LUBLIN-POLONIA

Shinji YAMASHITA (Tokyo)

The Peak Sets

Abstract

This is a survey article on the set $M(\phi)$ of points where a "derivative" $\$$ attains local maxima. A typical example of Φ is the Bloch derivative $F_{f}(z)=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|$ of ρ holomorphic in the unit disk. The components of $M\left(F_{f}\right)$ are classified into the three: isolated points; simple analytic arcs ending nowhere in the disk; analytic Jordan curves. The remaining which are mainly studied are the spherical derivative $\left|f^{\prime}\right| /\left(1+|f|^{2}\right)$ of f meromorphic in a domain in the complex plane and the minus of the Gauss curvature of a minimal surface in the Euclidean space with the parameter in a domain in the plane. Parts of this article were presented on October 21, 1992, at the meeting of the Minisemester: "Functions of One Complex Variable" (in the Semester on Complex Analysis) held at Stefan Banach International Mathematical Center in Warsaw, Poland.

I wish to express my deepest gratitude to Professor Jan Krzyż, the organizer of the minisemester.

1. Introduction. We shall study the set $M(\Phi)$, in a domain in the complex plane $\mathbf{C}=\{|z|<\infty\}$, set where the "derivatives", symbolically denoted by Φ, attain local maxima. We call $M(\Phi)$ the peak set of Φ. Most of the results in the present paper are extracted from $[26,27,28]$ and notation is partially different from that in the cited papers.

We shall be mainly concerned with the peak sets of the following three types of Φ :
(BD) The Bloch derivative:

$$
F_{f}(z)=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|
$$

of f holomorphic in the disk $D=\{|z|<1\}$.
(SD) The spherical derivative:

$$
f^{\# \#}=\left|f^{\prime}\right| /\left(1+|f|^{2}\right)
$$

of f meromorphic in a domain $G \subset \mathbf{C}$.
(GC) The minus of the Gauss curvature: $-K$ of a regular minimal surface x : $G \rightarrow \mathcal{R}^{3}$ in the Euclidean space \mathcal{R}^{3}.

Suppose that Φ is considered in a domain $G \subset C$. Let $M(\Phi)$ be the set of points $z_{0} \in G$ such that $\Phi\left(z_{0}\right) \geq \Phi(z)$ in a disk $\left\{\left|z-z_{0}\right|<\delta\left(z_{0}\right)\right\} \subset G\left(\delta\left(z_{0}\right)\right.$ depends on
$\left.z_{0}\right)$ and let $M^{\bullet}(\Phi)$ be the set of points $z_{0} \in G$ such that $\Phi\left(z_{0}\right) \geq \Phi(z)$ for all $z \in G$. Thus $M^{\bullet}(\Phi) \subset M(\Phi)$ is immediate.

In all the described cases, except for the trivial ones, the connected components of the peak set $M(\Phi)$ are classified into three types:
(1) isolated points;
(2) simple analytic curves ending nowhere in G;
(3) analytic Jordan curves.

Since Φ is shown to be constant on curves of types (2) and (3) we have the same classification of the set $M^{\bullet}(\Phi)$. Let $M_{k}(\Phi)$ be the set of components of $M(\Phi)$ of type (k) explained in the above, $k=1,2,3$. Similarly for $M_{k}^{*}(\Phi)$.

We shall study geometric properties of $M(\Phi)$ for Φ of (BD) or (SD). A typical one is that if $c \in M_{2}\left(F_{f}\right) \cup M_{3}\left(F_{f}\right)$, then the slope of the tangent at each $z \in$ c to c is $-\tan \{\Theta(z) / 2\}$, where $\Theta(z)$ is the argument of the Schwarzian derivative $\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-2^{-1}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$ of f at z.

In conjunction with (BD) we shall consider the density of the Poincaré metric in Section 5. The results in this section are not explicitly stated in any paper of $[26,27$, 28]. Applications of the case (SD) are to know behaviour of solutions of a nonlinear elliptic partial differential equation and to know behaviour of the Gauss curvature of graphs of harmonic functions. These are summarized in Sections 7 and 8.

Suppose that a $c \in M_{3}(\Phi)$ exists and let Δ be the Jordan domain bounded by c. Here we assume that $\Delta \subset G$ in cases (SD) and (GC). In case (BD), the non-Euclidean area of Δ is expressed by the number of the zeros of f^{\prime} in Δ. In case (SD) the spherical area of the Riemann image surface (the Riemannian image, for short) of Δ by f is expressed by the number of the zeros and poles of f^{\prime} in Δ. Finally, in case (GC) the total curvature of the subsurface with parameter restricted to Δ is expressed by the number of the zeros and poles of the derivative g^{\prime} in Δ, where g is the Gauss map of the whole surface.
2. The Bloch derivative. We begin with case (BD). The Bloch derivative at z of a function f holomorphic in D is

$$
F_{f}(z) \equiv\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=\lim _{w \rightarrow 2}(|f(w)-f(z)| / \pi(w, z))
$$

where $\pi(w, z)=\tanh ^{-1}(|z-w| /|1-\bar{w} z|)$ with $\tanh ^{-1} x=(1 / 2) \log \{(1+x) /(1-x)\}$, $0 \leq x<1$, is the Poincaré distance of w and z in D. The Bloch derivative appears in the proof of the Bloch theorem:

There exists a universal constant $c_{B}>0$, called the Bloch constant, such that if f is holomorphic in D and $f^{\prime}(0)=1$, then the Riemannian image of D by f over
C contains an open one-sheeted disk of (Euclidean) radius c_{B}. See [13].
We nowadays call f Bloch if F_{ρ} is bounded in D. This term "Bloch function" prevails, among recent papers, ignoring R. M. Robinson's earlier paper [19].

If f is nonconstant and holomorphic in D, then $1 / F_{f}$ is subharmonic in D minus the zeros of f^{\prime}; actually, $\Delta \log \left(1 / F_{f}(z)\right)=4 /\left(1-|z|^{2}\right)^{2}>0$ there, and $1 / F_{f}=$ $\exp \left[\log \left(1 / F_{f}\right)\right]$. Thus, F_{f} has "trivial" local minimum at each zero of f^{\prime} and has no local minimum at any other point of D.

