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On Differential Inclusions with an Advanced Argument

Abstract. In the paper the following initial problem ='(t)€F(t,z(t).z(»(1))), 20, z(0) =
Zg, where V(t) 2 t, is considered. We proved that under suitable boundedness conditions on
multifunction F and real function » the problem has at least one solution

1. Introduction. Recently there have been published many papers devoted
to the existence of solutions of multivalued differential inclusions. Most of them are
concerned with the existence of solutions on a finite interval but when we examine
differential inclusions with an advanced argument it is generally necessary to consider
infinite intervals or to add some additional conditions on the deviation function.

In this paper we study differential inclusions of the form

(1) z'(t) € F(t,z(t),z(v(t))), t20

with the initial condition
(2) z(0) = z¢

in a separable and reflexive Banach space X. Heret € I = (0,00) and t — (t)
denotes a continuous function such that v(t) >t for t € I and F is a multifunction
from I x X x X into the set of all nonempty compact and convex subsets of X.

We start with some lemmas and then under a boundedness conditions on F
we prove that the problem (1)+2) has at least one solution. Moreover we get an
evaluation of the growth of this solution.

It is worth to notice that our existence result generalizes the one of Bielecki [2]
which was proved for X = R and a differential equation with deviated argument.

2. Preliminaries. Let us start with our notations, definitions and some of the
basic results which will be nedded in the subsequent section.

Let Y, Z be arbitrary nonempty sets. A set valued function F : Y — 2Z is called
multifunction with a domain Y and a range contained in 2Z, where 27 is the family of
all nonempty subsets of Z. If T is a o-field of subsets Y and Z is a topological space,
thex_1 a multifunction F : Y — 22 is said to be £-measurable whenever F-(B)={ye€
Y : F(y)N B # 0} € T for each closed subset B of Z. Similarly we will say that a
function 1Y — Z is £-measurable if f~Y(B) = {y € Y : f(y) € B} is measurable
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for every closed subset B of Z. In case of separable metric spaces Z this notion of
measurability of f is equivalent to the strong measurability of f (sce Lemma 2.5 of
[4]). I both Y and Z are topological spaces then a multifunction F : Y — 2% i
called upper semi-continuous (=usc) whenever F~(B) is closed in Y for every closed

subset B of Z.
For compact valued multifunctions F' we have the following equivalent condition

of upper semicontinuity:

Lemma 1. (5, Proposition 4.1, p.48). Suppose that Y,Z are metric spaces
and @ multifunction F : Y — 2% has compact values i.e. for each y € Y the set F(y)
is a compact subset of Z. Then F is usc if and only if for every sequence {yn}nen
of points belonging to Y convergent to yo and for every sequence {zp}neN such that
zn € F(yn) there-is a subsequence {z,, Jren convergent to zo such that zg € F(yo).

In the proof of our main theorem we will also apply the following fixed point
theorem due to Sek Wui Seah [8]:

Lemma 2. Let C be a nonempty closed bounded and convez subset of a locally
convez topological linear space Y. If T : C — 2€ having nonempty convez and closed
values is usc and T(C) is compact then there ezists y € C such that y € T(y).

Let us observe that this lemma is a consequence of the well-known result of Fan

[31-

Now let us denote by X a real infinite dimensional separable and reflexive Banach
space with the norm || - || and the zero element 6. The open ball centered at zo £ X
and of radius r will be denoted by K(zo,r) and the closed one by f(zo,r). For A
being arbitrary subset of X the symbols 4, K (A,r) will respectively stand for the
closure of A and the ball centered at A and of radius r i.e.

K(A,r)= | K(a,r).
e€A

The norm of a bounded nonempty set A C X is the number
lAll = sup{|lal| : a € A} .
The usual algebraical operations on sets are defined as follows

A+B={a+b€eX:a€cA, be B)
A ={Xa:a€ A}, A€eR.

We will simply write a + B instead of {a} + B. Let us observe here that if A is a
convex set and such that 0 € A then

OS/\] < A\ imphee MAC 4.

The convex hull and the closed convex hull of A will be denoted by conv A, E5Hv A
respectively.
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Further, denote by

cf X~ the family of all nonempty closed and convex
subsets of X ,
ccf X — the family of all nonempty compact and convex
subsets of X .

