LUBLIN-POLONIA

VOL. XLVI, 7
SECTIO A
1992

Jan G. KRZYŻ (Lublin)

Some Remarks on the Maxima of Inner Conformal Radius

Abstract

If $f(x)=x+a_{2} z^{2}+a_{3} z^{3}+\ldots$ is univalent in the unit disk D then $a_{2}=0$ and $\left|a_{3}\right| \leq 1 / 3$ is necessary, whereas $a_{2}=0$ and $\left|a_{3}\right|<1 / 3$ is sufficient for the inner conformal radius $R(w, f(D))$ to have a local maximum at $w=0$. The case $\left|a_{3}\right|=1 / 3$ is investigated. Moreover, a sufficient condition for $R(w, f(D))$ to have a unique global maximum at $w=0$ is given.

1. Preliminaries. Suppose G is a simply connected domain of hyperbolic type in the finite plane \mathbf{C}. If $w \in G$ and φ maps G conformally onto the disk $\{z:|z|<R\}$ so that w and $z=0$ correspond and $\left|\varphi^{\prime}(w)\right|=1$ then $R=R(w, G)$ is a well defined continuous real-valued function of $w \in G$ called inner conformal radius of G at the point $w \in G$. The function $R(w, G)$ plays an important role in the geometric function theory, in particular $\rho(w)=1 / R(w, G)$ is the density of hyperbolic metric $\rho(w)|d w|$ in G.

Let f be a conformal mapping of the unit disk D onto G. Then obviously

$$
\begin{equation*}
R(w, G)=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|, \quad w=f(z) \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
u(z):=\log R(w, G)=\log (1-z \bar{z})+\operatorname{Re} \log f^{\prime}(z) . \tag{2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left.\nabla_{z} u:=u_{x z}+u_{y y}=4 \partial^{2} u / \partial z \partial \bar{z}=-4(1-z \bar{z})\right)^{-2}<0, \tag{3}
\end{equation*}
$$

$u(z)$ is superharmonic as a function of $z \in D$ and also of $w \in G$, in view of the equality $\Delta_{w} u=|d z / d w|^{2} \Delta_{z} u$. This implies that any critical point of u, and also of R, is either a saddle point, or a local maximum.

The problem, how do the geometrical properties of G affect the set of local maxima was investigated by many authors. Interesting results in this direction, as well as a fairly complete list of references can be found in [6].

Some properties of $R(w, G)$ can be immediately obtained in an elementary way:
(i) if $G_{1} \subsetneq G_{2}$ then $R\left(w, G_{1}\right)<R\left(w, G_{2}\right)$;
(ii) if \tilde{G} is the image domain of G under a conformal mapping φ and $\tilde{w}=$ $\varphi(w)$ then $R(\tilde{w}, \tilde{G})=\left|\varphi^{\prime}(w)\right| R(w, G)$ which means conformal invariance of hyperbolic metric;
(iii) if $d(w)=\operatorname{dist}(\imath, \mathrm{C} \backslash G)$ then $d(w) \leq R(w, G) \leq 4 d(w)$.

A non-elementary but very important property is the following:
(iv) If G^{\bullet} is obtained from G by Steiner (or circular) symmetrization with respect to an axis passing through w (or a ray emanating from w) then $R(w, G) \leq R\left(w, G^{*}\right)$, cf. [2], [7]. The sign of equality occurs iff $G=G^{*}$ (Steiner symmetrization), or $G^{\bullet}=a G, w=0,|a|=1$ (circular symmetrization), cf. [3].