We begin with the theorem essentialiy due to J.A. Cima, W.R. Wogen [5], S. Ruscheweyh and K.-J. Wirths [20] (they all actually suppose that f is Bloch; see [26] and also $[4,21,24]$).

Theorem 2.1. Suppose that $M\left(F_{f}\right)$ is nonempty for f nonconstant and holo. morphic in D. Then the components of $M\left(F_{f}\right)$ are at most countable and they consist of the three types (1), (2), (3). Furthermore, the isolated points of $M\left(F_{j}\right)$ accumulate nowhere in D.

For g nonconstant and meromorphic in G we denote $\lambda(g)=g^{\prime \prime} / g^{\prime}$, the logarithmic derivative of g^{\prime}. Then the meromorphic function $\sigma(g)=\lambda(g)^{\prime}-2^{-1} \lambda(g)^{2}$ is the Schwarzian derivative of g. We observe that if $z \in M\left(F_{\rho}\right)$ for nonconstant f, then $f^{\prime}(z) \neq 0$ and

$$
0=(\partial / \partial z) \log F_{f}(z)=2^{-t} \lambda(f)(z)-\bar{z} /\left(1-|z|^{2}\right),
$$

so that, $\bar{z}=H_{f}(z)$, where

$$
\begin{equation*}
H_{f}(z)=\lambda(f)(z) /(z \lambda(f)(z)+2) \tag{2.1}
\end{equation*}
$$

here, as usual,

$$
2(\partial / \partial z)=(\partial / \partial x)-i(\partial / \partial y), \quad 2(\partial / \partial \bar{z})=(\partial / \partial x)+i(\partial / \partial y), \quad z=x+i y .
$$

A core of our proof of Theorem 2.1 consequently is an analysis of the closed set

$$
\Sigma(H)=\{z \in G ; \bar{z} \times H(z)\},
$$

where H is meromorphic in G. Such a function H is called the Schwarz function of $\Sigma(H)$ by P.J. Davis [6] under the condition that $\Sigma(H)$ is a curve. We have

Lemma 2.2. [20, Lemma 1]. If $a \in G$ is an accumulation point of $\Sigma(H)$, then there is an open disk $U(a) \subset G$ of center a such that $\Sigma(H) \cap U(a)$ is a simple analytic arc with both terminal points on the circle $\partial U(a)$. In particular, isolated points of $\Sigma(H)$ accumulate nowhere in G.

With the aid of Lemma 2.2 we can easily observe that if $\Sigma(H)$ is nonempty, then each component of $\Sigma(H)$ is one of types $(k), k=1,2,3$, described in Section 1. We let $\Sigma_{k}(H)$ be the set of the components of type $(k), k=1,2,3$. A detailed analysis then yields

Theorem 2.3. [26, Theorem 3]. For f nonconstant and holomorphic in D with nonempty $M\left(F_{j}\right)$ and for H_{f} in (2.1) we have

$$
M_{1}\left(F_{f}\right) \subset \Sigma_{1}\left(H_{f}\right) ; \quad M_{2}\left(F_{f}\right)=\Sigma_{2}\left(H_{f}\right) ; \quad M_{3}\left(F_{f}\right)=\Sigma_{3}\left(H_{f}\right)
$$

3. The Schwarzian derivative, geodesics, and $M_{3}\left(F_{f}\right)$. Let f be nonconstant and meromorphic in G. In case $G=D$, the function

$$
N_{f}(z)=2^{-1}\left(1-|z|^{2}\right)^{2}|\sigma(f)(z)|
$$

which is called the Nehari derivative of f at $z \in D$, is significant in Univalent Function Theory. Namely, if the Nehari condition

$$
\begin{equation*}
\sup _{z \in D} N_{f}(z) \leq 1 \tag{N}
\end{equation*}
$$

holds, then f is univalent in the whole D; the constant 1 is the best possible [16, 9]. We shall show that N_{f} also plays a rolc in our study of the peak set $M\left(F_{f}\right)$.

By a geodesic in D we mean the intersection of D with a circle or a straight line orthogonal to ∂D. By a geodesic segment in D we mean an arc on a geodesic, arc both terminal points of which are included.

Theorem 3.1. [26, Theorem 1]. Suppose that f is nonconstant and holomorphic in D with the nonempty peak set $M\left(F_{f}\right)$. Then we have the following:

$$
\begin{equation*}
\sup _{z \in M\left(F_{f}\right)} N_{f}(z) \leq 1 \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } N_{f}(z)<1 \text { at } z \in M\left(F_{f}\right) \text {, then }\{z\} \in M_{1}\left(F_{f}\right) \text {. } \tag{3.2}
\end{equation*}
$$

(3.3) Suppose that $c \in M_{2}\left(F_{f}\right) \cup M_{3}\left(F_{f}\right)$. (Then $N_{f}(z)=1$ at each $z \in c$ by (3.2).) Then the tangent to c at $z \in c$ is $\left\{z+t e^{-i \Theta(z) / 2} ; t \in \mathcal{R}\right\}$, where $\Theta(z)=\arg \sigma(f)(z)$. Furthermore, there exits a geodesic segment $\Lambda \equiv\{\psi(t) ;-\tau \leq t \leq \tau\}$ orthogonal to c at $z=\dot{\psi}(0)$ such that $\left(d^{2} / d t^{2}\right) F_{f}(\psi(t))<0$ for $|t| \leq \tau$.

The function $F_{\rho}(\psi(t))$ consequently attains the maximum at $t=0$ in the strict sense. The part $\left\{\left(x, y, F_{f}(z)\right) ; z=x+i y \in M\left(F_{f}\right)\right\}$ of the graph $\left\{\left(x, y, F_{f}(z)\right) ; z=\right.$ $x+i y \in D\}$ in \mathcal{R}^{3} thus symbolically consists of summits, ridges, and sommas (mountains around a crater).

Let \mathbf{A} be the family of functions $a \log ((1+\mu) /(1-\mu))+b$, where $a \neq 0$ and b are complex constants, and μ runs over all the Möbius transformations mapping D onto D. For $g(z)=a \log ((1+z) /(1-z))+b \in \mathbf{A}$, the set $M^{*}\left(F_{g}\right)=M\left(F_{g}\right)$ is the real diameter of D. As a result, $M\left(F_{f}\right)$ for $f \in \mathbf{A}$ is a geodesic because $F_{f}=F_{g} \circ \mu$ by $f=g \circ \mu$.

