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On Differential Inclusions with an Advanced Argument

Abstract. In the paper the following initial problem OO, x(0) =
xo, where p(t) > t, is considered. We proved that under suitable boundedness conditions on 
multifunction F and real function v the problem has at least one solution

1. Introduction. Recently there have been published many papers devoted 
to the existence of solutions of multivalued differential inclusions. Most of them are 
concerned with the existence of solutions oh a finite interval but when we examine 
differential inclusions with an advanced argument it is generally necessary to consider 
infinite intervals or to add some additional conditions on the deviation function.

In this paper we study differential inclusions of the form 

(1> x'(<)eF(t,x(<),x(v(t))), <>0

with the initial condition

(2) x(0) = xo

in a separable and reflexive Banach space X. Here (Ç / = (0, oo) and t —» i/(t) 
denotes a continuous function such that p(<) > i for t € I and F is a multifunction 
from I x X x X into the set of all nonempty compact and convex subsets of X.

We start with some lemmas and then under a boundedness conditions on F 
we prove that the problem (l)-(2) has at least one solution. Moreover we get an 
evaluation of the growth of this solution.

It is worth to notice that our existence result generalizes the one of Bielecki [2] 
which was proved for X = R and a differential equation with deviated argument.

. 2- Preliminaries. Let us start with our notations, definitions and some of the 
asic results which will be nedded in the subsequent section.

Let K, Z be arbitrary nonempty sets. A set valued function F :Y —+ 2Z is called 
multifunction with a domain Y and a range contained in 2Z, where 2Z is the family of 
all nonempty subsets of Z. If E is a c-field of subsets Y and Z is a topological space, 
then a multifunction F :Y —* 2Z is said to be E-measurable whenever F~(jB) = {jz € 

• ■f’(y) O B / 0} ç £ for each closed subset B of Z. Similarly we will say that a 
function f : Y —» Z is E-measuroWe if /_1(B) = {y € Y : /(¡/) € B} is measurable
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for every closed subset B of Z. In case of separable metric spaces Z this notion of 
measurability of f is equivalent to the strong measurability of f (see Lemma 2.5 of 
(4]). If both Y and Z are topological spaces then a multifunction F : Y —» 2Z w 
called upper semi-continuous (=usc) whenever F~{B) is closed in Y for every closed 
subset B of Z.

For compact valued multifunctions F we have the following equivalent condition 
of upper semicontinuity:

Lemma 1. [5, Proposition 4.1, p.48]. Suppose that Y,Z are metric spaces 
and a multifunction F :Y —* 2Z has compact values i.e. for each y € Y the jet F(y) 
is a compact subset of Z. Then F is use if and only if for every sequence {j/n}„eN 
o/ points belonging to Y convergent to yo and for every sequence {2„}„eN suc/t that 
zn € F(y„) there is a subsequence {2n4}teN convergent to zo such that zo € F(j/o)-

In the proof of our main theorem we will also apply the following fixed point 
theorem due to Sek Wui Seah [8]:

Lemma 2. Let C be a nonempty closed bounded and convex subset of a locally 
convex topological linear space Y. IfT:C—*2c having nonempty convex and closed 
values is use and T(C) is compact then there exists y € C such that y € T(y).

Let us observe that this lemma is a consequence of the well-known result of Fan 
[3b

Now let us denote by X a real infinite dimensional separable and reflexive Banach 
space with the norm || • || and the zero element 9. The open ball centered at x0 <= X 
and of radius r will be denoted by A'(ro,r) and the closed one by K(xo,r). For A 
being arbitrary subset of X the symbols A, K(A, r) will respectively stand for the 
closure of A and the ball centered at A and of radius r i.e.

K(A,r) = (J A'(o,r) .
•6X

The norm of a bounded nonempty set A C X is the number 

PH = sup{||a||: a € A} .

The usual algebraical operations on sets are defined as follows

A + B = {a + 6eX:a€A,6eB}
AA = {Aa : a € A} , A e R .

We will simply write a + B instead of {a} + B. Let us observe here that if A is a 
convex set and such that 9 € A then

0 < Aj < A2 implies A1ACA2A.

The convex hull and the closed convex hull of A will be denoted by conv A, c5nV A 
respectively.
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Further, denote by

cf X— the family of all nonempty closed and convex 
subsets of X ,

ccf X— the family of all nonempty compact and convex 
subsets of X .

