Ti,Tj>

t€B

and
limsup D't = P| |J D't , 

t-^0 or oo 0<T,<Tj
»€B

where Dt = {AA(< 0,t)) € and D't = {AA(< 0,f)) £ for a fixed
j > 1, and Ut(—j) are globular sets satisfying certain additional conditions. It is 
easy to see that the above defined limits are random events provided X is a separable 
process. However, in the frame we are working here such an assumption is a rather 
nontrivial fact. Therefore, to avoid this restriction we replace below the set B when 
necessary by a subset B' of the form S' = A', x • • • x AJ, where A' C A< are any
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countable sets satisfying inf A' = inf A, and sup A- = sup A, . Consequently, we 
investigate probabilities of the events

liminf Dt = (J Dt ,
«^0 or oo 0<Ti<Tj

t€S'

and
lira sup D\ = P| (J D',

I—Oorx 0<T,<T,»<<Ti,Tj>
<es'

respectively.

Definition 4.1. Let U = {Ut,t € R\} be a family of globular sets. We say 
that U is regularly varying, if 
(i) for all j > 0 and t,s € R+, s < t, the relation

U.(-j) C

holds.

Theorem 4.2. Let X be a symmetric additive stochastic process and let U be a 
regularly varying family of globular sets. If for a given rectangle B C B+ as described 
above,

(4.1) IB -.= f l-P[AX(<0,t))^tZr(-2?-l)]d<<oo
Jb I*i

then for an arbitrary (3 £ Rq+, ¡3 > 1 = (1,... 1),

(4.2) p[ liminf (AX(< 0,<)) 6 i/^(] = 1 ,
or oo

where (3t = (ftti,... ,£,<,).

Proof. Let a 6 B+, 1 < a2 < ¡3q = min{/?i,... ,flq} be a fixed real number. 
Define the set J of indices k = (ki,..., k9) € V with integer coordinates as follows: 
J = {fc € Z* :< a*,at+1 >C B} , where a* = (of1,... ,aj’) and a = (a,... ,a). Let A 
be the set of all different projections Rv —♦ B’ onto various hyperplanes of the system 
of coordinates. Put J' = {k € Z’ : afc±A1 € B for some A £ A}. It suffices to show 
that for indices of the form ak € B we have

p[|J Pl [AX«0,t))eE/„]] =1.

j.nfj' teB'

Consider the events

A* = { |J [AI(<M))^?+1]} , k € J .
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On the basis of Corollary 3.3 we obtain

(4.3) P[At] < 4’P[AX(< 0, a*)) $ tZ.»+.(-2,)]

Suppose t € (a*,a*+1 > for some k € J. By hypothesis we have Ut(—2q) C 
(7a»+.(-29) and 2P(AX(< 0,t)) - AX(< 0,a1)) € #>,<(-2<j)] > 1 for each set

2q) corresponding to the globular set Ut(-2q), j € J (see Definition 2.1). 
Moreover, AX(< 0,f)) — AX(< 0,a*)) is independent of AX(< 0,a*)). Hence and 
from (4.3) it follows that

(4.4)
P[A*] < 4’ 52 P[AX(< 0,a*)) € Ci.,(-2«)) < 

i
< 2 • 4’ 52 J’[AX(< 0, a*)) e C>,t(-2g), AX(< 0, t)) - AX(< 0, a4)) € P>,t(-2g)] <

3
< 2 • 4’ 52P[AX(< 0,a*)) € C>t,(-2g), AX(< 0, <)) Í U,(-2q - 1)] <

j

< 22,+1P[AX(< 0,t)) i Ut(-2q - 1)] .

Consequently

(4.5) (lna)’P[At)= / ¿¡P^*]^

< 22,+1 í i P[AX(< 0,f)) Í U,(-2q - 1)] dt ,
1*1

and therefore

(4.6) 52 - 22,+1(lna)-i/fl < oo .
*€J

On account of the Borel-Cantelli lemma we conclude that P[A*, k € J i.o. ] = 0, i.e. 
there exist fii € P, P[Q¡] — 1 and finite subset Jo = J(w) C J such that for every 
k € J \ Jo and u> € fii, -4*(w) holds. Without loss of generality we may replace Jo 
by a (random) rectangle < j + l,n >C Z’ with endpoints not necessarily contained 
in J, having coordinates y,(u) and chosen in such a way that < c¿(u) and 
a"¡'(») > C,<(„), u = 1,... ,p, v — 1,... ,r. Observe now that for f €< at~1,ak > OB',

{ (J [AX(<0,f))$ tZ^]}c { J [AX(<0,í))ítZ,H.]¡Uf, 

thus
U { U [AX«0,t))<Él^]}c J At.

*<<>+1,»> l€<o*-‘,o‘>nB' *<0+1,»>
*€J *eJ

Hence
n s n [AX(<0,t))et/B«l .

*<O+i,«> «<<«<«">
*€J «es'
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Finally
p[(J A (AX(<O,<))eiZdj =1,

X" <i<o>,o">
>,n€J' lefl'

which concludes the proof.

Corollary 4.3. Let X be a stochastic process satisfying the assumptions of 
Theorem 4.2 but not necessarily symmetric and let U = {Ut,t € P+} be a regularly 
varying family of globular sets such that Wt = Ut — Ut for t € P+ are Baire sets (and 
hence globular) satisfying VFe(— j) — Ut(—j) — Ut(— j), j > 1. Moreover, assume that 
(4.1) M true. Then there can be found a deterministic function z : R+ —» G such that 
for an arbitrary ¡3 € R+, /? > 1,

(4.7) p[ liminf (AX(< 0,t)) € r(t) + W>«]] = 1 .
t-^—0 or oo

Proof. Let (Q',.P',P') be a copy of (fl,P, P) and let Xt(u,w') = Xt(u) and 
X'((bj,it>') — X,(w') be two independent copies of X on the product probability space 
(ii x Sl'.f x F ,P x P'). Observe that W = {IF«} is a regularly varying family of 
globular sets and the symmetric process X — X' satisfies (4.1) with Id replaced by VV. 
On the basis of Theorem 4.2 we have

P x P'f liminf [AX(< 0,t)) - AX'(< 0,t)) € W>»]1 = 1 .
B' Jf—»0 or oc

Applying the well-known Fubini’s theorem we conclude that

P[ liminf [AX(<0,f))-AX'(<0,f))(u;') + VF/jt]] =1 
-*0 or oo

for P' - a.a. € fi'(/?) C ii', 1 < /3 € R'+. Let ii', = Dk^o,»! «'(£)> where the 
product is taken over all ^-tuples ¡3 > I having rational coordinates. Then the above 
relation yields (4.7) with z(t) = AAr'(< 0,<))(w') for a fixed w' € Q',.

To formulate further corollaries and provide any examples we consider a class of 
regularly increasing functions.

A function g : Rq+ —> R+ is called here regularly increasing, if
(a) g is continuous and nondecreasing, i.e. t < s implies g(t) < g(s);
(b) = 0, and g(t) > 0 for t dR\\

Corollary 4.4. Let K be a convex set containing zero and let U be a convex 
open neighbourhood of zero in a real linear topological Lindelof space G. A.wume that 
X is a symmetric additive stochastic process in G such that for each real 6 > 0,

(4.8) L'g P[&X(< 0, <)) (1 + 6)<p(t)(K + p(t)CZ)] dt < oo ,
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where tp, p : R+ —» R+ are certain functions satisfying the conditions: p and tp ■ p are 
regularly increasing, but p alone may be arbitrary. Then, for each 6 > 0,

(4.9) P [ liminf [AX(< 0,0) 6 (1 + ¿M0(A + P<A)V)]j = 1 .
t—*0 or oo

Proof. Observe that {U( = (1 + 6/2)<p(t)(K + p(t)CZ), t € R+} is a regu­
larly varying family of globular neighbourhoods of zero. Moreover, from the proof of 
Proposition 2.2 it follows that we can take Ut(—2q — 1) = (1 + 6/4)<p(t)(K + p(t)U). 
Therefore, by hypothesis, condition (4.1) is fulfilled. Hence, on the basis of Theorem 
4.2, choosing /? > 1 close enough to 1 and using (c) we conclude that (4.9) holds.