Theorem 3.2. [26]. Suppose that the Nehari condition (N) holds for f holomorphic in D. Then $M\left(F_{f}\right)$ is the empty set, a one-point set or $f \in \mathbf{A}$ (hence $M\left(F_{f}\right)$ is a geodesic.)

We can apparently replace $M\left(F_{f}\right)$ by $M^{*}\left(F_{f}\right)$ in Theorem 3.2. Under condition (N) for meromorphic f, F.W. Gehring and C. Pommerenke [8] proved that $f(D)$ is either a Jordan domain in $\mathbf{C} \cup\{\infty\}$ or the Möbius image (namely, the image by a Möbius transformation) of a band. Theorem 3.2 gives a further analysis in case $f(D)$ ($C \mathbf{C}$) is a Jordan domain in $\mathbf{C} \cup\{\infty\}$.

We know that if f is meromorphic and univalent in D and further if $f(D)$ is the Möbius image in $\mathbf{C} \cup\{\infty\}$ of a convex domain in C, then (N) holds. Furthermore we know that the equality in (N) holds for each $f \in A$. See [14, p. 63]. We next consider $M_{3}\left(F_{f}\right)$ in

Theorem 3.3. [26]. Suppose that f is nonconstant and holomorphic in D. Suppose further that $c \in M_{3}\left(F_{f}\right)$ exists and let Δ be the Jordan dornain bounded by c. Then,

$$
\begin{equation*}
\iint_{\Delta}\left(1-|z|^{2}\right)^{-2} d x d y=(\pi / 2) \nu_{\Delta}\left(f^{\prime}\right) \quad(z=x+i y) \tag{3.4}
\end{equation*}
$$

where $\nu_{\Delta}\left(f^{\prime}\right)$ is the total number of the zeros of f^{\prime} in Δ, the multiplicities being counted.

The left-hand side of (3.4) is the non-Euclidean hyperbolic area of D. It follows from Theurem 3.3 that if f^{\prime} never vanishes in D, then $M_{3}\left(F_{f}\right)$ is empty.

We note here that if $M_{3}\left(F_{f}\right)$ is nonempty, then $M_{3}\left(F_{f}\right)$ consists of just one element, say, c. Furthermore, $M_{2}\left(F_{j}\right)$ is empty and isolated points of $M\left(F_{\rho}\right)$ are finite in number and are contained in the Jordan domain bounded by c. See [26 , Theorem B] for example.
4. Determination of f with preassigned $M\left(F_{f}\right)$. Given a simple analytic curve c in D, can we find an f such that $M\left(F_{f}\right)=c$? We consider the case where c is the intersection of D with a circle or a straight line [26]. The functions are somewhat complicated even in this very simple case. In this section $A \neq 0$ and B are always complex constants.
(I) A complete circle: $c=\{|z-a|=r\} ; a \in D, 0<r<1-|a|$. We have $M\left(F_{f}\right)=c$ if and only if

$$
\left(\frac{N}{N+2}\right)^{1 / 2}=(2 r)^{-1}\left[1-|a|^{2}+r^{2}-\left\{\left(1-|a|^{2}+r^{2}\right)^{2}-4 r^{2}\right\}^{1 / 2}\right\}
$$

where N is a natural number. Under the above condition we have

$$
f(z) \equiv A[(z-b) /(1-\bar{b} z)]^{N+1}+B
$$

where

$$
b=2 a\left[1+|a|^{2}-r^{2}+\left\{\left(1-|a|^{2}+r^{2}\right)^{2}-4 r^{2}\right\}^{1 / 2}\right]^{-1}
$$

(II) An oricycle: $c=\left\{\left|z-p e^{i a}\right|=1-p\right\}$; α real, $0<p<1$. We have $M\left(F_{j}\right)=c$ if and only if

$$
f(z)=A \exp \left[\frac{2(p-1)}{p\left(1-e^{i \alpha} z\right)}\right]+B
$$

(III) A hypercycle: $c=\left\{\left|z-p e^{i \alpha}\right|=r\right\}$; α real, $p, r>0,|1-p|<1<1+p$. We have $M\left(F_{f}\right)=c$ if and only if

$$
f(z)=A \int_{0}^{z e^{i \alpha}}\left(\exp \left[\int_{0}^{w} \frac{-2 p \zeta+2\left(p^{2}-r^{2}\right)}{p \zeta^{2}+\left(r^{2}-p^{2}-1\right) \zeta+p} d \zeta\right]\right) d w+B
$$

(IV) A rectilinear segment: $c=\left\{e^{i \alpha}(\cos \beta+i y) ;-\sin \beta<y<\sin \beta\right\} \cap D$; α real, $0<\beta \leq \pi / 2$. We have $M\left(F_{f}\right)=c$ if and only if

$$
f(z)=A \int_{0}^{z e^{i \alpha}}\left(\exp \left[\int_{0}^{w} \frac{4 \cos \beta-2 \zeta}{1-2 \zeta \cos \beta+\zeta^{2}} d \zeta\right]\right) d w+B
$$