The property (iii) immediately implies the following: $R(w, G)$ is bounded in G if, and only if, $d(w)$ is bounded. Moreover, (ii) and (iv) imply that, for $G=\{w$: $|\operatorname{lm} w|<\pi / 4\}$, any point w on the real axis provides a local maximum of $R(w, G)$. If

$$
\begin{equation*}
f(z)=\frac{1}{2} \log (1+z) /(1-z)=z+\frac{1}{3} z^{3}+\frac{1}{5} z^{5}+\ldots \tag{4}
\end{equation*}
$$

then $f(\mathrm{D})=G$ and, by (1), we obtain $R(x, G)=1$ for any $x \in \mathbf{R}$.
However, even for a bounded $R(w, G)$ the set of local maxima may be empty. To this end consider the function

$$
\begin{equation*}
g(z)=-z+\log (1+z) /(1-z), \quad z \in \mathrm{D} \tag{5}
\end{equation*}
$$

We have $\operatorname{Re} g^{\prime}(z)=\operatorname{Re}(1+z) /(1-z)>0$ which implies univalence of g in D. The domain $G=g(\mathrm{D})$ is symmetric w.r.t. the real axis, its boundary consisting of the curve $w(\theta)=\log \cot \theta / 2-\cos \theta+i(\pi / 2-\sin \theta), 0<\theta<\pi$, and its reflection in the real axis. By (iv) $R(w, G)$ attains'a maximal value at $w=u_{0}$ if $w=u_{0}+i v \in G$ and u_{0} is fixed. Then by (1) $R\left(u_{0}, G\right)=1+r^{2}$, where $r=g^{-1}\left(u_{0}\right)$, and consequently $R(w, G)$ increases strictly on the real axis as $|w|$ increases. Moreover, $R(w, G)<1$ for all $w \in G$. On the imaginary axis $R(i v, G)=\left(1-y^{2}\right)^{2} /\left(1+y^{2}\right)$ strictly decreases to 0 as $|y| \rightarrow 1$. Therefore $w=0$ is a saddle point. Using the characteristic equation (8) for critical points we arrive, after rejecting the case $r=0$, at the equation $r^{4} \eta^{4}+$ $2\left(1-r^{2}\right) \eta^{2}-1=0$, where $\eta=z / r,|\eta|=1$. Hence η^{2} must be real, i.e. $\eta^{2}= \pm 1$ which shows to be impossible.

This means there exist no critical points apart from $w=0$. Thus $R(w, G)$ being bounded has no local maximum and only one critical point.

The absence of local maxima is possible only if the area $|G|=+\infty$. This follows from the

Proposition 1. If G is a simply connected domain of finite area then there exists $w_{0} \in G$ such that $R\left(w_{0}, G\right) \geq R(w, G)$ for all $w \in G$.

Proof. Suppose $G=f(D)$, where f is holomorphic in D and the area $|f(D)|$ is finite. Then, as it is well known, $\lim _{r \rightarrow 1}(1-r) M\left(r, f^{\prime}\right)=0$, where $M\left(r, f^{\prime}\right)=$ $\sup \left\{\left|f^{\prime}\left(r e^{i \theta}\right)\right|: \theta \in \mathbb{R}\right\}$, cf. e.g. [4]. This implies, in view of (1), that $R(w, G) \rightarrow 0$, as $w \rightarrow \partial G$ in spherical metric. If $R\left(w_{1}, G\right)=d$ for some $w_{1} \in G$, then $\{w \in G$: $R(w, G) \geq d\}$ is a non-empty compact subset of G and $R(w, G)$, being continuous, attains its maximal value on this subset at some $w_{0} \in G$, and this ends the proof.

In what follows we prove two lemmas which give necessary and sufficient conditions for a point $w \in G$ to be a local maximum of $R(w, G)$. Our approach is slightly different from that in [1] and [6], where analogous results appear.

