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Some Remarks on the Maxima of Inner Conformal Radius

Abstract. If is univalent in the unit disk D then a2=0 and |«a|< 1/3 is
necessary, whereas a2=0 and |aa|<l/3 is sufficient for the inner conformal radius R(w,/(D)) to have 
a local maximum at w=0. The case |a3|=l/3 is investigated. Moreover, a sufficient condition for 
R(w,/(D)) to have a unique global maximum at w=0 is given.

1. Preliminaries. Suppose G is a simply connected domain of hyperbolic type 
in the finite plane C. If w € G and maps G conformally onto the disk {z : |z| < R} 
so that w and 2 = 0 correspond and |<p'(w)| = 1 then R = R(w, G) is a well defined 
continuous real-valued function of w 6 G called inner conformal radius of G at the 
point w € G. The function R(w, G) plays an important role in the geometric function 
theory, in particular p(w) = l/R(w, G) is the density of hyperbolic metric p(w)|du>| 
in G.

Let f be a conformal mapping of the unit disk D onto G. Then obviously

(1) R(w,G) = (l-|*|a)|/'(z)|, w = /(2).

Hence

(2) u(z) := logR(w,G) = log(l - zz) + Re log/'(z) .

Since

(3) V,u := uss + t»„ = tiPu/dzdz = -4(1 - zz))-2 < 0 ,

u(z) is superharmonic as a function of z € D and also of w € G, in view of the equality 
Awu = |dz/dw|2 AjU. This implies that any critical point of u, and also of R, is either 
a saddle point, or a local maximum.

The problem, how do the geometrical properties of G affect the set of local 
maxima was investigated by many authors. Interesting results in this direction, as 
well as a fairly complete list of references can be found in [6].

Some properties of R(w, G) can be immediately obtained in an elementary way:
(i) if Gi G2 then R(w,Gi) < R(w,Gj);
(ii) if G is the image domain of G under a conformal mapping s and w = 

<fi(w) then R(w, G) = |9?'(w)|f?(w, G) which means conformal invariance of hyperbolic 
metric;
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(iii) if d(w) = dist(w, C \ G) then d(u>) < R(w, G) < 4d(w).
A non-elementary but very important property is the following:
(iv) If G* is obtained from G by Steiner (or circular) symmetrization with respect 

to an axis passing through w (or a ray emanating from w) then R(w,G) < R(w,G*), 
cf. [2), [7]. The sign of equality occurs iff G = G* (Steiner symmetrization), or 
G* = aG, w — 0, |a| = 1 (circular symmetrization), cf. [3].

The property (iii) immediately implies the following: R(w, G) is bounded in G 
if, and only if, d(w) is bounded. Moreover, (ii) and (iv) imply that, for G — {w : 
|Im w| < jt/4} , any point w on the real axis provides a local maximum of R(w,G). If

(4) /(x) = | log(l + x)/( 1 - x) = x + | x’ + 1 x5 + ... ,

then /(D) = G and, by (1), we obtain R(x, G) — 1 for any x € R.
However, even for a bounded R(w, G) the set of local maxima may be empty. To 

this end consider the function

(5) i(x) = -x + log(l+x)/(l - x) , x€D.

We have Re g'(z) — Re(l + x)/(l — x) > 0 which implies univalence of g in D. The 
domain G = g(D) is symmetric w.r.t. the real axis, its boundary consisting of the 
curve w(0) = log cot 0/2 — cos0 + i(n/2 — sin0), 0 < 0 < ir, and its reflection in the 
real axis. By (iv) R(w, G).attains’ a maximal value at w = uq if w = «o + »» G G 
and u0 is fixed. Then by (1) R(u0,G) = 1 + r2, where r = p~1(w0), and consequently 
R(w,G) increases strictly on the real axis as |w| increases. Moreover, R(w,G) < 1 
for all w € G. On the imaginary axis R(iv, G) — (1 - y2)2/(l + j/2) strictly decreases 
to 0 as |y| —♦ 1. Therefore w = 0 is a saddle point. Using the characteristic equation 
(8) for critical points we arrive, after rejecting the case r = 0, at the equation r4q4 + 
2(1 — r2)rj2 — 1 = 0, where q = x/r, |q| = 1. Hence q2 must be real, i.e. q2 = ±1 
which shows to be impossible.