5. The Poincaré density. Recall that the Bloch derivative has a relation with the Poincaré density. We call a subdomain G of C hyperbolic if $C \backslash G$ contains at least two points. In this section G is always a hyperbolic domain in C. Then, G has the Poincaré metric $P_{G}(z)|d z|$. The density function, or the Poincaré density, P_{G} is defined in G by the identity $P_{G}(z)=1 / F_{\varphi}(w), z=\varphi(w), w \in D$, where φ is a holomorphic universal covering projection from D onto G, in notation, $\varphi \in \operatorname{Proj}(G)$. The definition is independent of the specified choice of φ and w as far as the equality $z=\varphi(w)$ is satisfied. In particular, $1 / P_{D}(z)=1-|z|^{2}$ and $\pi(w, z)$ in Section 2 is the integral of $P_{D}(\zeta)|d \zeta|$ from w to z along the geodesic segment. See [1] and [14, pp. 147149] for general theory of $P_{G}(z)|d z|$ (see also [30] for some sharp estimates of P_{G} in geometrical terms); note that $2 P_{G}(z)|d z|$ instead of $P_{G}(z)|d z|$ is adopted in [1]. Now, $\log P_{G}$ is subharmonic in G because $\Delta \log P_{G}(z)=4 P_{G}(z)^{2}>0, z \in G$, and hence $P_{G}=\exp \left(\log P_{G}\right)$ is subharmonic in G. Hence P_{G} has no local maximum in G. Let $M\left(1 / P_{G}\right)$ be the set of points $z \in G$ where P_{G} attains local minima: $P_{G}(z) \leq P_{G}(w)$ in $\{|w-z|<\delta(z)\} \subset C$. Then, $M\left(1 / P_{G}\right)=\varphi\left(M\left(F_{\varphi}\right)\right)$ for each $\varphi \in \operatorname{Proj}(G)$. Since φ^{\prime} never vanishes in D, the set $M_{3}\left(F_{\varphi}\right)$ is empty by Theorem 3.3. Since φ is locally univalent, there is a one-to-one correspondence between a part of $\Sigma\left(H_{\varphi}\right)$ and a part of $M\left(1 / P_{G}\right)$. Applying Lemma 2.2, we consequently obtain

Theorem 5.1. If $M\left(1 / P_{G}\right)$ is nonempty, then each component of $M\left(1 / P_{G}\right)$ is one of the three types (1), (2), (3). The isolated points of $M\left(1 / P_{G}\right)$ accumulate nowhere in G.

We can further show that $M\left(1 / P_{G}\right)$ in Theorem 5.1 may be replaced by the set $M^{*}\left(1 / P_{G}\right)$ of points where P_{G} attains the global minimum. Let $M_{k}\left(1 / P_{G}\right)$ be the set of the components of type $(k), k=1,2,3$. We observe that the three types actually exist. With a slight misuse of notation we shall sometimes denote $M_{k}(\Phi)(k=1,2,3)$ instead of the union $\bigcup_{c \in M_{\star}(\Phi)} c$ if there is no confusion. This remark is available also to the sets $M_{k}\left(1 / P_{G}\right), k=1,2,3$.
(I) $M\left(1 / P_{G}\right)=M_{1}\left(1 / P_{G}\right)$. Examples of G are many. As a typical one of nonconvex bounded domains we choose the interior of the cardioid $\mathcal{C}=\left\{w+w^{2} / 2 ; w \in\right.$ $D\}$. Then, $M\left(1 / P_{C}\right)=\{7 / 18\}$ follows from

$$
1 / P_{C}(z)=\left.\left(1-\left|(1+2 z)^{1 / 2}-1\right|^{2}\right)\right|_{1}+\left.2 z\right|^{1 / 2}
$$

Here, \mathcal{C} is not a Möbius image of the band

$$
\mathcal{B}=\{-\pi / 2<\operatorname{Im} z<\pi / 2\} .
$$

(II) $M\left(1 / P_{G}\right)=M_{2}\left(1 / P_{G}\right)$. For B we know that $M\left(1 / P_{B}\right)$ is just the real axis because $1 / P_{B}(z)=2 \cos (\operatorname{lm} z)$.
(III) $M\left(1 / P_{G}\right)=M_{3}\left(1 / P_{G}\right)$. For the ring domain

$$
R=\left\{e^{-\pi / 2}<|z|<e^{\pi / 2}\right\}
$$

we have $M\left(1 / P_{R}\right)=\left\{|z|=e^{\pi / 4}\right\}$ because

$$
1 / P_{R}(z)=2|z| \cos (\log |z|)
$$

Here, it is interesting that for

$$
\varphi(w)=\exp (i \log \{(1+w) /(1-w)\} \in \operatorname{Proj}(R)
$$

we have $M_{3}\left(1 / P_{R}\right)=\varphi\left(M_{2}\left(F_{\varphi}\right)\right)$, where

$$
M\left(F_{\varphi}\right)=M_{2}\left(F_{\varphi}\right)=\{|z+i|=\sqrt{2}\} \cap D
$$

In all the above examples, we always have $M^{*}\left(1 / P_{G}\right)=M\left(1 / P_{G}\right)$.
Set $\delta(G)=\sup _{z \in D} N_{\varphi}(z)$ for a $\varphi \in \operatorname{Proj}(G)$. The supremum is independent of the particular choice of φ. Theorem 3.2 actually has the following version.

Theorem 5.2. If $\delta(G) \leq 1$, then $M\left(1 / P_{G}\right)=M^{*}\left(1 / P_{G}\right)$. Further, $M\left(1 / P_{G}\right)$ is the empty set a one-point set or a straight line.

The peak set $M\left(1 / P_{G}\right)$ under $\delta(G) \leq 1$ is a straight line if and only if $G=f(D)$ for an $f \in A$. The condition $\delta(G) \leq 1$ in Theorem 5.2 cannot be relaxed. For $R(a)=\left\{e^{-\pi a / 2}<|z|<e^{\pi a / 2}\right\}(a>0)$ we observe that

$$
1 / P_{R(a)}(z)=2|z| \cos \left(a^{-1} \log |z|\right), z \in R(a)
$$

Hence $M^{*}\left(1 / P_{R(a)}\right)=M\left(1 / P_{R(a)}\right)=M_{3}\left(1 / P_{R(a)}\right)$ is the circle $\{|z|=\exp (a \operatorname{Arctan} a)\}$ and $\delta(R(\alpha))=1+a^{2}$.