Remark. The above Corollary 4.4 for a separable process X and D' replaced 
by B in (4.9) is a far reaching generalization of Theorem 1 and Remark 1 a), Ch. VI, 
§6 given by Gikhman and Skorohod (1965) and Theorem 1 by Zincenko (1979).

Example 5. Let pr, r > 0 be a centered Gaussian measure with variance 
parameter r > 0 on the Baire <7-field £? in a real locally convex linear topological 
Lindelof space G. According to the terminology employed by Borell (1975), (1976), p 
is called here a centered Gaussian measure in G if p is a Radon measure on Q and for 
each / € G* - the topological dual of G, p o /_1 is a mean zero normal distribution 
on (71, Let p = pi and let G2(/0 be the closure of G* in L2(p}. Then for every
g 6 G2(p) there exists a unique y £ G such that

/(!/)= f f(x)g(x)dp(x) for all f € G* .
JG

In consequence we have a one-to-one linear mapping $ : G2(p) —♦ G given by \E* = y. 
Denote i'(G2(p)) = He G. It is easy to see that H is then a Hilbert space with the 
scalar product

<^^1,^52 >= / gi(x)g2(x)dp(x) .
Jg

Similarly as in the case G = R the space H is said to be the RKHS of p. Let i be the 
inclusion map from H into G and let 7r be the canonical cylinder set Gauss measure in 
H with variance parameter r > 0. We say that pr is a centered Gaussian measure in 
G with variance parameter r > 0 if pr is a Radon measure on Q and for every finite­
dimensional cylindrical set C in G of the form C = {r € G : (/i(r), • • • > /n(z)) € -O’ 
/i,...,/n € G*, A € B(R"), pr and 7r are associated by the equation Pr(C) = 
7r(»-1C). In particular, if < f„ 4/f} >= ¿y, then

. n
pr(C) = 7r(t-1 C) = I (2irr)~n/'2 exp/ ~(2r)-1 s2} dsj ... ds„ .

7 A j_i

In other words, if £ is a random element in (G,Q) with distribution p = p\, then 
pT is the law of r’/2£. Note that 7r determines pr in a unique manner by virtue 
of Prohorov’s theorem - see Vahania, Tarieladze and Chobanian (1985), Chapter I,
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Theorem 3.4 and Proposition 3.1. Furthermore, the space Hr induced by pr in an 
analogous way as H by p is identically equal to 83. because fG f(x)g(x)dfjr(x) = 
r < 'iff, ifg > for f,g € G*. Put fi0(D) = x(0 €/?),£>€ Q. Then the relation 
7r ♦ 7, = 7r+a, r,s > 0 implies that {/Jr/ > 0} is a convolution semigroup. Let 
X — {X(<), t € R\ } be the /«-Brownian surface with values in G, i.e. a stochastic 
process satisfying the following conditions:
(I) for each t € R+, X(<) is a random element in (G, Q);

(II) the process X has independent increments AA'(V) on disjoint bounded rectangles
V =< a, b) C R+',

(III) for a given rectangle V =< a,b) C R+, A.A(V) has distribution /ivoi V, where 
vol V = |6 — a| is the volume of V, and X(t) — 0 if any of the coordinates of 
t € P+ vanishes.

Observe that under our assumptions the distribution of each finite vector
(A(<i),... ,,¥(<„)), € R+ is a Radon measure on (G",(?n). Indeed, the
problem can be reduced to distributions of vectors (AX(Vi),..., AA(V,)) with inde­
pendent components, which are obviously Radon measures. Namely, let Vj,..., V, be 
the class of disjoint rectangles formed by means of all the hyperplanes parallel to the 
system ones which contain t\,..., t„. Then each rectangle < 0, it) can be written as 
the sum |Jt with appropriately chosen 7* C {l,...,s}. Hence, for C £ 5" we 
have

[(X(f,),...,X(t„)) €<?] = {(£ • • •, £ AAW)) G C] =
■eh «€/.

= [/(A(ViAX(Vi)) € C] = [(AX(V,),..., AX(V.)) € /"’(C)] ,

where /(t»i,..., u,) = «<>•••, ZZig/„ u‘)• Since AA(V)) on disjoint rectangles

Vi C R\ are independent, we conclude that

P[(AX(V1),...,AX(V,))e/-1(C)]= sup P[(AX(V1),...,AX(E))eK] =
KC/-‘(C)
A—compact

= sup P[(X(l1),...J(t,))€/(K)l = P[Wt1),...J(t.))6C]/(K)CC
A'—compact

and the continuity of f implies that f(K) are compact for A' compact. Hence it follows 
that the distribution of each vector (%(<«),... ,X(t„)), € R+, is a Radon
measure on (G",(7n). Using the well-known Kolmogorov’s consistency theorem it is 
not difficult to construct now the process X on appropriate product space GR+.

Denote by K the closed unit ball in H centered at zero and for every s > 0 put 
Ls = max(| log |s||, 1), LLs = £(£s) and so on. Take an arbitrary open convex neigh­
bourhood U of zero in G and consider sets of the form Ut = (1 + 6/2)(2g |f | LL|t|)*■ 
(K + e(|i|)iZ), where 6 > 0 and e : P+ —» R+ is a function specified below. Namely, 
suppose that (|<|££|t|)1/2e(|t|) is regularly increasing on R\, but (££s)^2e( s) is non­
increasing as s 6 R+ increases. Then {[/»} is a regularly varying family of globular 
sets and we can take Ut(-2q - 1) = (1 + ¿/4)(2g|t|££|t|)1/2(K + e(|f|)lZ). Moreover, 
introduce a function a : R+ —» R defined by a(s) = $-1(p(si/)) for s > 0, where $
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stands for the standard normal distribution function. Applying the main Theorem 
3.1 by Borell (1975) and using some familiar estimates for the tail of 4> we obtain 

(4-10)
P[AX(< 0, t)) I U,(-2q - 1)] = 1 - p((l + 6/4)(2q£Ljf|)l'2(K + £(|t|)tf)) <

< 1 - ${(1 + 6/4)(2q££|i|)*/’ + Q((l + 6/4)(2qLL|t|t|))} <
< Cexp{-((1 + 6/4)(2q££|t|)*/’ + Q((l + 6/4)(2q££|t|)1/2£(|t|)))2/2} =
= Cexp{—(1 + ¿/4)2q££|t| - (1 + 6/4)(2q££|t|),/2a((l + 6/4)(2q££|<|)1/2e(|t|))- 
— a2((l + ¿/4)(2q££|t|)*^2e(|t|))/2} .