This means there exist no critical points apart from w = 0. Thus R(w, G) being 
bounded has no local maximum and only one critical point.

The absence of local maxima is possible only if the area |G| = +oo. This follows 
from the

Proposition 1. If G is a simply connected domain of finite area then there 
exists w0 6 G such that R(w0,G) > R(w,G) for all w 6 G.

Proof. Suppose G = /(D), where / is holomorphic in D and the area |/(D)| 
is finite. Then, as it is well known, limr_i(l — r)Af(r,/') = 0, where M(r,f') = 
suP{|/,(re'*)l' 0 € R}, cf. e.g. [4]. This implies, in view of (1), that R(w,G) -♦ 0, 
as w —♦ dG in spherical metric. If R(wj,G) = d for some u>i € G, then {w € G : 
R(w, G) > d} is a non-empty compact subset of G and R(w, G), being continuous, 
attains its maximal value on this subset at some wo € G, and this ends the proof.

In what follows we prove two lemmas which give necessary and sufficient condi­
tions for a point w 6 G to be a local maximum of R(w, G). Our approach is slightly 
different from that in [1] and [6], where analogous results appear.
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Note first that critical points of R(w, G) coincide with critical points of u(z). We 
obtain from (2)

(6) r^- u(re'*) = r^-[log(l - r2) + Re log/'(re**)]

= —2ra/(l - r2) + Re{zr'(z)//'(2)} , z = re" ,

on the radii 0 = const.
On the other hand, we have on circles |z| = r > 0

(7) ~ «(re") = Re log/'(re") = -Im{z/"(z)//'(z)} .

Hence we obtain

Lemma 1. If f w univalent in D, and G = /(D), then the point w = /(re"), 
r > 0, m critical for R(w, G) if, and only if,

(8) zf"(z)/f(z) = 2r2/(l - r2) , z = re" .

Due to the formula (1) and the property (ii) we may assume that the function / 
mapping D onto G belongs to the familiar class S, so that

(9) /(z) = z+a2z2 + a3z3 + ... , zeD,

and 72(0, /(D)) = 1.
We shall establish in terms of 02, a3 necessary and sufficient conditions for 

72(0, /(D)) to be a local maximum.

Lemma 2. If 72(w,/(D)) has a local maximum of w = 0, then a? — 0, 
|o3| < 1/3. Conversely, if a? = 0, |a3| < 1/3, then 72(w,/(D)) has a strict local 
maximum at w = 0.

Proof. Due to (2) we may preferably consider u(z) instead of 72(w,/(D)). We
have

log.f(z) = log[l + (2a2z + 3a3z2 + ...)] = 2a2z + (3o3 - 2o2)z2 + O(z3) 

and hence, using (2), we obtain for z = re":

(10) u(re") = (a2e" + 32e-")r + |[(3a3 - 2a^)e2"+
+ (3o3-2^)e"2"-2]r2 + 0(r3).

If 72(0,/(D)) = 1 (or u(0) = 0) is a local maximum then obviously 02 = 0 and 
3a3e2" — 3a3e-2" — 2 < 0 for all 0 € R which means that |o31 < 1/3. Conversely, if 
02 = 0 and |o3| <1/3 then, as readily seen from (10), 72(w,/(D)) has a strict local 
maximum at w = 0.
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2. Some applications and remarks. Lemma 2 leaves the case a? — 0, 
|a3| = 1/3 open. We may obviously assume that a3 = 1/3. We will give examples 
showing that all three possibilities can occur.

(I) w = 0 »3 a strict local maximum..
To this end consider f(z) = z + | z3. We have Re f'(z) = Re(l + z2) > 0 in D 

and therefore f € S. The domain G is symmetric w.r.t. the real axis and hence, due 
to (iv), R(uo + iv, G) < R(ti0, G) for any uo + iv € G («o, v 6 R, » / 0). This implies 
R(iv, G) < 71(0, G) = 1; for u0 0, r = /-1(u0) we have R(u0 + »v,G) < R(«o,G) = 
(1 — r2)(l + r2) = 1 — r4 < 1 which proves (I). By means of (8) one verifies easily 
that w = 0 is the only critical point of R(w, G) and consequently it attains its global 
maximum at w = 0.

