ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XLVI, 7

SECTIO A

1992

Jan G. KRZYŻ (Lublin)

Some Remarks on the Maxima of Inner Conformal Radius

Abstract. If $f(x)=x+a_2x^3+a_3x^3+...$ is univalent in the unit disk D then $a_2=0$ and $|a_3|\leq 1/3$ is necessary, whereas $a_2=0$ and $|a_3|<1/3$ is sufficient for the inner conformal radius R(w,f(D)) to have a local maximum at w=0. The case $|a_3|=1/3$ is investigated. Moreover, a sufficient condition for R(w,f(D)) to have a unique global maximum at w=0 is given.

1. Preliminaries. Suppose G is a simply connected domain of hyperbolic type in the finite plane C. If $w \in G$ and φ maps G conformally onto the disk $\{z : |z| < R\}$ so that w and z = 0 correspond and $|\varphi'(w)| = 1$ then R = R(w, G) is a well defined continuous real-valued function of $w \in G$ called *inner conformal radius* of G at the point $w \in G$. The function R(w, G) plays an important role in the geometric function theory, in particular $\rho(w) = 1/R(w, G)$ is the density of hyperbolic metric $\rho(w)|dw|$ in G.

Let f be a conformal mapping of the unit disk D onto G. Then obviously

(1)
$$R(w,G) = (1-|z|^2)|f'(z)|, \quad w = f(z).$$

Hence

(2)
$$u(z) := \log R(w,G) = \log(1-z\overline{z}) + \operatorname{Re}\log f'(z) .$$

Since

(3)
$$\nabla_z u := u_{zz} + u_{yy} = 4\partial^2 u / \partial z \partial \overline{z} = -4(1 - z\overline{z}))^{-2} < 0$$

u(z) is superharmonic as a function of $z \in D$ and also of $w \in G$, in view of the equality $\Delta_w u = |dz/dw|^2 \Delta_z u$. This implies that any critical point of u, and also of R, is either a saddle point, or a local maximum.

The problem, how do the geometrical properties of G affect the set of local maxima was investigated by many authors. Interesting results in this direction, as well as a fairly complete list of references can be found in [6].

Some properties of R(w,G) can be immediately obtained in an elementary way: (i) if $G_1 \subseteq G_2$ then $R(w,G_1) < R(w,G_2)$;

(ii) if \tilde{G} is the image domain of G under a conformal mapping φ and $\tilde{w} = \varphi(w)$ then $R(\tilde{w}, \tilde{G}) = |\varphi'(w)| R(w, G)$ which means conformal invariance of hyperbolic metric;

(iii) if $d(w) = \operatorname{dist}(w, \mathbb{C} \setminus G)$ then $d(w) \le R(w, G) \le 4d(w)$.

A non-elementary but very important property is the following:

(iv) If G^{\bullet} is obtained from G by Steiner (or circular) symmetrization with respect to an axis passing through w (or a ray emanating from w) then $R(w, G) \leq R(w, G^{\bullet})$, cf. [2], [7]. The sign of equality occurs iff $G = G^{\bullet}$ (Steiner symmetrization), or $G^{\bullet} = aG, w = 0, |a| = 1$ (circular symmetrization), cf. [3].

The property (iii) immediately implies the following: R(w, G) is bounded in G if, and only if, d(w) is bounded. Moreover, (ii) and (iv) imply that, for $G = \{w : |\text{Im } w| < \pi/4\}$, any point w on the real axis provides a local maximum of R(w, G). If

(4)
$$f(z) = \frac{1}{2} \log(1+z)/(1-z) = z + \frac{1}{3} z^3 + \frac{1}{5} z^5 + \dots$$

then $f(\mathbf{D}) = G$ and, by (1), we obtain R(x, G) = 1 for any $x \in \mathbb{R}$.