If in addition e(s) \ 0 as s f oo in such a way that for some 0 < 6' < 6 and large s,

-(1 + 6/4)(2q££s)1^2a((l + 6/4)(2q££s)1/2£(s)) - | a2((l + 6/4)(2q££s)1/J£(s)) <

(4.11) <[672 + (i'/4)2)?££* ,

then taking B =< a,oo)’ C R+ with a fixed 0 < a < oo, we see that (4.1) is satisfied. 
Thus, based on Corollary 4.4, for an arbitrary 6 > 0 we have

(4.12) p[ Urn inf [AX(< 0,t)) € (1 + 6)(2q|t|££|t|)1/2(K + £(|t|)tZ]] =1 .
(—>0 or oo

Clearly, this happens provided (££s)*/2£(s) is bounded or tends to zero slowly enough. 
Note that in the last situation the speed of convergence to —oo of «(■) in (4.11) de­
pends on the behaviour of fi(sU') for s > 0 near zero. In general this behaviour is not 
known, but using the Minkowski’s functional of U the problem can be reduced to the 
lower tail of a Gaussian seminorm in R°°, and then on account of results by Hoffmann- 
Jprgensen, Shepp and Dudley (1979) it is seen that lower bounds for logp(sCZ), s > 0 
constitute a broad spectrum of functions. Let us consider a special case discussed also 
by Goodman and Kuelbs (1988), namely logp(s(7) > —Cs~’t for some positive con­
stants C, d-cf. Example 4.5 in Hoffmann-Jorgensen, Shepp and Dudley (1979). Then 
the inequality exp{-Cs-i} < p(si/) = $(a(s)) < exp{-o2(s)/2} valid for s > 0 
near zero implies that a2(s) < 2Cs~*, i.e. 0 > a(s) > — (2C)ll2s~il2. Hence, in this 
case the best possible rate of convergence is of order £(|i|) = d(££|t|)~^2+i^2* for a 
constant d = d(C, q, 6) > 0 sufficiently close to zero. The same rate of convergence 
was obtained by Goodman and Kuelbs (1988) in their Theorem 4 for the functional 
LIL in a separable Banach space and q = 1.

On the basis of our results we are able to describe as well the rate of convergence 
in the local LIL. Let

U, = (1 + ¿/2)(2q|t|££|t|)’/’ • (K + £(l/|t|)tf)

and let £'(s) = £(l/s) satisfy (4.11) in a neighbourhood of zero. Then, replacing £ by 
£', for a fixed 0 < b < oo and B =< 0,6)’ C R+ we get (4.1), whence again (4.12) 
with £ = £' follows. This result seems to be new even for q = 1. Furthermore, we 
can treat in an analogous way sets for which some coordinates of points may grow
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to infinity, while the other tend to zero. For simplicity, consider the case q = 2 and 
D =< 0, b > x < a, oo). Put

tZ, = (1 + ¿/2)(29|t|II(<2/<1))1/’ • (K + e(t2/t,)CZ) 

and assume (4.11) with LL(t2/<i) and e(<2/<i). It can be easily verified that now

f 1 • P[AX(< 0,<)) g (1 + 6/4)(29|<\LL(t2/tt + efa/h )U)]dt < oo ,
Jb 1*1 

and thus

Pf liminf [AX(<0,t))e(l+£)(29|t|L£(t2/t,)1/2(K + e(t2/<i 
l(, "io,

Observe that in the last case |<| = <i • t2 may stay bounded. Under the additional 
supposition log p(st/) > — Cs~f the best possible rate of convergence in the local 
LIL and ’’mixed” LIL is the same as previously (with |<| replaced by t2/<i in the 
last case). Evidently, letting 6 —♦ 0 through an arbitrary countable set of numbers we 
infer that

P[C(AX(< 0,t))/(29|t|LL|t|)1/2) CK) = 1 , 

where C(-) denotes the set of cluster points as t —* 0 or oo.

Remarks. 1) It is not known if there exists a separable version of the process X. 
However, it is possible to construct the continuous multiparameter Brownian sheet 
with values in a locally pseudoconvex metric linear space.

2). Since we consider p-Brownian surface generated by a Gaussian Radon mea­
sure p in G, the Lindelof property of G is in fact a superfluous assumption (cf. the 
Remark concluding Section 3).

Taking into account the above results the considered so far families of globular 
sets may be viewed as upper classes of sets for increments AX(< 0, <)). The intro­
duced thus notion of an upper class of sets is a natural generalization of an upper 
class of functions.

As a corollary arising from Theorem 4.2 we can obtain too a more precise descrip­
tion of the set of cluster points of AA'(< 0, <)). For this purpose we shall investigate 
how often the increments AA(< 0,i)) visit neighbourhoods of various points.

Definition 4.5. Let U = {Ui,t € R+} be a regularly varying family of globular 
neighbourhoods of zero in-a To topological Abelian group G. We say that U is 
absolutely regularly varying, if it satisfies the condition
(i) for all j > 0 and t,s € R+, a < t,

U.(-j) C [/,(-» , 

of Definition 4.1, and in addition
(ii) for every j >0 and 0 < e < 1, e € R\ there exists 0 < p < e, p e Rq+, such that

± Vpt(-j) C i/t<(->) for all t € R+ \ 3R’ ,
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and
(iii) for each j > 0, 0 < e < 1 and 0 > 1, e,fl € Rq+ there can be found a =

(a,...,a)€tf+,a>l so large that

for all t £ Rq+ \ dR\ and A £ A, A / 0.
(The symbol A denotes here, as before, the set of all projections in Rq onto 

various hyperplanes of the system of coordinates, and Xe = Id — A).

Corollary 4.6. Let X be a symmetric additive stochastic process and let U be 
an absolutely regularly varying family of globular neighbourhoods of zero in G. Assume 
that X and U are chosen in such a way that (4.1) is fulfilled. Moreover, suppose that 
there exists a mapping z : Rq+ —» G satisfying the condition: for each 0 < p € R+ and 
sufficiently large a £ R+, say a > ap,

(4.13) £ P[AX(< a*,a*+1)) £ z(a*+1) + = oo .
*€J

Then for every 0 < »/ £ P+ we have

(4.14) p[ limsup [AX(< 0,t)) € z(t) + [/,,<]] =1 ,
-»0 or oo

where B' = {a*+1 : k £ J}.

Proof. The proof is immediate. For a given r) > 0, rj € P+ choose 0 < p £ Rq+ 
such that ±Upi ± ••• ± Upt (2’ times) := ±2qUpt C [Zn<. Next fix > 1, ¡3 £ P+ 
and find a = (a,... ,a) > 1, satisfying (iii) with j = 0 and e = p. By Theorem 4.2 
we get AX(< 0, Aa* + Aca*+1)) € ^p(Aa‘+A'«‘+‘) Q Upai,+i a.s. for all but finitely 
many k £ J. Since the events C* = [AX(< a*,a*+1)) € z(a*+1) + l^a‘+>l 
independent, on account of the Borel-Cantelli lemma P[C* i.o. k € J] = 1. Hence it 
follows that with probability 1, AX(< 0,a*+1)) = AX(< a*,a*+1))—I)’8’ 
AX(< 0, Aa* + Aca*+1)) £ z(a*+1)±2’Ppa4+i C z(a*+1 ) + {/,„*+> for infinitely many 
k £ J, where sgn A = p for At = (0,...,0,t,-,,0,...,O,tj,,O,... ,0).

To describe the behaviour of Brownian surfaces discussed in Example 5 we need 
a simple estimate, which is a modification of Lemma 3.2 by Goodman (1988).