See also [29, Theorem 2] for a specified case.
6. The spherical derivative. For f meromorphic in a domain $G \subset C$ and for $z \in G$ we set

$$
f^{\text {\#\# }}(z)= \begin{cases}\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right) & \text { if } f(z) \neq \infty \\ \left|(1 / f)^{\prime}(z)\right| & \text { if } f(z)=\infty\end{cases}
$$

The chordal distance of a and b in $\mathrm{C} \cup\{\infty\}$ is

$$
X(a, b)=|a-b|\left(1+|a|^{2}\right)^{-1 / 2}\left(1+|b|^{2}\right)^{-1 / 2}
$$

with the obvious convention in case $a=\infty$ or $b=\infty$. Then,

$$
f^{\#}(z)=\lim _{w \rightarrow z} X(f(w), f(z)) /|w-z|
$$

Note that $f^{*}(z) \neq 0$ if and only if z is a simple pole of f or $f(z) \neq \infty$ with $f^{\prime}(z) \neq 0$, or $f^{\#}(z)=0$ if and only if z is a pole of $\sigma(f)$. If f is nonconstant and meromorphic in G, then $1 / f^{\#}$ is subharmonic in G minus the zeros of $f^{\#}$; actually,
$\Delta \log \left(1 / f^{\#}(z)\right)=4 f^{\#}(z)^{2}>0$ there, and $1 / f^{\#}=\operatorname{cxp}\left[\log \left(1 / f^{\#}\right)\right]$. Thus, $f^{\#}$ has "trivial" local minimum at each zern of $f^{\#}$ and has no local minimum at any other point of G.

In contrast with the holomorphic case: $\Phi=F_{f}$, a difficulty arises at the poles of f. If $z \in M\left(f^{\#}\right)$ and $f(z) \neq \infty$, then a calculation shows that

$$
0=(\partial / \partial z) \log f^{\#}(z)=2^{-1} \lambda(f)(z)-\bar{f}(z) f^{\prime}(z) /\left(1+|f(z)|^{2}\right),
$$

whence

$$
\overline{f(z)}=h_{f}(z), \quad h_{f}=\lambda(f) /\left(2 f^{\prime}-f \lambda(f)\right) .
$$

Thus, roughly speaking, a core of our study is an analysis of the set

$$
\Sigma(g, h)=\{z \in G ; \overline{g(z)}=h(z)\},
$$

where g and h are holomorphic and meromorphic in G, respectively. Ruscheweyh and Wirths's lemma, Lemma 2.2 in Section 2, needs an unessential change.

Lemma 6.1. If $a \in G$ is an accumulation point of $\Sigma(g, h)$ and if $g^{\prime}(a) \neq 0$, then there exists an open disk $U(a) \subset G$ of center a such that $\Sigma(g, h) \cap U(a)$ is a simple analytic arc with both terminal points on the circle $\partial U(a)$.

The condition on g implies the local univalency of g at a. Hence this case is reduced to the case $g(z)=z$. We cannot drop the condition $g^{\prime}(a) \neq 0$ in Lemma 6.1. For example, if $G=\mathbf{C}, a=0, g(z)=h(z)=z^{n}(n \geq 2)$, then $\Sigma(g, h)$ consists of n half lines issuing from the origin.

Theorem 6.2. [28, Theorem 1]. Suppose that $M\left(f^{\#}\right)$ is nonempty for f nonconstant and meromorphic in G. Then, components of $M\left(f^{*}\right)$ are at most countable and each component is one of the three types (1), (2), (3).

A conjecture is therefore that the isolated points of $M\left(f^{\#}\right)$ accumulate at no point of G. This is reduced to considering the case $g^{\prime}(a)=0$ in Lemma 6.1.

We note that Theorem 6.2 depends on a local property of $f^{\#}$, namely, that of an appropriate pair, g, h, described in Lemma 6.1. We observe, as a result, the following: If a quantity in G is defined in terms of $f^{\#}$, where f is defined in a suitable neighbourhood of every point of G, then the obvious type of Theorem 6.2 for this quantity is true. We shall return to this topic in detail in Section i where the quantity is $\omega=\log \left(2 a^{-1}\left(f^{\#}\right)^{2}\right)$ with $a>0$ a constant.

An analogue of Theorem 3.1 is the following, where we set

$$
N_{f}^{*}(z)=2^{-1} f^{\#}(z)^{-2}|\sigma(f)(z)|, \quad z \in G .
$$

Theorem 6.3. [28, Theorem 2]. Suppose that $M\left(f^{\#}\right)$ is nonempty for f nonconstant and meromorphic in G. Then, we have the foliowing:

$$
\begin{equation*}
\sup _{z \in M\left(f^{*}\right)} N_{j}^{*}(z) \leq 1 . \tag{6.1}
\end{equation*}
$$

(6.2) If $N_{f}^{*}(z)<1$ at $z \in M\left(f^{*}\right)$, then $\{z\} \in M_{1}\left(f^{*}\right)$.
(6.3) Suppose that $c \in M_{2}\left(f^{\#}\right) \cup M_{3}\left(f^{\#}\right)$. (Then, $N_{j} ;(z)=1$ at each $z \in c$ by (6.2).) Then $\left\{z+t e^{-i \Theta(z) / 2} ; t \in \mathcal{R}\right\}$ is the tangent to c at $z \in c$, where $\Theta(z)=\arg \sigma(f)(z)$. Furthermore, there exits a $T>0$ such that the function $f^{*}\left(z+i t e^{-i \Theta(z) / 2}\right)$ of $t \in$ $(-\tau, \tau)$ has the strictly negative second derivative at each t.

The set $\left\{\left(x, y, f^{\#}(z)\right) ; z=x+i y \in c\right\}$ for $c \in M_{2}\left(f^{\#}\right) \cup M_{3}\left(f^{*}\right)$ is again a ridge or a somma.

We can easily find f with the nonempty $M_{3}\left(f^{\#}\right)$. Actually, for $f(z)=z^{n}(n>1)$ in C we observe that the set $M^{*}\left(f^{\#}\right)=M_{3}\left(f^{\#}\right)$ is the circle $\{|z|=((n-1) /(n+$ $\left.1))^{1 /(2 n)}\right\}$. Apparently, for $f(z)=z$ in \mathbb{C}. we have $M\left(f^{*}\right)=\{0\}$. A novelty in the meromorphic case is the following result on $M_{3}\left(f^{\#}\right)$.

Theorem 6.4. [28, Theorem 3]. Suppose that $c \in M_{3}\left(f^{\#}\right)$ exists for f meromorphic in G. Suppose further that the Jordan domain Δ bounded by c is contained in G. Then,

$$
\begin{equation*}
\iint_{\Delta^{\prime}} f^{\#}(z)^{2} d x d y=(\pi / 2)\left(\nu_{\Delta}\left(f^{\prime}\right)+\mu_{\Delta}\left(f^{\prime}\right)-2 n\right) \tag{6.4}
\end{equation*}
$$

where $\nu_{\Delta}\left(f^{\prime}\right)$ and $\mu_{\Delta}\left(f^{\prime}\right)$ are the total number of the zeros and poles of f^{\prime} in Δ, the multiplicities being counted, and n is the number of the distinct poles of f^{\prime} in Δ.