However, even for a bounded R(w,G) the set of local maxima may be empty. To this end consider the function

(5)
$$g(z) = -z + \log(1+z)/(1-z), z \in \mathbb{D}$$

We have Re $g'(z) = \operatorname{Re}(1+z)/(1-z) > 0$ which implies univalence of g in D. The domain $G = g(\mathbb{D})$ is symmetric w.r.t. the real axis, its boundary consisting of the curve $w(\theta) = \log \cot \theta/2 - \cos \theta + i(\pi/2 - \sin \theta), 0 < \theta < \pi$, and its reflection in the real axis. By (iv) R(w, G) attains a maximal value at $w = u_0$ if $w = u_0 + iv \in G$ and u_0 is fixed. Then by (1) $R(u_0, G) = 1 + r^2$, where $r = g^{-1}(u_0)$, and consequently R(w, G) increases strictly on the real axis as |w| increases. Moreover, R(w, G) < 1for all $w \in G$. On the imaginary axis $R(iv, G) = (1 - y^2)^2/(1 + y^2)$ strictly decreases to 0 as $|y| \to 1$. Therefore w = 0 is a saddle point. Using the characteristic equation (8) for critical points we arrive, after rejecting the case r = 0, at the equation $r^4\eta^4 + 2(1 - r^2)\eta^2 - 1 = 0$, where $\eta = z/r$, $|\eta| = 1$. Hence η^2 must be real, i.e. $\eta^2 = \pm 1$ which shows to be impossible.

This means there exist no critical points apart from w = 0. Thus R(w, G) being bounded has no local maximum and only one critical point.

The absence of local maxima is possible only if the area $|G| = +\infty$. This follows from the

Proposition 1. If G is a simply connected domain of finite area then there exists $w_0 \in G$ such that $R(w_0, G) \ge R(w, G)$ for all $w \in G$.

Proof. Suppose $G = f(\mathbf{D})$, where f is holomorphic in **D** and the area $|f(\mathbf{D})|$ is finite. Then, as it is well known, $\lim_{r\to 1}(1-r)M(r, f') = 0$, where $M(r, f') = \sup\{|f'(re^{i\theta})| : \theta \in \mathbb{R}\}$, cf. e.g. [4]. This implies, in view of (1), that $R(w, G) \to 0$, as $w \to \partial G$ in spherical metric. If $R(w_1, G) = d$ for some $w_1 \in G$, then $\{w \in G : R(w, G) \ge d\}$ is a non-empty compact subset of G and R(w, G), being continuous, attains its maximal value on this subset at some $w_0 \in G$, and this ends the proof.

In what follows we prove two lemmas which give necessary and sufficient conditions for a point $w \in G$ to be a local maximum of R(w, G). Our approach is slightly different from that in [1] and [6], where analogous results appear. Note first that critical points of R(w, G) coincide with critical points of u(z). We obtain from (2)

(6)
$$r\frac{\partial}{\partial r} u(re^{i\theta}) = r\frac{\partial}{\partial r} [\log(1-r^2) + \operatorname{Re}\log f'(re^{i\theta})] \\ = -2r^2/(1-r^2) + \operatorname{Re}\{zf''(z)/f'(z)\}, \quad z = re^{i\theta}$$

on the radii $\theta = \text{const.}$

On the other hand, we have on circles |z| = r > 0

(7)
$$\frac{\partial}{\partial \theta} u(re^{i\theta}) = \frac{\partial}{\partial \theta} \operatorname{Re} \log f'(re^{i\theta}) = -\operatorname{Im} \{ z f''(z) / f'(z) \} .$$

Hence we obtain

Lemma 1. If f is univalent in D, and G = f(D), then the point $w = f(re^{i\theta})$, r > 0, is critical for R(w, G) if, and only if,

(8)
$$zf''(z)/f'(z) = 2r^2/(1-r^2), \quad z = re^{i\theta}$$

Due to the formula (1) and the property (ii) we may assume that the function f mapping D onto G belongs to the familiar class S, so that

(9)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots, \quad z \in \mathbf{D},$$

and $R(0, f(\mathbf{D})) = 1$.

We shall establish in terms of a_2, a_3 necessary and sufficient conditions for $R(0, f(\mathbf{D}))$ to be a local maximum.

Lemma 2. If R(w, f(D)) has a local maximum at w = 0, then $a_2 = 0$, $|a_3| \le 1/3$. Conversely, if $a_2 = 0$, $|a_3| < 1/3$, then R(w, f(D)) has a strict local maximum at w = 0.