Lemma 4.7. Let pi be a centered Gaussian measure with variance parameter 1 
generated by the RKHS H in a locally convex linear topological space G. Furthermore, 
let U be an open convex neighbourhood of zero in G and let p be the Minkowski’s 
functional of U. Then for an arbitrary vector /> £ H, h / 0 and every e > 0 there 
exists a constant 0 < C(e) < oo such that

p(h + eU) > C(e){<&(-|h|[l - c/2p(«/»)]) - *(-|A|[l + e/2p(»h)])} •
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Proof. Let e = A/|A|, Px =< e,x > ie and Qx = x — Px, where < e,- >= 
i»-1« € G2(p) (see Example 5). The generalized Cameron-Martin formula (cf. Corol­
lary 2.1 by Borell (1976) ) yields

p(h + eU) = i exp{|h| < e,x > -|A|2/2}d/i(x) >
JtU

> i exp{|A| < e,x > — |A|2/2}dp(x) .
./{x:,<J»«)O/2}n<x:p<Qx)O/2}

Observe that Px and Qx are Gaussian random elements on (G, Q, fi) taking values in G 
with distributions pp and /jq generated by the canonical Gauss cylinder set measures 
on orthogonal subspaces of H, namely He = Linfe} and H/- = {A € H : h ± e} 
respectively. Hence it follows that Px and Qx are independent, and consequently

n(h + el/) > fi{x : p(Qx) < e/2} Z exp{|A| < e, x > -|A|2/2}d/i(i) .
J(x:,(Px)«/2}

Since < e, • > is a standard normal random variable on (G, and
{i : p(Px) < e/2} = fx : | < e,x > |p(iA)/|A| < e/2}, the last integral is equal 
to

i (2x)_1/2exp{-(s-|A|)2/2}ds =
J{-x|*|/2p(iA)<»<x|fc|/2p(iA)}

= $(-|A| [1 -e/2p(«7.)l) - *(-|A| [l+e/2p(ifc)]) .

Moreover, for each h € — A) is a Gaussian measure absolutely continuous
with respect to pq and /iq(H/- + (e/2)l/) = 1. Therefore fi{x : p(Qx) < e/2} = 
^Q{(£/2)U}>C(e)>0.

Example 6. Let X be a p-Brownian surface in a real locally convex linear 
topological (Lindelof) space G as described in Example 5. Choose an arbitrary vector 
A € K, A / 0 and an open convex neighbourhood U of zero in G. Put z(t) = 
(2i|t|£L|<|)1/2A and

Ut = (1 + ¿/2)(2?|<IW)1/2 • (K + e(|*|)Z7) , where e(s) = 0 > 0 .

It can be easily seen that now a((l + 6/4)(2qLLsy/2 -e(s)) —► oo as s —♦ oo, i.e. (4.11) 
is fulfilled, and thus also (4.1) with the same Ut(—2q - 1) as in Example 5. Observe 
next that in view of Corollary 4.1 by Borell (1976), K C r)U for some 0 < q < oo, 
because there always exists an open convex set V 9 0 such that V — V C U, and 
plainly p(V) > 0. Hence

(1 + 6/2)0(2q\t\LL\t\y^U CU,C d(2g|t|L£|*|)1/2i7

for some 0 < d < oo, and thus to verify (4.13) it is enough to show that for 
every 0 < p € R?+ and Pk = P[AX(< a*,at+1)) <= (2q|a*+1 |££|a*+1|)1/2A +
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|p|(2g|a*+1 |££|nt+* |)*^2L'], we have JZteJ = 00 Prov”^e<^ a > ap is sufficiently 
large. Now by Lemma 4.7,

Pk = p((o/a - l)'/2(2qLL\ak+'\)l'2h + \p\(a/a - l)q'2(2qLL\ak+l\)l'2U) >
> C(p,a,q){*(-\h\(a/a - l)''2{2qLL]ak+l\)l/2[\ - |p|/2p(«/.)))
- $(-|/i|(o/a - l)’/i(2i£L|a*+*|)1/J[l + |p|/2p(»/»)])} •

Using the inequality $(-a + 6) — $(—a — 6}>Cexp{-(a — ¿)2/2}/(a + 6) valid for 
0 < a,6 —» oo, we conclude that

Pk > C'exp{-\h\\a/a - 1)’,(1 - \p\/2p(,h))2 LL\ak+'\}/(LL\ak+'\Y'2 >
> C"/(log |fci +••• + *, + il)1/J • |*i + • •' + *, + g|’’ ,

where q' = |h|2(a/a — — |p|/2p(»Z»))2 and |Li + ••• + kq + g| > e. Notice next
that 1/(* + iX - C(p)/(r + j)F-1, P > 1- Thus, taking a = (a,... ,a) so large
that q' < q we obtain ^,k^jPk — oo» whenever B =< a,oo)q or < 0,6 >7. For the 
’’mixed” LIL we must use ££a'*' + I'+"'+'*’ + 1' instead of LI.|a*+11 to get the same 
conclusion, but in any case B cannot have a coordinate bounded away from 0 and oo 
simultaneously. On account of Corollary 4.6, choosing appropriate 0 < £ € Rq+ for a 
given r > 0 so that d(2q|ei|££|et|)1/2 < T(2g|t]££|f|)’/2 we obtain

P[AX(< 0, t))/(2q\t\LL\t\)i/2 € h + tU i.o. t e B'] = 1 ,

B' = {a*+1 : k € J}. If h = 0 then the same assertion is true as well, because then 
Pk > C(p,a,U) > 0.

In the case |h| < 1 we can obtain even a better result. Namely, let e(|<|) = 
0(££|t|)-*, where 0 > 0 and 0 < k < 1/2 are constants. Put

Pi = P[AX(< a*,a*+1)) € z(a‘+1) + |p|(2i|a‘+1|)1/i(|II|a*+1|)-,,+1/2tfj . 

Then we have

Pi > C'exp{-|h|2(a/a - l)’g(l - |p|/2p{«A)(II|a‘+1|X)2II|at+1|}/(£I|a*+1|)1/2 =
= C'exp{-|/»|’(a/a - 1)’9(1 - |p|/p(»h)(£I|a‘+1|X+

+ |p|2/4p2(th)(££|a*+1|)2“)££|a*+1|}/(££|a*+1|)1^2 >

> C"exp{-|/i|2(a/a - l)’9££|a*+1|}/(££|a‘+1|)*'2 .

Taking a so large that |/i|2(a,/a — 1)’ < 1, we conclude that Pi — Hence, in
view of Corollary 4.6 the assertion

P[AX(< 0,<))/(29|<|££|t|)1/2 € h + r[K+t7/(££|t|X] i.o. <6^ = 1 

for B' = {a*+1 : k 6 J} follows, provided 0 < q € B+ is chosen so that

(1 + ¿/2)(29|rZt|££|r,t|)1/2 • (K + e(MD^) Q r(29|t|££|t|)1/2 • (K + U/(LL\t\)K) ■
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The similar argument can be applied to the ’’mixed” LIL. Obviously, the Remark 2 
following Example 5 relates also to the case considered in Example 6.

Remark. The results of Examples 5 and 6 can be treated as an extension to 
the law of the iterated logarithm, which was known till now only for random elements 
or stochastic processes with values in metrizable linear spaces (c.f. LePage (1972), 
Kuelbs and LePage (1973), Borell (1976) § 10, and Jurlewicz (1987) ).

Now we turn to the problem of necessity of our integral test for statements like 
(4.2). The investigations are continued ab contrario, i.e. we seek for conditions 
ensuring that

P[ liminf (AX(< 0, <)) G tf,(-»)) = 0 ,S't—*0 or oo

or equivalently
P[ limsup (AX(< 0,«)) I ^«(-i))] = 1 •

B'
<—»0 or oo

On that occasion we find an analogue of the lower class of functions for increments 
of the process X. As was indicated by Goodman and Kuelbs (1988) in the discussion 
following their Corollary 2, about the ’’lower class statements” concerning strong 
limit theorems in infinite dimensional spaces very little is known except of certain 
very special cases. However, we are able to supply some information. The first 
straightforward theorem for general additive processes gives a result almost opposite 
to (4.2), but under the assumption which is rather uncomparable with (4.1). We have 
to impose in addition somewhat more restrictive conditions on the family U.