The integral in the left-hand side of (6.4) is the spherical area of the Riemanniars image of Δ by f. As a result, if $f \#$ never vanishes in G, then G does not contain any Jordan domain bounded by a curve of $M_{3}\left(f^{\#}\right)$.
7. A partial differential equation. Let a real function ω defined in a domain $G \subset \mathbb{C}$ be a solution of the nonlinear elliptic partial differential equation

$$
\begin{equation*}
\left(\partial^{2} / \partial z \partial \bar{z}\right) \omega+a e^{\omega}=0 \quad \text { in } G, \tag{7.1}
\end{equation*}
$$

where $a>0$ is a constant. If f is meromorphic with nonvanishing $f^{\#}$ in G, then

$$
\begin{equation*}
\omega=\log \left(2 a^{-1}\left(f^{\# \#}\right)^{2}\right) \tag{7.2}
\end{equation*}
$$

is a solution. Conversely, if G is simply connected, then J. Liouville [15] proved that for each solution ω of (7.1) there exists f meromorphic in G such that (7.2) is valid; see [2, pp. 27-28], [23] and see also [3]. We consequently obtain the formula (7.2) locally for each solution ω in a general G. In view of the remark after Theorem 6.2 we thereby have the classification of the components of the "peak" set $M(\omega)$ of points in G where ω has local maxima as well as of the set $M^{*}(\omega)$ of points in G where ω has the global maximum.

We suppose, in general, the boundary condition

$$
\begin{equation*}
\lim _{x \rightarrow \zeta} \omega(z)=0 \tag{7.3}
\end{equation*}
$$

at each boundary point ζ of G in $\mathbb{C} \cup\{\infty\}$. We then have [28]

Theorem 7.1. Suppose that ω is a solution of (7.1) under condition (7.3) for a simply connected G. Then $M^{*}(\omega)$ is a finite set.

First, $M^{\bullet}(\omega) \subset M(\omega)$. Theorem 6.4, on the other hand, shows that $M_{3}(\omega)$ is empty. Also $M_{2}(\omega)$ is empty by (7.3) because $f^{\#}$ is constant on $M_{2}(\omega)$ and ω is a positive, nonconstant, superharmonic function in G. Since ω is constant ($=$ the maximum) on $M^{*}(\omega)$, it follows that $M^{*}(\omega)$ consists of isolated points. These points cannot accumulate at any point of G. In fact, f^{*} never vanishes in G, and a local consideration with the aid of Lemma 6.1 shows that $M^{*}(\omega)$ has no accumulation point in G.

As a final remark we note that condition (6.1) reads

$$
\left|\left(\partial^{2} / \partial z^{2}\right) \omega(z)-2^{-1}((\partial / \partial z) \omega(z))^{2}\right| \leq a e^{\omega(z)}, \quad z \in M(\omega)
$$

because

$$
\sigma(f)(z)=\left(\partial^{2} / \partial z^{2}\right) \omega(z)-2^{-1}((\partial / \partial z) \omega(z))^{2}
$$

see [2, p. 29] and [3, p. 231].
8. The Gauss curvature. Let a real-valued function $h: G \rightarrow \mathcal{R}$ be nonconstant. Consider the graph of h, or the set $\Gamma(h)$ of points $P \equiv P(x, y)=(x, y, h(x, y)) \in$ \mathcal{R}^{3}, where $z=x+i y \in G$. Suppose that $\Gamma(h)$ has the unit normal vector $\mathbf{n}=\mathbf{n}(P)$ at a P. Suppose further that the intersection of $\Gamma(h)$ with each plane π_{θ} parallel to n and containing P, is, near P, a curve passing through P with the vector expression $c_{\theta}(s)$ in terms of the arc length s, so that $c_{\theta}\left(s_{\theta}\right)$ always expresses P. Note that the suffix θ naming the planes π_{θ} ranges over $0 \leq \theta<2 \pi$. The Gauss curvature of $\Gamma(h)$ at P is the product of the maximum and the minimum of inner products:

$$
\mathbf{n}(P) \cdot\left\{\left(\partial^{2} / \partial s^{2}\right) \mathbf{c}_{\theta}(s)\right\}_{\theta=0,}, \quad 0 \leq \theta<2 \pi
$$

In general, given a twice continuously differentiable $h: G \rightarrow \mathcal{R}$, we define a priori the Gauss curvature at $P(x, y)$ of $\Gamma(h)$ as the value of the function

$$
K=\left(h_{x x} h_{y y}-h_{x y}^{2}\right) /\left(1+h_{x}^{2}+h_{y}^{2}\right)^{2} \quad \text { at } z=x+i y
$$

The Gauss curvature explained in the preceding paragraph, in particular, coincides with $K(z)=K(x, y)$. A calculation yields

$$
K / 4=\left[\left(\partial^{2} h / \partial z \partial \bar{z}\right)^{2}-\left|\left(\partial^{2} h / \partial z^{2}\right)\right|^{2}\right] /\left[1+4|(\partial h / \partial z)|^{2}\right] .
$$

As a typical example, let u be a harmonic function in G. Then, for $\Gamma(u)$ we have $K=-f^{\# 2}$, where $f=2(\partial u / \partial z)$ is a holomorphic function in G. We thus have the classification of the components of the peak set $M(-K)$ of points where K has local minima. For relating subjects we refer the reader to $[7,10,11,12,22,25]$.
9. The Gauss curvature of a minimal surface in \mathcal{R}^{3}. We call a mapping $x: G \rightarrow \mathcal{R}^{3}$ with $x=\left(x_{1}, x_{2}, x_{3}\right)$ a regular minimal surface in \mathcal{R}^{3} if the following hold:
(HA) Each x_{k} is harmonic in $G, k=1,2,3$.
(IS) The parameter $w=u+i v \in G$ is isothermal in the sense that

$$
\sum_{k=1}^{3}\left(\partial x_{k} / \partial w\right)^{2} \equiv 0 \quad \text { in } G
$$