Proof. Due to (2) we may preferably consider u(z) instead of R(w, f(D)). We have

$$\log f'(z) = \log[1 + (2a_2z + 3a_3z^2 + \dots)] = 2a_2z + (3a_3 - 2a_2^2)z^2 + O(z^3)$$

and hence, using (2), we obtain for $z = re^{i\theta}$:

(10)
$$u(re^{i\theta}) = (a_2e^{i\theta} + \overline{a}_2e^{-i\theta})r + \frac{1}{2}[(3a_3 - 2a_2^2)e^{2i\theta} + (3\overline{a}_3 - 2\overline{a}_2^2)e^{-2i\theta} - 2]r^2 + O(r^3).$$

If $R(0, f(\mathbf{D})) = 1$ (or u(0) = 0) is a local maximum then obviously $a_2 = 0$ and $3a_3e^{2i\theta} - 3\overline{a}_3e^{-2i\theta} - 2 \le 0$ for all $\theta \in \mathbb{R}$ which means that $|a_3| \le 1/3$. Conversely, if $a_2 = 0$ and $|a_3| < 1/3$ then, as readily seen from (10), $R(w, f(\mathbf{D}))$ has a strict local maximum at w = 0.

brobyndi In

2. Some applications and remarks. Lemma 2 leaves the case $a_2 = 0$, $|a_3| = 1/3$ open. We may obviously assume that $a_3 = 1/3$. We will give examples showing that all three possibilities can occur.

(I) w = 0 is a strict local maximum.

To this end consider $f(z) = z + \frac{1}{3} z^3$. We have Re $f'(z) = \operatorname{Re}(1 + z^2) > 0$ in D and therefore $f \in S$. The domain G is symmetric w.r.t. the real axis and hence, due to (iv), $R(u_0 + iv, G) < R(u_0, G)$ for any $u_0 + iv \in G$ ($u_0, v \in \mathbb{R}, v \neq 0$). This implies R(iv, G) < R(0, G) = 1; for $u_0 \neq 0$, $r = f^{-1}(u_0)$ we have $R(u_0 + iv, G) < R(u_0, G) =$ $(1 - r^2)(1 + r^2) = 1 - r^4 < 1$ which proves (I). By means of (8) one verifies easily that w = 0 is the only critical point of R(w, G) and consequently it attains its global maximum at w = 0.

(II) w = 0 is a weak local maximum.

This obviously occurs for f as in formula (4).

(III) w = 0 is a saddle point.

Consider the function $f \in S$ satisfying $f'(z) = p(z) = (1+\omega(z))/(1+\omega(z))$, where $\omega(z) = z^2(1+2z)/(2+z) = z^2(2-\frac{3}{2}(1+\frac{1}{2}z)^{-1}) = \frac{1}{2}z^2 + \frac{3}{4}z^3 - \frac{3}{8}z^4 + O(z^5)$. Obviously $|\omega(z)| \leq |z|^2$ in D and hence Re f'(z) > 0. We have $f'(z) = 1+2\omega(z)+2(\omega(z)^2+\cdots = 1+z^2+\frac{3}{2}z^3-\frac{1}{4}z^4+O(z^5)$. Since f has real coefficients, G is symmetric w.r.t. the real axis and by (iv) we have R(iv, G) < R(0, G) = 1. On the other hand, on the real axis

$$R(u,G) = (1-x^2)(1+x^2+\frac{3}{2}x^3+O(x^4)) = 1+\frac{3}{2}x^3+O(x^4)$$

which is > 1 for x > 0 sufficiently small and < 1 for small negative x and this proves (III).

In [1] the author proved that, for convex domains, apart from the strip $\{w : |\text{Im } w| < 1\}$ and its images under similarity, there exists at most one maximum of R(w, G). A very simple proof of this result is given in [6], while in [5] a converse statement is disproved, i.e. a non-convex Jordan domain G with exactly one maximum of R(w, G) has been found. The domain G in (I) has also the same properties, however, in both cases ∂G is a piecewise analytic curve. The function g in the formula (5) enables us to construct a non-convex Jordan domain with analytic boundary, one maximum and no other critical points of R(w, G).