As above, let Ac = Id — A for a given projection A G A of R+ into a hyperplane of 
the system of coordinates. Note that for s < t, the points As + Xct, A G A represent 
various vertices of the rectangle < s,<).

Definition 4.8. An extended regularly varying family of globular sets is a 
family U = {£/<«,«), < s,t) C P^.} of globular sets indexed by all bounded rectangles 
of the form < s,<) C Rq+, which satisfies the following conditions:
(i) ' .< u,v) C< s,t) implies that U<Ut„>(—)) Q for every j > 0, and

(ii) ' given any 9-tuple a G Rq+, 0 < a < 1 and j > 0, there can be selected (3 G R+,
fl > 1 such that for each t G P+ \ 9R+

(4.15) £(-l)S8n aI/a,+v^(-j) C ,

where sgn A = p for Af = (0,..., 0, i<(1), 0,..., 0, ti(jl),0,..., 0).
(To simplify the writing £/<o,*) is denoted here and in the sequel by Ut.)

Observe that if 0 < a' < a < 1, then (4.15) is fulfilled for a' with the same /3, 
but if a < a" < 1, then (4.15) need not hold for a" and ¡3. Moreover, ¡3 = 
satisfying condition (ii)' of Definition 4.8 is not specified uniquely. Let Ea(j) be the 
set consisting of all these 9-tuples ¡3 = /3(a,j) for which (4.15) is true.

Let us consider the parameter set B = Aj x • • • x Ag C R9+ being the product of 
one-dimensional intervals Ai C R+. Suppose that B is the rectangle determined by 
the lower-left vertex T and upper-right vertex S. Then, given any a = (aj,..., a7) G
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R\, a > 1, denote by B(a) the rectangle in R\ having lower-left vertex T/a =
(Ti/ai,...,Tg/a.) and upper-right vertex Sa = (Siai,...,5foy). It can be easily
noted that if < a*,at+1 > C\D / 0 for some k € Z, then Aa* + Ac<i*: + 1 € B(a) for every
A € A. Next, by analogy to B', define the set of indices B'(a} — {a* : a* € B(a)}.
In contradiction with the case of lint inf, investigating limsupDi for some events Dt
we do not require that t € B', but t £ B'(a). Thus the limit limsup Dt is

I —♦ 0 or w
given by

limsup Dt = Dt .
l’—Oorcc 0<T,<T,l«T,.Ti>

<€»'(«)

Theorem 4.9. Let X be a symmetric additive stochastic process taking values in 
a Tq topological Abelian group G with the <j-field Q and let U be an extended regularly 
varying family of globular sets. If for some 0 < a < 1 there exists a € Ea(2q) such 
that

(4.16) JB .= [ inf P[AX(o,t))^V<,,.«)]dt = o0,
Jb |t| o<«<«

then for each Q < a' < a,

(4-17) p[ limsup [AX(<0,f))iÉC/a-«(-2«)l] 
L B'(«k J

1.
0 or oo

Proof. Obviously, it suffices to prove (4.17) for a' = a. For a fixed a € PQ(2q) 
satisfying (4.16), define the sets of indices J = {k € Z’ :< ak,ak+l > C\B 0} and 
J' = {fc € Z? : ak € B(a)}. Then B'(a) = {a* : k € J'} . First, we will show that

(4.18) p[ n y [AX«0,t))<flU-2,)]]=l.

It will be shown below that (4.17) follows easily from (4.18). Consider the independent 
events Bt = {AX(< a*,at+1)) $ £•*<«* t<*+t)(—2g)}. On account of Lemma 3.2 and 
condition (i)' of Definition 4.8, for i € (ak,ak+1 > vze have

(4.19) P(B*] > 4~»P[AX(< o‘,f)) I £/<„>,.>+.,]

>4-’P[AX(<a‘,f))£ ,.,)]>
>4-’ inf P[AX(<M))££7<.,.O1.()<•<<

Hence

(4.20)
(lna)»P[Bt] = Z ¿iP[Bt]<ft>

>4-’ f inf P[AX(<s,t)W ,
/<•* ..»+*> 1*1 °i‘<»
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and in consequence, by (4.16),

(4.21) £P[Bi)>(41na)-’Jfl = oo.
*€J

Since Bk are independent events, from the Borel-Cantelli lemma it follows now that 
P[Bk i.o. A- € J] = 1. In other words,

»In u «»)=>•
}<n fc<<j,n> 
j,»€l k€J

Notice next that in view of (4.15) the event Bk implies that at least one of the 
events {AX(< 0,Aa* + Aca*+1)) £ CAAoi+A<Qa»+i(—2q)},' A € A holds. Furthermore, 
the points of the form Aa* + Aea*+1, A € A, are various vertices of the rectangle 
< ak, ak+1), i.e. Aa* + Aca*+1 = ak' for some k' = k'(Jc, A) € J' provided k e J. Hence 
we infer that with probability 1 the events Ck = {AX(< 0, a*)) £ Uaah{—2q~)} occur 
for infinitely many indices k € J', because U\aak+xcaak+t(-2q) Q Uxa'+X'aaU-'i-Zq)- 
The last assertion implies easily (4.18).

Finally, note that for any events Dt and arbitrary T\,Ti € R+, 0 < T) < T2 we 
can find j, n € J', j < n, such that

< Ti,Tj >c nB'(a) 2 < o',o" >e fl B'(a) .

Consequently,

u £<2 u n u d‘>
<i<T,,T,> ti<ai,an> i<n tf<a> ,an>

teB'(a) teB'(a) i€fl'(a)

and thus
n u d'S n u
i<n »««<#"> 0<T,<Tj«i<Ti,Tj>

>,n€J' <€B'(a) <€B'(a)

Therefore, the relation P f) ><„ C*| = 1 implies (4.17) via (4.18), which
1 >,n€J' t€J’ J

concludes the proof.

To present an example of an extended regularly varying family of globular sets 
we introduce the notion of a function with regularly varying increments. We say that 
g : P+ —» R+ has regularly varying increments, if g satisfies conditions (a), (b) of a 
regularly increasing function, and moreover
(d) A^(< s, <)) > 0 for every nonempty rectangle < s, t) C R+;
(e) limi>„y'i ” l) — 0 ;

and
(f) for each a € R+, 0 < a < 1 there exists /3 6 R+, 0 > 1 such that for all 

teR'+\dR\,
£ Aff(< 0, Af + Ac«/fc)) < *>#)) •
A€A
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The simplest example of a function satisfying the above requirements is a function 
which generates the Lebesgue measure, namely g(t) = |f|. Evidently, conditions (a), 
(b), (d) and (e) are then satisfied, so that it is enough to verify (f). Since = 0
and the vertices of the rectangle < t,ßt) are of the form At + \cßt, (f) will follow 
easily if we prove that

2 Y, 9(* + Ac3t) + g(Qßt) < g(ßt),
A#0

or
2£|Al + A^||t|<|J9|(l-|a|)|t|.