(RE) The function

$$
\sum_{k=1}^{3}\left|\partial x_{k} / \partial w\right|^{2}
$$

never vanishes in G.
See $[17,18]$ for general theory of minimal surfaces.
Suppose that a regular minimal surface $x: G \rightarrow \mathcal{R}^{3}$ is contained in no plane in the sense that there is no plane π with $x(w) \in \pi$ for all $w \in G$. Then $f=$ $2\left(\left(\partial x_{1} / \partial w\right)-i\left(\partial x_{2} / \partial w\right)\right)$ is holomorphic and not identically zero in G and the Gauss map is $g=2\left(\partial x_{3} / \partial w\right) / f$, that is, g is meromorphic in G and the unit normal $\mathbf{n}(w)$ at $x(w)$ is given by the formula

$$
n(w)=\left(\frac{2 \operatorname{Re} g(w)}{|g(w)|^{2}+1}, \frac{2 \operatorname{Im} g(w)}{|g(w)|^{2}+1}, \frac{|g(w)|^{2}-1}{|g(w)|^{2}+1}\right) .
$$

We have a neighborhood $U\left(w_{0}\right)$ of each $w_{0} \in G$ such that the subsurface $\{x(w) ; w \in$ $U\left(w_{0}\right)$) is just the graph $\Gamma(h)$ of a suitable $h: V\left(w_{0}\right) \rightarrow \mathcal{R}$, where $V\left(w_{0}\right)$ is a domain in \mathbb{C}; see [18, p.7, Lemma 1.2] for example. The Gauss curvature of $\Gamma(h)$ at the point corresponding to $x\left(w_{0}\right)$ is just $K\left(w_{0}\right)$, where

$$
\begin{equation*}
K(w)=-\left(\frac{4 g^{\#}(w)}{|f(w)|\left(1+|g(w)|^{2}\right)}\right)^{2}, \quad w \in G \tag{9.1}
\end{equation*}
$$

We may thus consider $M(\Phi)$ and $M^{*}(\Phi)$ for $\Phi=-K$.
Since $-\left(\partial^{2} / \partial z \partial \bar{z}\right) \log \sqrt{-K}=2 g^{\# 2}$ except for the zeros of $g^{\#}$, it follows that $1 / \sqrt{1-K}$ is subharmonic in G minus the zeros of $g^{\#}$, so that K has no local maximum at any point of G except for the zeros of $g^{\#}$. The set $M(-K)$ consists of the points $z \in G$ where K attains local minima.

Following the lines as in the cases of F_{f} and $f^{\#}$, we have
Theorem 9.1. [27, Theorem 1]. Let $x: G \rightarrow \mathcal{R}^{3}$ be a regular minimal surface contained in no plane and with nonempty $M(-K)$. Then, components of $M(-K)$ are at most countable and each component is one of the three types (1), (2), (3).

The proof depends on the expression of K in (9.1), together with Lemma 6.1, so that, again, a conjecture is that the isolated points of $M(-K)$ accumulate nowhere in G. As before, we can replace $M(-K)$ by $M^{*}(-K)$.

We set

$$
Q=\frac{1}{2}\left(\frac{g^{\prime \prime}}{g^{\prime}}-\frac{f^{\prime}}{f}\right), \quad H=\frac{Q}{2 g^{\prime}-Q g} ; Q_{1}=Q-\frac{2 g^{\prime}}{g}, H_{1}=\frac{-g^{2} Q_{1}}{2 g^{\prime}+Q_{1} g}
$$

Suppose that $w \in M\left(-K^{\prime}\right)$. If $g(w) \neq \infty$ and $g^{\prime}(w) \neq 0$, then we observe that $\boldsymbol{w} \in \Sigma(g, H)$, while if w is a simple pole of g, then we observe that $w \in \Sigma\left(1 / g, H_{1}\right)$. Since $g^{\# \#}(w) \neq 0$ at w, these are the whole possible cases. We give here typical examples of $x: G \rightarrow \mathcal{R}^{3}$ for which $M^{*}(-K)=M(-K)=M_{j}(-K), j=1,2,3$.
(I) Enneper's surface: $x: C \rightarrow R^{3}$, where

$$
\begin{aligned}
& x_{1}(w)=(1 / 2)\left(u-u^{3} / 3+u v^{2}\right) \\
& x_{2}(w)=(1 / 2)\left(-v+v^{3} / 3-u^{2} v\right) \\
& x_{3}(w)=(1 / 2)\left(u^{2}-v^{2}\right)
\end{aligned}
$$

We then have $M^{*}(-K)=M\left(-K^{*}\right)=M_{1}\left(-K^{*}\right)=\{0\}$.
(II) Helicoid: $x: \mathbb{C} \rightarrow \mathcal{R}^{3}$, where

$$
\begin{aligned}
& x_{1}(w)=\sinh u \cos v, \\
& x_{2}(w)=\sinh u \sin v, \\
& x_{3}(w)=v .
\end{aligned}
$$

We then have $M^{*}(-K)=M(-K)=M_{2}(-K)=\{\operatorname{Re} w=0\}$.
(III) Catenoid: $x: \mathrm{C} \backslash\{0\} \rightarrow \mathcal{R}^{3}$, where

$$
\begin{aligned}
& x_{1}(w)=(-u / 2)\left[1+\left(u^{2}+v^{2}\right)^{-1}\right], \\
& x_{2}(w)=(v / 2)\left[1+\left(u^{2}+v^{2}\right)^{-1}\right], \\
& x_{3}(w)=(1 / 2) \log \left(u^{2}+v^{2}\right) .
\end{aligned}
$$

We then have $M^{*}(-K)=M(-K)=M_{3}(-K)=\{|\boldsymbol{w}|=1\}$.
Finally in this section we propose [27, Theorem 2]:
Theorem 9.2. Let $x: G \rightarrow \mathcal{R}^{3}$ be a regular minimal surface contained in no plane. Suppose that $c \in M_{3}(-K)$ exists and further that the Jordan domain Δ bounded by c is contained in G. Then,

$$
-T(\Delta)=\pi\left\{\nu_{\Delta}\left(g^{\prime}\right)+\mu_{\Delta}\left(g^{\prime}\right)-2 n\right\} .
$$

Here,

$$
T(\Delta)=2 \iint_{\Delta_{k}} K \sum_{k=1}^{3}\left|\partial x_{k} / \partial w\right|^{2} d u d v
$$

is the total curvature of the subsurface $x: \Delta \rightarrow \mathcal{R}^{3}$ and we consequently have

$$
-T(\Delta)=4 \iint_{\Lambda} g^{\# 2} d u d v
$$

Here, $\nu_{\Delta}\left(g^{\prime}\right)$ and $\mu_{\Delta}\left(g^{\prime}\right)$ are the total number of the zeros and poles of g^{\prime} in Δ, respectively, the multiplicitics being counted, and n is the total number of the distinct poles of g^{\prime} in Δ.