Now, we can define an integral for the multifunction G : (a, b) —» ccf X by the 
following formula

J G(t)dt = {J X(t)dt: A is a measurable selection of (?(•)} ,

k
where J A(t) dt is the usual Boehner integral. This multivalued integral is called 

a
Aumann’s integral.

We will say that the multifunction G is integrably bounded if there is Lebesgue 
integrable function g such that

||G(t)|| — p(0 for almost every t € (a, b) .

Using the Radstrom embedding theorem (see [6], Theorem 17.2.1 p. 189), we see that 
»
/ G(i)dt is a nonempty convex and compact set in X.
a

3. The main result. Let us begin with the following

Lemma 3. Let X be a real infinite dimensional Banach space and let {d>n}n€N 
6e a sequence of absolutely continuous functions ifn : (0, oo) —» X which are differen
tiable almost everywhere on (0, oo). //
(a) V’n(t) —* V’(f) as n —t oo for all t € (0, oo) where if : (0,oo) —> X;
(b) ||^n(t)|| < g(t) almost everywhere on (0, oo) for all n € N, where g : (0, oo) —>

(0, oo) w locally Lebesgue integrable on (0, oo);
(c) {V’iXO : n > 1} is relatively compact in X
then if is absolutely continuous on (0, oo), almost everywhere differentiable on (0, oo) 
and

if'(t) e Q conv (J {if'k(t)} 
n=l t=n

for almost all t 6 (0, oo).

Proof. In particular, conditions (a), (b), (c) are satisfied on the intervals (0, i) 
for each » 6 N. Hence by Theorem 1.3 [9, p.16] if is absolutely continuous on (0,») 
and almost everywhere differentiable on (0, i) and

oo oo
V>'(i) € Pl conv (J {V’t(^)} almost all t € (0,») . 

n=l fc=n
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It follows that 0 is absolutely continuous on {0, oo).
Now let OO oo

Di={te (0,«): V-'(O i n 5557 U WWI
n=l tan

and OO oo
D = {te (0,oo) : if'(t) Pl 5onv (J {^(*)} • 

nal Łan
oo

Then P, is of measure zero and D = (J Di being the union of denumerable collection 
Jb=»n

of such sets is of measure zero too. Therefore
OO oo

m e P| conv pj {0i(t)} for almost all t € (0, oo) . 
n=l tan

This completes the proof.

Remark. Contrary to the case of numerical functions the X-valued absolutely 
continuous function need not necessary be almost everywhere differentiable.

However, if the space X is reflexive we have

Lemma 4. [1, Theorem 3.4, p.53]. Let X be a reflexive Banach space. 
Then every X-valued, absolutely continuous on (a, b) function if is almost everywhere 
differentiable on (a,b) and can be represented as

W = V’(a) + y if'(s)ds , te(a,b)

where if' is a strong derivative.

Now let us state the following

Lemma 5. Let £ be the a -field of all Lebesgue measurable subsets of I = (0, oo), 
B(X x X) the a -field of all Borel subsets of X x X and C®B(X x X) the product a- 
field of £ and B(X x X) i.e. the smallest a-field of subsets of I x X X X containing 
all sets A x B where A € £ and B € B(X x X). If F : I x X x X -+ ccf X 
is £ ® B(X x X)-measurable multifunction such that for every t € I F(t, •, •) w 
use and if tp : / —i X, is : / -* I are continuous functions then the multifunction 
G : I —♦ ccf X defined as follows

G(t) = F(<^(t),^(f))), tel

is C-measurable.

Proof^ Put Y = X x X and denote by F a multifunction from I xY into ccf X 
such that F(t,u) — F(t,x,y) for u — (r,jz). Then F is upper semi-Caratheodory
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multifunction i.e. F(-,u) is ¿-measurable and F(t, •) is use. Moreover F is ¿®0(y)- 
measurable.

Now let us define a function h : I Y by the formula

Obviously h is ¿-measurable. Invoking Theorem 1 of [10] we get that the multifunc
tion G(-) = is ¿-measurable and thus we are done.

So, we can now begin to formulate our main result.
Let v : I —* I be a continuous function such that i/(t) > t for t € /.Let k,m,n :

I —♦ I be locally Lebesgue integrable functions. Set

I(t) = fc(t) + m(t) + n(f) for t € I
(3) and

7(t)= [‘l(s)ds iortel.
Jo

Suppose that the following inequality is satisfied

(4) +

where 0<a<l, 6>1 are fixed.
Now let F : i x X x X -+ cc/ X be ¿0 B(X x X)-measurable multifunction 

such that for every t € I F(t, •, •) is use on X x X. Suppose also that

(5) F(t, x, „) C k(t) + ||x||M(t) + ||y||°N(t)

where k : I —» X; M,N : I —> ccf X are locally integrable function and multifunctions 
bounded by k and m, n respectively i.e.