A#0

If ß — (ß,...,ß), then the above inequality is a consequence of the relation 2 • 2’ • 
/?’-1 < ßi(\ — |o|), thus it suffices to take ß > 2 • 2*/(l — |<*|). A similar argument 
shows that p(t) = |f|r, r > 0 possesses regularly varying increments. Furthermore, 
since

dti...dtg ~ dti...dtq

for t > 6 = (6,... ,6) € Ä+ sufficiently large, g(t) — (|f|££|t|)1/2 has also regularly 
varying increments on B =< b, oo)4.

Example 7. Let if be a symmetric open convex neighbourhood of zero in a 
linear topological Lindelof space G and let p be the Minkowski's functional for U. 
Take an arbitrary function g : R+ —♦ R+ with regularly varying increments and put

= {x 6 G : p(z) < Aj(< s,t))} , < s,t) C R+ .

Then it can be easily seen that ll = {if<a,t),< «>0 C -R+} is an extended regularly 
varying family of globular sets. Moreover, assuming that the process X for our family 
of globular sets satisfies (4.16) with a number a € Ea(2q), for each e € R+ such that 
0 < £ < f(ot) = ini{g(at]/g(t): t € R+ \ dR+}, we have

p[ limsup [p(AX(< 0, <)) > £ÿ(0]l = 1 • 
1 »'<•>„ J■ 0 or oo

Indeed, by Theorem 4.9, (4.17) holds for Uat(~2q)- Moreover, in the proof of Proposi­
tion 2.2 Uat(—2q) can be chosen in such a way that for an arbitrarily fixed 0 < b < 1, 
{z € G : p(z) < bg(at)} Ç Ua,(-2q) for all t € R9+ \ dR\. Using property (e) 
of g we get g(at) > f(a)g(t) > j(<)(/(a) + e)/2 for all t £ 9P+, and thus taking 
b > 2e/(f(a) + e) we obtain the desired assertion.

By analogy to Corollary 4.3 we shall formulate also a ”desymmetrized” version 
of Theorem 4.9.

Corollary 4.10. Let X be a stochastic process satisfying the assumptions of 
Theorem 4.9 but not necessarily symmetric and let U = {U<,, «) :< M)C P^.} be an 
extended regularly varying family of globular sets such that ~
are Baire sets (and hence globular) satisfying Wf<»,t)(—j) = j) ~
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< s,t) C R\, j > 1- Furthermore, assume that for some 0 < a < 1 there exists 
a e Ea(2q) such that

(4.22) J'B := [ inf P x P'[AX(< 3, t)) - AX'(< s,f)) < .,)]<« = oo .

Then there can be found a deterministic function z : P+ ~® s«cA that for an 
arbitrary a' 6 R+, 0 < a' < a,

(4.23) pf limsup {ÁX(<OJ))Í i(f) + Vr«-,(-2ę)]] =1
___• 0 or oo

Proof. The proof of (4.23) goes along the lines that of Corollary 4.3 with an 
application of Theorem 4.9 instead of Theorem 4.2, so we omit it.

It can be seen that our Theorem 4.2 was inspired by Theorems 1, 5 and Remark 
1 a) of Chapter VI, §6 given by Gikhman and Skorohod (1965) (which are due in fact 
to Khintchine and Gnedenko). Therefore one may ask a question why there are not 
obtained any generalizations of Theorems 2, 6 and Remark 1 b), Chapter VI, §6 in 
Gikhman and Skorohod’s (1965) book concerning the lower class of functions? It is 
worth mentioning here that we capnot provide analogous statements, because their 
proofs are incorrect. To see this, consider the below example.

Example 8. (A counterexample) Let £ be a real valued one-parameter standard 
Brownian motion. Choose 1 < a € R+ so close to 1 that

P[í(l)> 1/7^1] <(i-$(i))/4,

where $ is the standard normal distribution function. Next, for a fixed k € {1,2,...} 
define g(at) = £ > 0 with £ < y/a-1, g(ak+l) = Vak+X and Bt = {£(at+1) —£(afc) > 
g(at+x)-g(ak)}. Estimating P[B*] by analogy to the method employed by Gikhman 
and Skorohod (1965), Chapter VI, §6, we would obtain

P[Pt] > f<# ’ PU(afc+1) - z > 9(ak+1) - g(ak)}P[((ak) € dz] >

> P[£(ak+1) > 0(«*+?)jP(€(a*) < e] > (1 - <¡>(l))/2 .

On the other hand we have'

P[Pt] = P«(a‘(a - 1)) > - ej < P[C(1) > 1/^T] < (1 - $(l))/4 ,

which leads to a contradiction. Thus the lower bound for P[St] given by Gikhman 
and Skorohod is not valid. This is a consequence of the fact that £(ai+1) — z and 
£(a*) — {(0) are not independent.

Conditions (4.1) and (4.16) describing upper and lower classes of sets for incre­
ments of an additive group-valued process X are not comparable. From this point of
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view (4.16) does not seem completely satisfactory. However, assuming homogeneity 
of increments of the process X we are able to give lower class statement under an 
assumption that is almost alternative to (4.1). First we formulate certain regularity 
conditions which have to satisfy globular sets.

Definition 4.11. Let U = {17,,t G P+} be a family of globular neighbourhoods 
of zero in G. We say that U is completely regularly varying, if it satisfies conditions 
(i) and (ii) of Definitions 4.1 and 4.5 respectively, and
(iv) for every j > 1 and a G 0 < a < 1 there exist a' G P+, a < a' < 1 and 

f' G , e' > 0 such that

+ Uat(-j) C for all t G R\ \ dR\ .

We can now investigate only the case when all the coordinates of f tend simultane­
ously either to 0 or oo. Therefore the index set B should be slightly changed. Namely, 
suppose that B is of the form (JieZ < T^,S^ >, where 0 < T*<,> < S**', < T',+1)
and S(,) < S(i+1) for each t G Z = {...,-2,-1,0,1,2,... }, - 0 as
i —» -oo and T^, —> oo as t —• oo. Evidently, if the case t —» 0 is only treated
then B may be bounded from above, and for t —♦ oo the set B may be bounded 
away from zero. Moreover, because of the form of B, we introduce the compan­
ion parameter set Ba = Ui¿z < /a >, taking 1 > a = (a,...,a) € R^.,
S^/a = (Si,)/o,...,SÍ*)/a). As previously, we consider the behaviour of X only 
along the discrete set of indices of the form

B'aa = {„"+"<*+»> = (a».+*i(*i+n ...,a«,+N,(*,+«) € Ba : n, N G N», k € Z’} 

with a constant a = (a,..., a) G R+, a > 1 depending on a, and examine the limit

limsup Dt = Q U D‘
/-Lin ™ 0<Tl<T’t—.0 0, 00

for some events Dt to be specified later.
We must impose also certain conditions on distributions of the process considered. 

Assume the following:
1°. For each A ¿ A, A / 0 and a fixed a G P+,

(4.24) AX(< 0, At + Aea)) -» 0 in probability as t -» 0 ;

2°. For each j >0 and any fixed 6 G P+, 0 < 6 < 1 there exists a constant t¡ > 0 
such that

(4.25) P[AX(< 0, t)) G > r¡ > 0

for all t € P+ sufficiently close to zero ;
3°. For every A, A' G A, A < A' and fixed arbitrarily s,6 G P+, 6 > 0,

(4.26) P[AX(< 0, At + A‘s)) G ±tfí(v,+A<«.)(-»] - 1 as t -» oo ,
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where j > 0 and A < X' means that A£ o A' / 0, A£ = Id — A;
4°. For each j > 0 and a fixed 6 € R+, 0 < 6 < 1, there exists a constant rj > 0 

such that

(4.27) P[AX(< 0,*)) € Utt(-j)} > t) > 0

for all sufficiently large t € P+.
These conditions are applied in fact only for j = 2q. Furthermore, it is clear that 

for < —» 0 conditions (4.26)-(4.27) are not needed, and if t —» oo then (4.24)-(4.25) 
are superfluous.