Note first that critical points of $R(w, G)$ coincide with critical points of $u(z)$. We obtain from (2)

$$
\begin{align*}
r \frac{\partial}{\partial r} u\left(r e^{i \theta}\right) & =r \frac{\partial}{\partial r}\left[\log \left(1-r^{2}\right)+\operatorname{Re} \log f^{\prime}\left(r e^{i \theta}\right)\right] \tag{6}\\
& =-2 r^{2} /\left(1-r^{2}\right)+\operatorname{Re}\left\{z f^{\prime \prime}(z) / f^{\prime}(z)\right\}, \quad z=r e^{i \theta},
\end{align*}
$$

on the radii $\theta=$ const.
On the other hand, we have on circles $|z|=r>0$

$$
\begin{equation*}
\frac{\partial}{\partial \theta} u\left(r e^{i \theta}\right)=\frac{\partial}{\partial \theta} \operatorname{Re} \log f^{\prime}\left(r e^{i \theta}\right)=-\operatorname{Im}\left\{z f^{\prime \prime}(z) / f^{\prime}(z)\right\} \tag{7}
\end{equation*}
$$

Hence we obtain
Lemma 1. If f is univalent in D, and $G=f(D)$, then the point $w=f\left(r e^{i 0}\right)$, $r>0$, is critical for $R(w, G)$ if, and only if,

$$
\begin{equation*}
z f^{\prime \prime}(z) / f^{\prime}(z)=2 r^{2} /\left(1-r^{2}\right), \quad z=r e^{i \theta} \tag{8}
\end{equation*}
$$

Due to the formula (1) and the property (ii) we may assume that the function f mapping D onto G belongs to the familiar class S, so that

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots, \quad z \in \mathbf{D} \tag{9}
\end{equation*}
$$

and $R(0, f(D))=1$.
We shall establish in terms of a_{2}, a_{3} necessary and sufficient conditions for $R(0, f(\mathrm{D})$) to be a local maximum.

Lemma 2. If $R(w, f(D))$ has a local maximum at $w=0$, then $a_{2}=0$, $\left|a_{3}\right| \leq 1 / 3$. Conversely, if $a_{2}=0,\left|a_{3}\right|<1 / 3$, then $R(w, f(D))$ has a strict local maximum at $w=0$.

Proof. Due to (2) we may preferably consider $u(z)$ instead of $R(w, f(D))$. We have

$$
\log f^{\prime}(z)=\log \left[1+\left(2 a_{2} z+3 a_{3} z^{2}+\ldots\right)\right]=2 a_{2} z+\left(3 a_{3}-2 a_{2}^{2}\right) z^{2}+O\left(z^{3}\right)
$$

and hence, using (2), we obtain for $z=r e^{i \theta}$:

$$
\begin{align*}
u\left(r e^{i \theta}\right) & =\left(a_{2} e^{i \theta}+\bar{a}_{2} e^{-i \theta}\right) r+\frac{1}{2}\left[\left(3 a_{3}-2 a_{2}^{2}\right) e^{2 i \theta}+\right. \tag{10}\\
& \left.+\left(3 \bar{a}_{3}-2 \bar{a}_{2}^{2}\right) e^{-2 i \theta}-2\right] r^{2}+O\left(r^{3}\right) .
\end{align*}
$$

If $R(0, f(D))=1$ (or $u(0)=0$) is a local maximum then obviously $a_{2}=0$ and $3 a_{3} e^{2 i \theta}-3 \bar{a}_{3} e^{-2 i \theta}-2 \leq 0$ for all $\theta \in \mathbf{R}$ which means that $\left|a_{3}\right| \leq 1 / 3$. Conversely, if $a_{2}=0$ and $\left|a_{3}\right|<1 / 3$ then, as readily seen from (10), $R(w, f(D))$ has a strict local maximum at $w=0$.
2. Some applications and remarks. Lemma 2 leaves the case $a_{2}=0$, $\left|a_{3}\right|=1 / 3$ open. We may obviously assume that $a_{3}=1 / 3$. We will give examples showing that all three possibilitics can occur.
(I) $w=0$ is a strict local maximum.