I|k(t)ll < *(<) ,
(6) ||M(t)||<m(t),

||N(t)|| < n(t) for t e I

and such that 3 € A/(t) and 3 € N(t), t € I.

Theorem . Under the above assumptions the problem (1)—(2) has at least one 
solution i.e. there is an absolutely continuous function such that y?(0) = xo &nd 

€ F(t, <p(t), y>(i/(t))) for almost all tel. Moreover this solution satisfies the
inequality ||y>(t)|| < aexp(W(t)) for t € I.

Proof. Denote by C(I,X) the set of all X-valued functions which are continuous 
on I. Fix 7 > 0 and denote by £ a family of all functions € C(I,X) such that

IMI = sup{||9S>(<)ll exp(-bl(t) - yt): t e 1} <+oo .
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It is easy to verify that E with the norm ||| • ||| is a Banach space.
Next let

(7) $ = € C(J, X): ||^(0U < a exp( W(t)) : f € /}

where a is a fixed real number greater than max{l, ||xo||}- Clearly $ is nonempty 
bounded convex and closed subset of E.

Further, let us simply write y>*(t) instead of yj(i/(f)).
Now we can define a multifunction T : $ —» 2* in the following way:

(8) = {V1 € C(I,X): V’(i) = xo + [ A(s)ds where A : I —♦ X is
Jo

a measurable selection of F(-, V’(-),¥’*('))} •

We claim that the multifunction T fulfils all the assumptions of Lemma 2. Really, by 
Lemma 5 and the well-known Kuratowski and Ryll-Nardzewski theorem [7] there is 
a measurable selection A of F(-,«p(-), ¥>*(•)) and thus F(<p) 0.

Note that
Ik’iOII = llv»(«,0))ll < aexp(W(p(t))) .

Hence by (4) we have

il¥’*(f)|| < aexp(6a_1(/(t) + ln&)) = aba exp(6Q-1/(t))

and finally

(9) 11^(011° < a"texp(W(<)) .

Also let

(10)

where

v»(f) = x0 +

A(s) € F(s,^(s),^(s)) C k(s) + ||<p(s)||M(s) + ||9J‘(s)||“W(a) C 
C K(0,k(s) + + ||9’*(a)||“n(S))

because of (5) and (6). Thus by (7), (8) and (9)

||A(s)|| < k(s) + ||^(3)||m(s) + ||v>*(3rn(3) <

< k(s) + aexp(W(a))m(s) + a“ftexp(W(s))n(s) <
< a&exp(M(s)) • ¡(s) = a(exp(fc7(s)))' .

Then making use of (10) we have

IWOII < IIM +||A(s)H ds < „zoll + a(exp(W(f)) - 1) < 

< aexp(M(f))
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and thus we conclude that € $ and therefore T(<p) C 4. As $ is bounded subset 
of E so is bounded too. Clearly T(<^>) is convex. To show that T(i^) is closed 
take € T(v?), 0 € F such that |||0„ — V’||| —» 0 as n —► oo. So by the definition (8) 
there is a sequence {An}ngN of measurable selections of F(-,y>(•),<p*(•)) such that

0„(t) = x0 + f A„(s) ds for t € I 
Jo

Hence it follows, as in the above part of the proof, that

Wn(*)|| < aexp(W(t)) for t € / .

Of course </>„, n € N are absolutely continuous functions. By virtue of Lemma 4 we 
have f

V’nG) = V’a(O) +

and by the properties of Boehner integral we get

€ F(t,y>(<), <?*(<)) almost everywhere on I .

Thus the assumption (a) and (b) of Lemma 3 are fulfilled. Observe that the com
pactness of the set implies that the set {V’UO : n > 1} is relatively
compact.

Hence in view of Lemma 3 V» is absolutely continuous and almost everywhere on 
I differentiable. What is more, by convexity of F(t,ip(t),<^*(t)), we get

€ F(t,<p(t),v?*(t)) for almost all t € I .