Now, we can define an integral for the multifunction G : (a,b) — ccf X by the
following formula

b b
/ G(t)dt = {/ A(t)dt : ) is a measurable selction of G()} [

b
where [ A(t)dt is the usual Bochner integral. This multivalued integral is called

Aumann’s integral.
We will say that the multifunction G is integrably bounded if there is Lebesgue
integrable function g such that

IG(t)]l < g(t) for almost every t € (a,b) .

Using the Riadstrom embedding theorem (see [6], Theorem 17.2.1 p. 189), we see that

)
J G(t)dt is a nonempty convex and compact set in X.
a

3. The main result. Let us begin with the following

Lemma 3. Let X be a real infinite dimensional Banach space and let {n}neN
be a sequence of absolutely continuous functions ¥, : (0,00) = X which are differen-
tiable almost everywhere on (0,00). If
(a) ¢¥n(t) = ¥(t) as n — oo for all t € (0,00) where 1) : (0,00) — X;

(b) ll¥n(®ll < g(t) almost everywhere on (0,00) for all n € N, where g : (0,00) —

(0,00) 1s locally Lebesgue integrable on (0, 00);

(c) {¥n(t) :n > 1} is relatively compact in X
then v is absolutely continuous on (0, 00), almost everywhere differentiable on (0, c0)
and

¥'(t) e [ @rv | {vi(1)
n=1 k=n

for almost all t € (0,00).

Proof. In particular, conditions (a), (b), (c) are satisfied on the intervals (0, )
for each : € N. Hence by Theorem 1.3 [9, p.16] ¢ is absolutely continuous on (0, )
and almost everywhere differentiable on (0,:) and

v'(t) € ﬁ conv G{ﬂ(t)} for almost all ¢ € (0,1) .

Aa=x] k=n
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It follows that ¢ is absolutely continuous on (0, c0).
Now let

D;={te(0,i):¢'(t) ¢ [ v | J{wi(1)}

ax] k=n

and

D= {t€(0,00):¢'(t) ¢ [Jaouv J{vit)} .

nm] k=n

= -]
Then D; is of measure zero and D = |J D; being the union of denumerable collection
k=n

of such sets is of measure zero too. Therefore
¥'(t) € (@nv | J{¥i(t)} for almost all t € (0,00) .
n=1 kx=n

This completes the proof.

Remark. Contrary to the case of numerical functions the X-valued absolutely
continuous function need not necessary be almost everywhere differentiable.

However, if the space X is reflexive we have

Lemma 4. [1, Theorem 3.4, p.53). Let X be a reflezive Banach space.
Then every X -valued absolutely continuous on (a,b) function ¢ is almost everywhere
differentiable on (a,b) and can be represented as

¢(f)=¢(a)+f¢'(6)ds » t€(ab)

where ' is a strong derivative.
.Now let us state the following

Lemma 5. Let L be the o-field of all Lebesgue measurable subsets of I = (0, c0),
B(X x X) the o-field of all Borel subsets of X x X and LR B(X x X) the product o-
field of £ and B(X x X) i.e. the smallest o-field of subsets of I x X x X containing
all sets A x B where A€ Land B€ B(X xX). If F:IxX xX — cecf X
1 £ @ B(X x X)-measurable multifunction such that for every t € I F(t,-,-) is
wscand sf p : I — X, v i I — I are continuous functions then the multifunction

G: I ccf X defined as follows
G(t) = F(t,p(t), p(v(t))), te€l
is L-measurable.

Proof. PutY = X x X and denote by Fa multxfuncnon from I x Y into ccf X
such that F(t,u) = F(t,z ,y) for u = (z,y). Then F is upper semi-Carathéodory
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multifunction i.e. I?‘(-, u) is L-measurable and i‘(t, -) is usc. Moreover Fis LEB(Y)
measurable.
Now let us define a function h : I —+ Y by the formula

h(t) = (p(t),p(u(t))), tel.

Obviously A is £-measurable. Invoking Theorem 1 of [10] we get that the multifunc-
tion G(-) = F(-, h(-)) = F(,¢(),(¥(-))) is L-measurable and thus we are done.

So, we can now begin to formulate our main result.