(II) w = 0 w a weak local maximum.
This obviously occurs for f as in formula (4).
(III) w = 0 »3 a saddle point.
Consider the function / G S satisfying f'(z) = p(z) = (l+w(z))/(l+w(z)), where 

w(z) = z2(1+2z)/(2 + z) = z2(2-|(l + |z)-1) = jz2 + |z3 - |z4 + O(z5). Obviously 
|w(z)| < |z|2 in D and hence Re f'(z) > 0. We have f'(z) = l+2w(z) + 2(w(z)2 + - • • = 
1 + z2 + jz3 — |z4 + G(z5). Since f has real coefficients, G is symmetric w.r.t. the 
real axis and by (iv) we have R(iv, G) < R(0, G) = 1. On the other hand, on the real 
axis

R(u,G) = (1 - x2)(l + x2 + jx3 + O(x4)) = 1 + |x3 + O(x4)
which is > 1 for x > 0 sufficiently small and < 1 for small negative x and this proves 
(HI).

In [1] the author proved that, for convex domains, apart from the strip {tv : 
|Im tv| < 1} and its images under similarity, there exists at most one maximum of 
7Z(w, G). A very simple proof of this result is given in [6], while in [5] a converse 
statement is disproved, i.e. a non-convex Jordan domain G with exactly one maxi­
mum of R(w, G) has been found. The domain G in (I) has also the same properties, 
however, in both cases dG is a piecewise analytic curve. The function g in the formula 
(5) enables us to construct a non-convex Jordan domain with analytic boundary, one 
maximum and no other critical points of 7Z(w,G).

Proposition 2. If 2p2 = 1 and G — h(fD), where

h(z) = -z+ p~2 log(l + pz)/(l - pz) = z + |p2z3 + |p4z5 + ... ,

then R(w,G) has only one critical point w = 0 being a strict local maximum and 
h(dD) is a non-convex analytic curve symmetric w.r.t. both coordinate axes.

Proof. Obviously h(z) = p-1p(pz), with g defined by (5), belongs to S. If 
|z| = r then R(w, G) < (1 — r2)(l+p2r2)/(l-p2r2) < 1 since 2p2r2 = r2 < r2+p2r4, 
with the sign of equality for r = 0 only. Thus 72(w,G) has a global maximum at 
w = 0. We have log h'(z) = Iog(l + p2z2) - log(l - p2z2), and hence

Im{z/i"(z)//,'(z)} = 4p2(l - p4r4)|l - p4z4|"2Im(z2) = 0

only for z on coordinate axes. Thus, by (7), critical points may be situated on coor­
dinate axes only. However, on both coordinate axes R(tv, G) tends monotonically to
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zero as |w| increases. Hence no critical points w / 0 do exist. We have zh"(z)/h'(z) = 
4p2z2(l — p4z4)-1 and we now prove that y>(z) = 1 + 4p2z2(l — p4z4)-1 is not in the 
familiar Caratheodory class. With z = j, 2p2 = 1 we obtain <p(t) = —5/3 < 0 and 
this proves that h(9D) is a non-convex analytic Jordan curve.

We state now a simple sufficient condition for R(w,G) to have only one local 
maximum.

Theorem . If f map» the unit disk D conformally onto G and R(w, G) ha» a 
strict local maximum at w = 0, then

(11) Re zf"(z)/f(*) < 2|z|2(l - |z|2)-1 for all z € D

implies that R(w, G) has only one local maximum w = 0.

Proof. By (2) and (6) we have ufrc*9) < 0 for 0 =const with & u(rei*) 
being real-analytic in a neighbourhood of the ray 0 =const. Therefore possible zeros 
of du/dr from a discrete set {rtc*9} and so du/dr < 0 in any interval (r*,ri+i). 
Hence u is strictly decreasing for Q fixed and r ranging over (0,1)- The same is true 
if du/dr has at most one zero in (0,1)- Hence u(re,tf) and also R(w,G), w — f(re,9>), 
strictly decrease as 0 is fixed and r ranges over (0,1). This ends the proof.
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