Now, invoking Lemma 4 once more, we have

ij>(t) = xo + / A(s) da , where A(s) = almost everywhere on I.
Jo

Therefore € T(yj) and T(ifi) is closed.
Now we will show that T($) is compact. To this aim take {i/>n}n€N such that 

{V’nJneN C T($). Then there is a sequence {v?B}n€N such that € $ and t/>„ € 
T(9?B) and therefore by (8)

(H) V’n(f) = Xo +

where A„ is a measurable selection of F(-,y>„(-),<^>* (-)). We claim that {i/>„ : n > 
1} is relatively compact in C(I,X) with respect to the almost uniform convergence 
topology. So, in order to prove it, take ti, tj € I, tj > f i. Then, by similar estimations, 
we obtain

HV’n(fj) - iMMII < f o(exp(W(s)))' da = 
Jti

= a[exp(W(f2)) - exp(W(f,))]
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and therefore t/’n are equicontinuous. In view of (5) and (11)

<M«) 6io+ l\k(s) + |K(s)||A/(s) + K(a)ii°JV(4))da 
Jo

but by (7) and (9)

*(3) + ||^(-)l|A/(J) + ||^W||tt2V(-)C
k(s) + aexp(bl(s))M(s) + a"6exp(M(s))JV(s) = G(s)

and therefore (
V’n(f) € *o + f G(s)ds , n > 1 

Jo
where G(s) is nonempty compact and convex. Hence, because of compactness of the 

< i
integral f G(s)ds, xo +- J G(s)ds is compact too. Thus {V’n(f) , n > 1} is relatively 

o o
compact and by the well-known compactness criterion we conclude that {0„ : n > 1} 
is relatively compact with respect to the almost uniform convergence topology in 
C(I,X). Therefore there is a subsequence {V’tnJtgN such that —> r/> as k —> oo
in this topology. We can assume without loss of generality that i/>„ —» if>. But our 
aim is to show that

Ill’Z’n - V’lll -» 0 as n -» oo .

To this goal fix e > 0, put 6(e) = 7-1(ln4a — lne) and observe that

ll^-(i)-^(<)ll< f ||Ai(s)-A>(s)||ds<
Jo

< /‘(l|A,(s)||+-||A>(s)||)ds 
Jo

and, as before, that
ll&(<) ~ XMOII < 2aexp(W(<)) .

Thus

HlMO - lM*)ll < aexp(M(t) + 7<) • | exp(-7<)| <

< exp(M(t) + yt) • |

4
for a- exp(—y<) < 1 what means for

yt > In4a - lne .

Summing up the above we get

HV’.(f) - tMOII < exp(W(t) +■ 7*) • j for t > 6(e)
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and therefore

(12) ||V’.(<) — 0>(<)|| exp(—6?(i) —-yt) < | for t> 3(e).

But for t € (O,0(e))

(13) ||V’s(t) - ’/’(Oil <Z for » sufficiently large

(ifa converges uniformly to i/> on (0,3(e))).
Hence by (12) and (13)

IllV’i ~ ’/’III <sup{|IM0 - ip(t)\\exp(-bi(t) - it): t € (O,0(e))}+

+ sup{|||/>,(i) - V»(*)ll «cp(-W(f) -yt):t> 3(e)} < e

and thus t/>„ —♦ 'P in the topology of E. There is nothing for us to do but to prove 
that T is use. From the above considerations it follows that T(<p) is compact for 
every ip € $. Therefore we can apply Lemma 1 to prove upper semiconitinuity of 
T : $ —» ccf $. So, let |||i^n — 9?||| —» 0 as n —+ oo and let ipn € Tip„. As ip„ € T($) 
so there is a subsequence {t/>„k }*€n and ’Z’ € $ such that |||t/’„k — 0||| —♦ 0 as k —» oo. 
We will show that 0 € T(<p). To this aim take e > 0. Then by Lemma 4 and upper 
semicontinuity of F(t, •, •) we have

O) e F(<,^(0,^(0) C K(F(t^(f)^(t)\e)

for sufficiently large k. It implies that {V4k(<)} is relatively compact and after apply
ing Lemma 3 we get

/'(t)eK(F(tlV(t),r(t)),e)

and finally
v-'w e F(t, ¥>(*), ¥>•(*))

(e > 0 was arbitrarily chosen), what means that

V- € T(<p) .

Hence, invoking Lemma 1, T is use and thus by Lemma 2 there is € $ such that 
€ T(ifi), what finishes the proof.
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