To this end consider $f(z)=z+\frac{1}{3} z^{3}$. We have $\operatorname{Re} f^{\prime}(z)=\operatorname{Re}\left(1+z^{2}\right)>0$ in D and therefore $f \in S$. The domain G is symmetric w.r.t. the real axis and hence, due to (iv), $R\left(u_{0}+i v, G\right)<R\left(u_{0}, G\right)$ for any $u_{0}+i v \in G\left(u_{0}, v \in \mathbb{R}, v \neq 0\right)$. This implies $R(i v, G)<R(0, G)=1$; for $u_{0} \neq 0, r=f^{-1}\left(u_{0}\right)$ we have $R\left(u_{0}+i v, G\right)<R\left(u_{0}, G\right)=$ $\left(1-r^{2}\right)\left(1+r^{2}\right)=1-r^{4}<1$ which proves (I). By means of (8) one verifies easily that $w=0$ is the only critical point of $R(w, G)$ and consequently it attains its global maximum at $w=0$.
(II) $w=0$ is a weak local maximum.

This obviously occurs for f as in formula (4).
(III) $w=0$ is a saddle point.

Consider the function $f \in S$ satisfying $f^{\prime}(z)=p(z)=(1+\omega(z)) /(1+\omega(z))$, where $\omega(z)=z^{2}(1+2 z) /(2+z)=z^{2}\left(2-\frac{3}{2}\left(1+\frac{1}{2} z\right)^{-1}\right)=\frac{1}{2} z^{2}+\frac{3}{4} z^{3}-\frac{3}{8} z^{4}+O\left(z^{5}\right)$. Obviously $|\omega(z)| \leq|z|^{2}$ in D and hence $\operatorname{Re} f^{\prime}(z)>0$. We have $f^{\prime}(z)=1+2 \omega(z)+2\left(\omega(z)^{2}+\cdots=\right.$ $1+z^{2}+\frac{3}{2} z^{3}-\frac{1}{4} z^{4}+O\left(z^{5}\right)$. Since f has real coefficients, G is symmetric w.r.t. the real axis and by (iv) we have $R(i v, G)<R(0, G)=1$. On the other hand, on the real axis

$$
R(u, G)=\left(1-x^{2}\right)\left(1+x^{2}+\frac{3}{2} x^{3}+O\left(x^{4}\right)\right)=1+\frac{3}{2} x^{3}+O\left(x^{4}\right)
$$

which is >1 for $x>0$ sufficiently small and <1 for small negative x and this proves (III).

In [1] the author proved that, for convex domains, apart from the strip $\{w$: $|\operatorname{Im} w|<1\}$ and its images under similarity, there exists at most one maximum of $R(w, G)$. A very simple proof of this result is given in [6], while in [5] a converse statement is disproved, i.e. a non-convex Jordan domain G with exactly one maximum of $R(w, G)$ has been found. The domain G in (I) has also the same properties, however, in both cases ∂G is a piecewise analytic curve. The function g in the formula (5) enables us to construct a non-convex Jordan domain with analytic boundary, one maximum and no other critical points of $R(w, G)$.

Proposition 2. If $2 \rho^{2}=1$ and $G=h(\mathrm{D})$, where

$$
h(z)=-z+\rho^{-1} \log (1+\rho z) /(1-\rho z)=z+\frac{2}{3} \rho^{2} z^{3}+\frac{2}{5} \rho^{4} z^{5}+\ldots
$$

then $R(w, G)$ has only one critical point $w=0$ being a strict local maximum and $h(\partial \mathrm{D})$ is a non-convex analytic curve symmetric w.r.t. both coordinate axes.