Theorem 4.12. Lei X — (X(<), t € P+} be a stationary symmetric additive 
stochastic process taking values in a To topological Abelian group G with the a-field Q 
and let ll be a completely regularly varying family of globular sets. If

(4.28) Sb~/bW P[AX(< °’0) * A = 00 ’
then for an arbitrary a € R?+, 0 < a < 1, there exists a € R+, a > 1 sufficiently close 
to 1, such that

(4.29) p[ limsup (AX(< 0,t)) £ fM"^))} = 1 .

t —* 0 or oo

Proof. For a given a € P*., 0 < a < 1, fix a' € R9+, y/a < o' < 1 and 
0 < e1 € P+ satisfying condition (iv) of Definition 4.11 with o replaced by y/a =

■ ■ ■, y/oi)- Next choose a > 1, a € P+ so close to 1 that a'a < 1 and then 
select No € N* = {1,2,...}* so large that y/aa^/(aN — 1) = (y/aiaNl /(aNl — 1), 
...,y/a^aN'/(aN* — 1)) < y/aa < 1 for all N > No. Define the set of indices J = 
{* € Z* :< a‘,a‘+1 > OP / 0} similarly as in the proof of Theorem 4.9. First we
prove that

£p[AA-(< 0,o‘+*)) i V^(-2q)\ = 00 .
4€J

Notice that o'a4+1 < t whenever t €< a*,a*+1 >, so that Uf(—2q) C D£/(1*+l(—2qf 
Hence, by Lemma 3.2,

(4.30)
P[AX(< 0,at+1)) 4 17o..»+,(-29)] > P[AX(< 0,«t+1)) < iZt(-2g)] >

> 4~«P[AX(< 0,1)) 4 if«) .

Consequently •

(lna)’P|AX(< 0,a*+1)) 4 Uo..>+t(-2q)} > 4~* f ~P[AX(< 0,t)) $ £f,]<ft,
J<a*,**+•> FI

and thus

(4.31) £P[AX(< 0,a‘+I)) $ £/„,.»+,(-2,)] > (41na)~*SB = oo .
k€J
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From (4.31) it follows that for an arbitrarily fixed N € N4, N > No there can be 
found n € N4, 1 < n < N such that

£ p(AX(< °’ a"+w‘)) < = °° •
*€J.

where JB = {Jb € V : n — 1 + Nk € J). The 9-tuple N will be specified later. Given 
any N € N4, define

An\ = an+Nk/(aN - 1) = (a"*+J*‘‘‘/(aw> - l),...,a"’+"<t»/(a'*’ - 1))

and
= (AX(< 4?*, 4%)) * ^..***(-29)), t G Jn - 

Since 4\*+i — = an+Nt, taking into account stationarity of X we obtain

52 P[P<N)] = 52 P[AX(< 0,a"+Nt)) < Ua.a^>(-2q)} = 00 .
*€J. *«J.

However, are independent, thus with probability 1 infinitely many events £¡2*, 
k € Jn occur. To simplify the notation and avoid writing subscripts we denote by {fc} 
an infinite subsequence for which hold a.s., k —» —00 or k —> 00. In the next 
step of the proof we shall select from (Jk) further subsequences having -appropriate 
properties.

Let e,p € P+, e,p > 0 be chosen in such a way that ±24i/<<(—2q) C Ut't(-2q) 
and ±24CZP<(-2q) C Utt{-2q) for all t € P+ \ 3P+- Suppose that b(j) € {it} is 
already fixed. On account of (4.24) we can find k(j + 1) < i(j), fc(j + 1) € {fc} such 
that for each A, p € A, A, p / 0,

P[AX(< 0»4,A*Q+1)+*‘!*(j)+»-si)) $ ±£^<«+i»*o>(—29)] < 1/2-’ .

Then for an arbitrary p € A, p / 0 we have

$252PlA-^(< 0»4,a*O+i)+a«*(j)+i-i‘1^ ±^/x«+'lf*O)(_29)] <
>>1 A#0

< 2« 521/2i < 00 .
i>i

and hence with probability 1 for j > ji = ji(w) and each A, p / 0,

(4.32) AX(< Oi A^ jUkQ.+1)+A«Jky)+1_(ll)) G ±17pa-+N»o)(-29) .

Similarly we can select an increasing sequence m(j) C {¿} with analogous prop­
erties. Indeed, let us fix N G N4, N > Nq so large that l/(aN — 1) = (l/(aNl — 1), 
... ,l/(aw’ — 1)) < p and take 6 € P+, 6 > 0 satisfying the condition SaN < 1. Then

0AN,Am(»+A'm(>+l)+r-pl ~ 0AN,Id(m(}+l))+l-Ml - P ’
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so that
. ±tZ..(.) (~2g) C ±U„+n„v+,)(-2q) .

In consequence, by (4.26),

P[A.Y(< 0, -Al/v,Am(»+A«mo+1)+I-^1)) ¿^o»+«’"(>+>)(-2g)] <

< P|AJC(< OM« .O)+V„(>HW1.W)) ( - 0

as m(j + 1) -» oo. Therefore, given any m(j) 6 {£} there can be found m(j + 1) > 
m(J), m(j + 1) € {&} such that for every X,fi € A, A,p / 0,

P[AJY(< 0M/v,Am(»+A«mO+l)+l-»il  ̂ ±I/pa«+Nm(j+i)(— 2q)] < 1/2J .

Hence as previously we conclude that with probability 1 for j > jj = j2(w) and each 
A,p € A, A,/i / 0,

(4.33) AX(< 0, € ±lZ<m»+wmo+i)(-2i) .

Consider the events

~ JA-V(< A^Nje^+ly+1_lti, A^N^-y+1_itl')) € £^h,»+«*U)(—2$)] ,

and
C>* = [AX(< AN^m, ->)^1_itl, A^n>IB(y+1)+1_Ml)) € E^,„»+*mo+i)(-2g)] 

for fi 6 A, n yt 0. Observe that

,*(»+1-1.1 ~ -^jv,*o+i)+i-pi = a"+/v*(-')y(Al,j,^) ,

where
<p(N,j,n) = aN~l>N[l - o-"<‘<»-*(J+i))]/(a* - 1) < paN . 

Consequently

^MNj»a»-»-*‘0)(-2g) C U/M„+m.uy(-2q) for 6aN < 1 .

Based on (4.25) and stationarity of X we infer that for large enough j,

P[Bf] = P[AX(< O,a"+JV‘<>^(Af,j»)) € i>+io0>(-2g)] >

> P(AX(< 0,a"+Nt(>MlV,>,/!))) € CZMN,;»«“+w‘W)(-29)] V > 0 •

By analogy we have

where
^(AT,j,/i) = - a-Nim(i+l}~m^]/(aN - 1) < paN ,
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so that

Hence, by (4.27),

PIC/) > P[AX(< 0,an+"m<>+1^(NJ,/t))) € Ut^N^^u^(-2q)] > , > 0 

for all sufficiently large j. Thus in both cases we obtain

52 P(£?-] = oo and 52 P(C;„] = oo ,
>’>i ~J">» ----------

where {)'} and {/'} are arbitrary infinite subsequences of {j}. Since {B*1} and {C**} 
for a fixed ft / 0 are families of independent events, there exist two subsequences {}'} 
and {)"} of {}} such that By, and CS, hold with probability 1 for all j',j" and every 
ft € A, n / 0. Hence and from (4.32}-(4.33) it follows that either for all j' > jj and
m/o.