There does exist x for which $\Delta \subset G$ actually happens as described in Theorem 9.2. A simple example is $x: C \rightarrow \mathcal{R}^{3}$, with the Gauss map $g(w)=w^{2}$, defined by the Weierstrass-Enneper formulae:

$$
\begin{aligned}
& x_{1}(w)=(1 / 2) \operatorname{Re} \int_{J_{0}}^{w}\left(1-g(\zeta)^{2}\right) d \zeta, \\
& x_{2}(w)=(1 / 2) \operatorname{Re} \int_{j_{0}}^{w} i\left(1+g(\zeta)^{2}\right) d \zeta, \\
& x_{3}(w)=\operatorname{Re} \int_{j_{0}}^{w} g(\zeta) d \zeta .
\end{aligned}
$$

We then observe that $M^{*}\left(-K^{*}\right)=M\left(-K^{\prime}\right)$ is the circle $\left\{|w|=7^{-1 / 4}\right\}$ which surrounds the disk $\Delta \subset C$.

REFERENCES

[1] Ahlfors, L.A., Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
[2] Bandle, C. Isoperimetric Inequalities and Applications, Pitman, Boston-London-Melbnurne, 1980.
[3] Bandle, C. , Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, Arch. Rat. Mech. Anal. 58 (1975), 219-238.
[4] Bonk, M., Weigang, P., Wirths, K.-J. , On the number of isolated maxima of extreme Bloch functions Complex Variables 8 (1987), 213-217.
[B] Cima, J.A., Wogen, W.R., Extreme points of the unit ball of the Bloch apace Bo, Michigan Math. J. 25 (1978), 213-222.
[6] Davis, P.J., The Schwarz Punction and ito Applications, The Carus Math. Mono. 17. The Mathematical Association of America, Washington, 1974.
[7] Gackstatter, F., Die Gausssche und mittlere Krümmung der Realteilfächen in der Theorie der meromorphen Funktionen, Math. Nachr. 54 (1972), 211-227.
[8] Gehring, F.W., Pommerenke, C. On the Nehari univalence criterion and quasicircles, Comm. Math. Helv. 59 (1984), 226-242.
[9] Hilie, E. , Remarks on a paper by Zeev Nehari, Bull. Amer. Math. Soc. 55 (1949), 552-553.
[10] Jerrard, R. , Curvatures of surfaces associated with holomorphic functions, Colloquium Math. 21 (1970), 127-132.
[11] Kreyszig, E. , Die Realteil- und Imaginärteilfächen analytischer Funktionen, Elemente der Mathematik 24 (1969), 25-31.
[12] Kreyszig, E., Pendl, A., Über die Gaus-Krümmung der Real- und Imaginärteilfächen analytischer Puntionen, Elemente der Mathematik 28 (1973), 10-13.
[13] Landau, E. Über die Blochsche Konstante und zwei verwandte Weltkonatanten, Math. 2. 30 (1929), 608-634.
[14] Lehto, O. , Univalent Functione and Teichmüller Spaces, Springer, New York et al., 1987.
[15] Liouville, J. , Sur l'Équation aux dérivées parlielles $\forall^{2} \log \lambda / \partial u \partial v \pm 2 \lambda a^{2}=0$, J. de Math. Pures et Appl. 18 (1853), 71 -72.
[16] Nehari, Z. The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[17] Nitsche, J.C.C. , Vorlesungen über Minimalfächen, Springer, Berlin, 1975.
[18] Osserman, R. , A survey of minimal surfaces, Van Nostrand, New York, 1969
[19] Robinson, R.M. , Bloch functions, Duke Math. J. 2 (1936), 453-453.
[20] Ruscheweyh, S. , Wirths, K.-J., On extreme Bloch functions with prescribed critical points, Math. Z. 180 (1982), 91-105.
[21] Ruscheweyh, S. , Wirths, K.-J., Extreme Bloch functions with many critical points, Analysis 4 (1984), 237-247.
[22] Talenti, G. , A note on the Gauss curvature of harmonic and minimal surfaces, Pacific J. Math. 101 (1982), 477-492.
[23] Weston, V.II., On the asymptotic solution of a partial differential equation with an exponential nonlinearity, SIAM J. Math. Anal. 9 (1978), 1030-1053.
[24] Wirths, K.-J., On holomorphic functions satisfying $|f(z)|\left(1-|z|^{2}\right)=1$ in the unit disc, Proc. Amer. Math. Soc. 85 (1982), 19-23.
[25] Yamashita, S. , Derivatives and length-preserving maps, Canad. Math. Bull. 30 (1987), 379-384.
[26] Yamashita, S. , The Schwarzian derivative and local maxima of the Bloch derivative, Math. Japonica 37 (1992), 1117-1128.
[27] Yamashita, S. , Local minima of the Gauss curvalure of a minimal surface in the space, Bull. Austral. Math. Soc. 44 (1991), 39i-404
[28] Yamashita, S. , Local maxima of the spherical derivative, Kodai Math. J. 14 (1991), 163-172.
[29] Yamashita, S. , The Poincaré density, in pp. 872-881 in "The Mathematical Heritage of C. F. Gauss", edited by G. M. Rassias, World Scientific, Singapore, 1991.
[30] Yamashita, S. , The derivative of a holomorphic function and estimates of the Poincaré density, Kodaj Math. J. 15 (1992), 102-121.