Proof. Obviously $h(z)=\rho^{-1} g(\rho z)$, with g defined by (5), belongs to S. If $|z|=r$ then $R(w, G) \leq\left(1-r^{2}\right)\left(1+\rho^{2} r^{2}\right) /\left(1-\rho^{2} r^{2}\right) \leq 1$ since $2 \rho^{2} r^{2}=r^{2} \leq r^{2}+\rho^{2} r^{4}$, with the sign of equality for $r=0$ only. Thus $R(w, G)$ has a global maximum at $w=0$. We have $\log h^{\prime}(z)=\log \left(1+\rho^{2} z^{2}\right)-\log \left(1-\rho^{2} z^{2}\right)$, and hence

$$
\operatorname{Im}\left\{z h^{\prime \prime}(z) / h^{\prime}(z)\right\}=4 \rho^{2}\left(1-\rho^{4} r^{4}\right)\left|1-\rho^{4} z^{4}\right|^{-2} \operatorname{Im}\left(z^{2}\right)=0
$$

only for z on coordinate axes. Thus, by (7), critical points may be situated on coordinate axes only. However, on both coordinate axes $R(w, G)$ tends munotonically to
zero as $|w|$ increases. Hence no critical points $w \neq 0$ do exist. We have $z h^{N}(z) / h^{\prime}(z)=$ $4 \rho^{2} z^{2}\left(1-\rho^{4} z^{4}\right)^{-1}$ and we now prove that $\varphi(z)=1+4 \rho^{2} z^{2}\left(1-\rho^{4} z^{4}\right)^{-1}$ is not in the familiar Carathéodory class. With $z=i, 2 \rho^{2}=1$ we obtain $\varphi(i)=-5 / 3<0$ and this proves that $h(\partial \mathrm{D})$ is a non-convex analytic Jordan curve.

We state now a simple sufficient condition for $R(w, G)$ to have only one local maximum.

Theorem. If f maps the unit disk \mathbf{D} conformally onto G and $R(w, G)$ has a strict local maximum at $w=0$, then

$$
\begin{equation*}
\operatorname{Re} z f^{\prime \prime}(z) / f^{\prime}(z) \leq 2|z|^{2}\left(1-|z|^{2}\right)^{-1} \text { for all } z \in D \tag{11}
\end{equation*}
$$

implies that $R(w, G)$ has only one local maximum $w=0$.
Proof. By (2) and (6) we have $\frac{\partial}{\partial r} u\left(r e^{i \theta}\right) \leq 0$ for $\theta=$ const with $\frac{\partial}{\partial r} u\left(r e^{i \theta}\right)$ being real-analytic in a neighbourhood of the ray $\theta=$ const. Therefore possible zeros of $\partial u / \partial r$ from a discrete set $\left\{r_{k} e^{i \theta}\right\}$ and so $\partial u / \partial r<0$ in any interval $\left(r_{k}, r_{k+1}\right)$. Hence u is strictly decreasing for θ fixed and r ranging over $(0,1)$. The same is true if $\partial u / \partial r$ has at most one zero in (0,1$)$. Hence $u\left(r e^{i \theta}\right)$ and also $R(w, G), w=f\left(r e^{i \theta}\right)$, strictly decrease as θ is fixed and r ranges over (0,1). This ends the proof.

REFERENCES

[1] Haegi, H.R., Extremabprobleme und Ungleichumgen konformer Gebietogrössen, Comp. Math. 8 (1950), 81-111.
[2] Hayman, W.K. , Mubtivalent functions, Cambridge University Press 1958.
[3] Jenkins, J.A. , Univalent functions and conformal mappings, Springer-Verlag, Berlin-Göttingen-Heidelberg 1958.
[4] Krzyí, J.G., On the derivative of bounded p-valent functions, Ann. Univ. Mariae CurieSklodowalca Sect. A 12 (1958), 23-28.
[B] Kühnau, R., Zum konformen Radius bei nullwinkligen Kreisbogendreiecken, Mitt. Math. Sem. Giessen No 211 (1992), 19-24.
[6] Kühnau, R. , Maxima beim konformen Radius einfach zusammenhängender Gebiete, this volume, 63-73.
[7] Pólya, G. , Szegö , G. , Isoperimetrical inequalities in mathematical physics, Princeton University Press 1951.

Instytut Matematyki UMCS
(received May 24, 1993)
Plac M. Curie Sklodowskiej 1
20-031 Lublin, Poland