Proposition 2. If $2\rho^2 = 1$ and G = h(D), where

$$h(z) = -z + \rho^{-1} \log(1 + \rho z) / (1 - \rho z) = z + \frac{2}{3} \rho^2 z^3 + \frac{2}{5} \rho^4 z^5 + \dots$$

then R(w,G) has only one critical point w = 0 being a strict local maximum and $h(\partial D)$ is a non-convex analytic curve symmetric w.r.t. both coordinate axes.

Proof. Obviously $h(z) = \rho^{-1}g(\rho z)$, with g defined by (5), belongs to S. If |z| = r then $R(w,G) \leq (1-r^2)(1+\rho^2r^2)/(1-\rho^2r^2) \leq 1$ since $2\rho^2r^2 = r^2 \leq r^2+\rho^2r^4$, with the sign of equality for r = 0 only. Thus R(w,G) has a global maximum at w = 0. We have $\log h'(z) = \log(1+\rho^2z^2) - \log(1-\rho^2z^2)$, and hence

$$\operatorname{Im}\{zh''(z)/h'(z)\} = 4\rho^2(1-\rho^4r^4)|1-\rho^4z^4|^{-2}\operatorname{Im}(z^2) = 0$$

only for z on coordinate axes. Thus, by (7), critical points may be situated on coordinate axes only. However, on both coordinate axes R(w, G) tends monotonically to

zero as |w| increases. Hence no critical points $w \neq 0$ do exist. We have $zh''(z)/h'(z) = 4\rho^2 z^2 (1-\rho^4 z^4)^{-1}$ and we now prove that $\varphi(z) = 1+4\rho^2 z^2 (1-\rho^4 z^4)^{-1}$ is not in the familiar Caratheodory class. With z = i, $2\rho^2 = 1$ we obtain $\varphi(i) = -5/3 < 0$ and this proves that $h(\partial D)$ is a non-convex analytic Jordan curve.

We state now a simple sufficient condition for R(w,G) to have only one local maximum.

Theorem. If f maps the unit disk D conformally onto G and R(w,G) has a strict local maximum at w = 0, then

(11) Re
$$zf''(z)/f'(z) \le 2|z|^2(1-|z|^2)^{-1}$$
 for all $z \in D$

implies that R(w,G) has only one local maximum w = 0.

Proof. By (2) and (6) we have $\frac{\partial}{\partial r} u(re^{i\theta}) \leq 0$ for $\theta = \text{const}$ with $\frac{\partial}{\partial r} u(re^{i\theta})$ being real-analytic in a neighbourhood of the ray $\theta = \text{const}$. Therefore possible zeros of $\partial u/\partial r$ from a discrete set $\{r_k e^{i\theta}\}$ and so $\partial u/\partial r < 0$ in any interval (r_k, r_{k+1}) . Hence u is strictly decreasing for θ fixed and r ranging over (0, 1). The same is true if $\partial u/\partial r$ has at most one zero in (0, 1). Hence $u(re^{i\theta})$ and also R(w, G), $w = f(re^{i\theta})$, strictly decrease as θ is fixed and r ranges over (0, 1). This ends the proof.

REFERENCES

- Haegi, H.R., Extremalprobleme und Ungleichumgen konformer Gebietsgrössen, Comp. Math. 8 (1950), 81-111.
- [2] Hayman, W.K., Multivalent functions, Cambridge University Press 1958.
- [3] Jenkins, J.A., Univalent functions and conformal mappings, Springer-Verlag, Berlin-Göttingen-Heidelberg 1958.
- [4] Krzyż, J.G., On the derivative of bounded p-valent functions, Ann. Univ. Marine Curie-Skłodowska Sect. A 12 (1958), 23-28.
 - [5] Kühnau, R., Zum konformen Radius bei nullwinkligen Kreisbogendreiecken, Mitt. Math. Sem. Giessen No 211 (1992), 19-24.
- [6] Kühnau, R., Maxima beim konformen Radius einfach zusammenhängender Gebiete, this volume, 63–73.
- [7] Pólya, G., Szegő, G., Isoperimetrical inequalities in mathematical physics, Princeton University Press 1951.

Instytut Matematyki UMCS Plac M. Curie Skłodowskiej 1 20-031 Lublin, Poland (received May 24, 1993)