Let v : I — I be a continuous function such that v(t) > t for t € I.Let k,m,n :
I — I be locally Lebesgue integrable functions. Set

I(t) = k(t) + m(¢t) +n(t) fortel
3) and

t
f(t) = / I(s)ds fortel.
0
Suppose that the following inequality is satisfied
(4) i(v(t) € a™'(1(t) + 57" Inb)

where 0 < a <1, b > 1 are fixed.
Nowlet F: I x X x X — ccf X be £® B(X x X)-measurable multifunction
such that for every t € I F(t,-,-) is usc on X x X. Suppose also that

(5) F(t,z,y) C k(t) + |zl M(t) + lyl|* N(2)

wherek: [ — X i M\N : I = ccf X are locally integrable function and multifunctions
bounded by k and m, n respectively i.e.

IO < k(t) ,
(6) IM(t)} < m(t) ,
. IN@J <n(t) fortel

and such that § € M(t) and 0 € N(t), t € I.
Theorem . Under the above assumptions the problem (1)~2) has at least one
solution i.c. there is an absolutely continuous function ¢ such that p(0) = zo and

©'(t) € F(t,p(t), o(v(t))) for almost all t € I. Moreover this solution > satisfies the
inequality [lp(t)|| < aexp(bl(t)) for t € I.

Proof. Denote by C(I, X) the set of all X-valued functions which are continuous
on I. Fix 4 > 0 and denote by E a family of all functions ¢ € C(I, X) such that

Nl = sup{|(t)l| exp(=bl(t) — vt) : t € I} < +o0 .



38 W. Kaczor , W. Zygmunt

It is easy to verify that E with the normn ||| - ||| is a Banach space.
Next let

(7) ® = {p€ C(I,X): llp(t)|l < aexp(bi(t)) : t € I}

where a is a fixed real number greater than max{1,||z¢||}. Clearly ® is nonempty
bounded convex and closed subset of E.

Further, let us simply write ¢*(t) instead of p(v(t)).

Now we can define a multifunction T : & — 2% in the following way:

(8) (Te)(t)={v € C(I,X):9¥(t) =zo + [ A(s)ds where A: I — X is

a measurable selection of F(-,¢(-),¢°(-))} .

We claim that the multifunction T fulfils all the assumptions of Lemma 2. Really, by
Lemma 5 and the well-known Kuratowski and Ryll-Nardzewski theorem [7] there is
a measurable selection A of F(-,(-),°(-)) and thus T(p) # 0.

Note that

le* (Il = lle((®)]] < aexp(Bi(v(1)) -
Hence by (4) we have

lle* (@)l < aexp(ba~'(I{t) + b7 Inb)) = ab®™" exp(ba~"1(t))

and finally
9) le*(®)ll* < a"bexp(bi(t)) -
Also let

(10) ¥(t) =0 + /o ‘_A(s)ds
where

Ms) € F(3,1(3),"(2)) C ¥(s) + llp()I| M(s) + llo*(s)I* N (s) C
C K(6,k(s) + llp(s)llm(s) + lle*(s)lI*n(s))

because of (5) and (6). Thus by (7), (8) and (9)

I < k(o) + lig(s)lim(s) + lle*(s)]|*ns) <
< k(s) + aexp(bl(s))m(s) + a®bexp(bl(s))n(s) <
< abexp(bi(s)) - I(s) = a(exp(bi(s)))’ -

Then making use of (10) we have
t
(@Ol < llzoll + fn IA(s)ll ds < l|zoll + a(exp(bl(t)) — 1) <

< aexp(bl(2))
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and thus we conclude that ¥ € & and therefore T(p) C $. As & is bounded subset
of E so T(y) is bounded too. Clearly T(y) is convex. To show that T(y) is closed
take ¥, € T(p), ¥ € E such that |||y — ¥||| — 0 as n — 0o0. So by the definition (8)
there is a sequence {A,}nen of measurable selections of F(-,¢(-),°(-)) such that

t
¥al(t) = z0 + J[ An(8)ds fortel
)
Hence it follows, as in the above part of the proof, that

va(t)ll S aexp(bi(t)) fortel.

Of course ¢,, n € N are absolutely continuous functions. By virtue of Lemma 4 we
have

#alt) = V2 + [ vi(e)ds
o
and by the properties of Bochner integral we get
Yn(t) € F(t,4(t),»"(t)) almost everywhereon I .

Thus the assumption (a) and (b) of Lemma 3 are fulfilled. Observe that the com-
pactness of the set F(t,(t),p*(t)) implies that the set {$;(t) : n > 1} is relatively
compact.

Hence in view of Lemma 3 ¢ is absolutely continuous and almost everywhere on
I differentiable. What is more, by convexity of F(t,(t),¢°(t)), we get

¥'(2) € F(t,p(t),¢"(t)) for almost all t € I .