AX(< = AX(< t4(Wi)ky»+i)+1_<Ipt4jVi*w,)+1_(|1))

- 52(-l)’8n AA-Y(< 0Mtf)A*(?«+i)+A«*(f)+i-iij)) e ^2i[^<w«+jv*o«)(-2q) £
A#0

£ 2q) a.s. ,

or for all j" > j? and ft 0,

AX(< 0,t4(^)ni(j„+i)+1_„1)) - AX(<

- 52(-l)sgn AAX(< 0, A(N)Am(j„)+A«m0,,+j)+1_<ii)) € ±2,i/pa.+j»mO»+,)(-2q) C
A#0

£ ^<0’>+Nm(j'-+i)(—2q) a.s.

Notice now that in the first case for j' > ji we get

52(-l)’«° "AX(< 0, j+j.,,!)) - AX(< AN,*(j.p A^*(?)+,))
<«#o
- AX(< 0, A$kj()+i)) e ±2’CZ„.+NsO-,(-2q) £ Ut.a.+Htu^-2g) ,

and on the other hand

AX(< 2q)

with probability 1 , because for k = k(j'), occurs. However, by the choice of e' 
and-a' we have <*A^a^,j+1 < ^aan+Nk^ \ and hence

if,,an+w*o')(~2q) + U .<»> (~2q) £ ^o'«»+'**u')(—2q) .
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Therefore
AX(< 0, A (n)

N, «j')+i <«>N. »(>')+> 1-2«)» i uaA
for all Jb(j'), j' > ji with probability 1 , since otherwise we would get

4(n) (") «(»){AX(< -AjVf*(y>)+1)) AX(< 0, ^JV,*(>')+!))} + AX(< 0, ■A/vi*(y.)+1)) €
€ t^,<.«+N»o')(-2g) ,

which leads to a contradiction. Arguing similarly in the second case, we see that with 
probability 1 for all m(j" + 1), j" > jj,

AX(<0,A(") )) * UoA(») (-2«) •

Finally we conclude that

4n u [AX(< 0,<)) É IM-2«)]] = 1 •

Remarks. 1) In the proof of Theorem 4.12 we have shown that for infinitely 
many indices of the form A^^,+1 = an+N^k +1^/(a‘v — 1) we have

A-Y(<0,a£V+1))$ UoA„ (~2q) a.s.,
N.t'+l

where n — 1 + Nk' € J = {k € Z’ :< a*,ai+1 > DB / 0}. Let us observe that an + N(t' + l)/(aN _ 1) > an+N(*' + l)/aN = an+Nk'^ Qn the other h&nd
an+N(*'+i>/(aN - n = (aN/(aN - l))an+Nk' < an+Nt'+1 for N > No. Since 
< an+Nk ,an+Nk > CIS / 0 and y/aa < 1, we conclude that an+Nk' and 
an+N* +i g #Q) j e A^p+1 € Ba- However, the process X should be indexed 
by a larger parameter set than Ba because we consider increments of X on various 
rectangles, and they are well-defined provided all the vertices of these rectangles are 
in the domain of X.

2) If the parameter set B is bounded from above, then in (4.29) the limsup as 
B'a,

t —+ 0 should be considered, and if B is bounded away from 0 but unbounded from 

above, then in (4.29) t -^S oo should be written.

Corollary 4.13. Let X be a stochastic process satisfying all the assumptions of 
Theorem 4.12 but not necessarily symmetric and letU = {Ut,t € R\} be a completely 
regularly varying family of globular sets such that W, = Ut — Ut are Baire sets (and 
hence globular) satisfying t € R\, j > 1. Furthermore,
assume that conditions (4.24) - (4.27) are true, and

(4.34) S'B := [ 1 • P x P'[AX(< 0,f)) - AX'(< 0,f)) i VTt]dt = oo .
Jb 1*1
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Then there exists a deterministic function x : Rq+ —* G, such that for an arbitrary 
a € K+, 0 < or < 1, there can be found a € R\, a > 1 sufficiently close to 1 satisfying

(4.35) p[ Urn sup (AA(< 0, <)) £ z(<) + ^„,(-2?)]] = 1 .
® a,« „I ——♦ 0 or x

Proof. Observe that under our hypotheses conditions (4.24) - (4.27) with A" 
replaced by A - A', P by P x P', tZ<(—J) by W<(— j) and zj by zj2 are fulfilled as well. 
Hence, based on Theorem 4.12 we infer that for an arbitrary a 6 Rq+, 0 < a < 1, 
there can be chosen a € Rq+, a > 1, such that

PxP'j limsup [AA(<0,t))~ AA'(<0,t)) g W'a((-2<j)]] = 1 .
,a< * 0 or x

To conclude the proof we use the similar argument as in Corollary 4.3.

In order to formulate an example we introduce the notion of a completely regu­
larly increasing function.

A function g : Rq+ —> R+ is called here completely regularly increasing, if it 
satisfies conditions (a), (b), (e) of a function with regularly varying increments, and
(g) for each e 6 P* , 0 < e < 1 there can be found p € Rq+, 0 < p < e such that

2g(pt) < s(et) for all t € P+ \ dR\ ;

(h) for each a € R+, 0 < a < 1 there exist a' € R+, o < a' < 1 and e' e R^, e1 > 0 
such that

g(e't) + g(at) < g(a't) for all t 6 P+ \ dRq+ .

It can be easily seen that g(t) = |<|r, r > 0 and g(t) = (|t|££|f |)*^2 are completely 
regularly increasing functions.

Example 9. Let U be a symmetric convex open neighbourhood of zero in a 
linear topological Lindelof space G and let p be the Minkowski’s functional for U. 
Furthermore, let A = {A(t),t € P+} be a symmetric stationary additive stochastic 
process taking values in G. Denote L’< = (x € G : p(x) < y(t)}, t 6 Rq+, where 
g : Rq+ —» R+ is a completely regularly increasing function and assume that for the 
defined so family of globular sets the process A satisfies conditions (4.24)-(4.27). 
Then for each e € R+, 0 < £ < 1 there exist a € R+, 0 < a < 1 and a € R+, 1 < a 
sufficiently close to 1 such that

(4.36) P[ limsup [p(AA(< 0,i))) > £$(<))] = 1 .

t —* 0 Of X

Indeed, on the basis of Proposition 2.2 and properties of g we infer that U = {Ut,t € 
Rq+ ) is a completely regularly varying family of symmetric globular sets in G. More­
over, applying Theorem 4.12 we see that (4.29) is true for every a € Rq+, 0 < a < 1 and
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l7Q((-2q), along with a € R+, 1 < a depending on a. Note now that Uat(-2q) in the 
proof of Proposition 2.2 can be chosen in such a way that for a fixed arbitrarily b € 72+, 
0 < b < 1, {x € G : p(x) < bg(at)} C Uot{-2q} for all t € R+ \ dR+- Choose ft € 72+ 
and b € R+ so that 1 > bf(a) > e, where /(a) = inf{g(at)/g(t) : t € R?+\ 5/2+}. 
Then {z € G : p(x) < e?(t)} Q {x € G : p(z) < bg(at)}, which implies (4.36).

Remark. The last example shows that our Theorem 4.12 is a far reaching 
generalization of Theorem 2 by Zinccnko (1979).

Part III of this paper, devoted to limit theorems for additive processes in torus, 
will appear soon in the next issue of the Annales UMCS.
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