Now, ‘nvoking Lemma 4 once more, we have

rt
¥(t) =z0 + ./o A(s)ds, where A(s) = 9'(s) almost everywhere on I .

Therefore ¥ € T(yp) and T(y) is closed.
Now we will show that T(®) is compact. To this aim take {i}nen such that

{¥n}nen C T(®). Then there is a sequence {pn}nen such that ¢, € & and Y, €
T(pn) and therefore by (8)

(11) Yn(t) =20 + /: An(s)ds

where A, is a measurable selection of F(-,pa(:),pa(:)). We claim that {¢p : n 2
1} is relatively compact in C(I, X) with respect to the almost uniform convergence
topology. So, in order to proveit, take ¢, t2 € I, t3 > t;. Then, by similar estimations,
we obtain

[¥a(ta) - $alts)ll < j " a(exp(bl(s))) ds =

t

= alexp(bl(tz)) — exp(bi(t1))]
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and therefore ¢,, are equicontinuous. In view of (5) and (11)
t
inlt) € 3+ [ (K + lon(s M) + o) N (2)) ds

but by (7) and (9)

k(o) + lla()IM(s) + iR ()" N(s) €
K(s) + aexp(bl(s))M(s) + abexp(8l(s))N(s) = G(s)
and therefore )
¥a(t) € zo+/ G(s)ds, n21

where G(a) is nonempty compact and convex. Hence, because of compactness of the
integral fG(s) ds, zo + fG(s)ds is compact too. Thus {$s(t) , n > 1} is relatively

compact and by the well- known compactness criterion we conclude that {1, : n > 1}
is relatively compact with respect to the almost uniform convergence topology in
C(I,X). Therefore there is a subsequence {¥n, }teN such that ¢,, — ¢ as k — oo
in this topology. We can assume without loss of generality that ¢, — . But our

aim is to show that ¥
ll¥a—-¢lll 20 asn—oo.

To this goal fix € > 0, put b(¢) = 7~)(ln4a — In¢) and observe that
lwi(t) — ¥l < J£ lXi(s) — Aj(s)ll ds <
< [ @I+ e ds
i _

and, as before, that

lli(t) = ¥i(2)ll < 2aexp(l(t)) -
Thus

I9:(6) = 5(8) < aexp(dlle) +7t)- 5 exp(~1); <
< exp(l(t) +11)- 3
for ag exp(—7t) < 1 what means for
4t 2 In4a - Iln¢ .
Summing up the above we get

Ie(t) = 5O < exp(bl(e) + 1) - £ for ¢ 2 B(c)
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and therefore

(12) lwi(t) = w5(t)llexp(=bi(t) = 7t) S = for t 2 6(e) .

NI ™

But for t € (0,6(¢))
(13) llvi(t) — v(t)|| < % for i sufficiently large

(i converges uniformly to ¥ on (0, 6(¢))).
Hence by (12) and (13)

v = ¥lll < sup{llwi(t) — (t)ll exp(=bi(t) — 7t) : t € (0,8(¢))}+
+ sup{||¥i(#) — $(t)]| exp(—bi(t) = 7) : t > 6(e)} < ¢

and thus ¢, — ¢ in the topology of E. There is nothing for us to do but to prove
that T is usc. From the above considerations it follows that T(y) is compact for
every ¢ € ®. Therefore we can apply Lemma 1 to prove upper semiconitinuity of
T:® — ccf ®. So, let |||wn —¢||| = 0 as n — oo and let ¥, € Tp,. As ¥, € T(P)
so there is a subsequence {¥n, }ken and ¥ € & such that |||¢n, — ¥]|| = 0 as k — .
We will show that ¥ € T(yp). To this aim take ¢ > 0. Then by Lemma 4 and upper
semicontinuity of F(t,-,-) we have

¢$.,_(t) € F(t,ion,(t),pn,(t)) C K(F(t, (), 9°(t)),€)

for sufficiently large k. It implies that {1;, ()} is relatively compact and after apply-
ing Lemma 3 we get

¥'(t) € K(F(t,(t), p*(t)),€)
and finally
V'(t) € F(t, (1), 9°(2))
(¢ > 0 was arbitrarily chosen), what means that

v €T(p) .

Hence, invoking Lemma 1, T is usc and thus by Lemma 2 there is ¢ € ® such that
¢ € T(yp), what finishes the proof.
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