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Periodic Solutions of Equations of Higher Order
with Right Invertible Operators, Induced by Functional Shifts

Abstract. This paper is a continuation of the author’s earlier work [1]. Here, we shall look for
periodic solutions induced by functional shifts of initial value problems for linear equations of order
N22in a right invertible operators. Sufficient and necessary conditions for the unique solvability of
the problems in the spaces of these periodic elements are given.Functional shifts for right invertible
operators have been considered by the author [2]-[9] (cf. related results of D.Przeworska-Rolewicz

[12],23)).

0. Let X be a linear space over the field C of complex numbers. Denote by L{.X)
the set of all linear operators with domains and ranges in X and by Lo(X) the set
of those operators from L(X) which are defined on the whole space X. An operator
D € L(X) is said to be right invertible if there exists an operator R € L(X) such that
DR = I. The set of all right invertible operators belonging to L(X) will be denoted
by R(X). For a D € R(X) we denote by Rp the set of all its right inverses. In the
sequel we shall assume that dimker D > 0, i.e. D is right invertible but not invertible
and that right inverses belong to Lo(X). An operator F € Lo(X) is said to be an
initial operator for D corresponding to an R € Rp if

F*=F, FX=%kerD and FR=0.

This definition implies that F is an initial operator for D if and only if there is an
operator R € Rp such that F = I — RD on dom D. The set of all initial operators
for a given D ¢ R(X) is denoted by Fp. One can prove that any projection onto
ker D is an initial operator for D. If we know at least one right inverse R, we can
det?rmine the set Rp of all right inverses and the set Fp of all initial operators for
a given D € R(X). The theory of right invertible operators and its applications is
presented by D.Przeworska-Rolewicz in [13].

. l.{ere and in the sequel we admit that 0° := 1. We also write: N for the set of all
positive integers and N, := {0} UN.

For a given operator D € R(X) we shall write (cf. [13], [14]):

(0.1) S:= G ker D' .

i=1
If R'€ Rp then the set S is equal to the linear span P(R) of all D-monomials, i.e.
(0.2) S=P(R):=lin{R*z:z¢€ker D, k€ Ny} .
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Evidently, the set P(R) is independent of the choice of the right inverse R.

In the sequel, K will stand either for the disk K, :={h € C: lh|<p, 0< p <
00}, or for the complex plane C. Denote by H(S2) the class of all functions analytic
on a set {2 C C. Suppose that a function f € H(K) has the following expansion

(0.3) f(h) = ia;h" forallhe K .
k=0

Definition 0.1. Suppose that D € R(X) and dimker D > 0. A family Ty x =
{Tyalrex C Lo(X) is said to be a family of functional shifts for the operator D
induced by the function f if

(0.4) Tyaz =[f(hD))z := ) arh*D*z forallh€ K; z€ S
k=0
where S is defined by Formula (0.1) .

We should point out that by definition of the set S, the last sum has only a finite
number of members different than zero.

Proposition 0.1. (cf. [6]) Suppose that D € R(X) and dimker D > 0, F is an
initial operator for D corresponding to an R € Rp and a family Ty x = {Tyalrex C
Lo(X). Then following two conditions are equivalent:

a) Ty i is a family of functional shifts for the operator D induced by the function

£

k
(0.5) b) TyaR'F=) a;’R*JF forallh€K; ke N .
J=0
Formula (0.5) implies

Proposition 0.2. (cf. [5]) Suppose that D € R(X), dimker D > 0 and Ty x =
{Tya}aek s a family of functional shifts for the operator D induced by the function
f . Then for allh € K; z € ker D

k
T,,hR"z = Zajthk'jz , wherek €Ny .
=0
We denote by X1,, the space of Ty ,-periodic elements, i.e.
(0.6) XT[,A ={z€X: Tyaz = z}, hekK.

Suppose, that D € R(X) and an operator R € Rp. Denote by X,, C P(R),
m € Ny span of D-monomials

(0.7) Xm=ln{R*z:z2€kerD,0<k<m}.
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Clearly,
Xo=kerD.
Note , the set X, (m € Np) is independent of the choice of a right inverse, i.e.
if R\,R; € Rp, R, # R; then
(0.8) lin {R‘fz :2€ker D,0<k<m}=lin {R;: :2€ker D,0< k<m},
(cf.[13]).

The general form of the solution of the equation

@ D'z=y, yeX,
is given by the formula
u=1
(I z=R"y + Z Rtz ,
k=0

where z9,2y,...,2,-; € ker D are arbitrary and n > 1, R € Rp are arbitrarily fixed
(cf. (13)).

1. In the present section we shall look for solutions of the equation (I) belonging
to the space X7, , in the case f(0) # 0, where X7,, is defined by Formula (0.6) . In
the sequel, K will stand either for the disk K » (0 < p < o0) or for C. As before, the
function f € H(K) has the expansion (0.3).

 Proposition 1.1. Suppose that f € H(K), f(0) = 1, D € R(X) and
dimker D > 0. Let Tyx = {Tya}rex C Lo(X) be a family of functional shifts
for D induced by the function f and let R € Rp be arbitrarily fized. If equation (I)
has a solution belonging to the space Xr,, (0 # h € K), then
(1.1) (I-Tya)R%y € Xu-2,
where X, (m € No) is determined by formula (0.7).

Proof. Fix0# h € K andlet r € XT,, be asolution of equation (I). Then there

exist zo,7y,... »Zn—1 € ker D such that z = R"y +Z:;; R¥z;. Our assumptions and
Proposition 0.2 together imply

n-1 n—-1
Tyaz =TyAR"y + T:.n{z R'*t} =TyaR'y+ ) TraR'zn =
k=0 k=0
n-1 & i
=TiaR"y + )_: Z ak-,-h"’R’z. =TyaR"y + ao20+
k-;_o J=0
n—1k-1 n-1
+ Z Ea._jh“‘jR"z; + ag Z Rkn = T!,hR"y +z - R"y+
k=1 j=0 k=1
n-1 &
+ Z 2 Qe hE ™R =2 4 (Tya — DR y+
k=1 m=} 2
n=1 n=1

+ Z Z ak_m+lhk_m+lRm~le .

m=] kmm
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Hence,
n-2
(1.2) Traz=z+(Tra — DR+ Y Rtz
k=0
where
n-1
(1.3) z = Z aj-sh %z, k=0,1,...,n-2.
J=k+1
This and the equality Tyaz = z together imply
n-2
(1.4) (I-Tya)R'y =) R'z} € Xo-z.
k=0

The following proposition is weaker then the proposition inverse to Proposition
1.1.

Proposition 1.2. Suppose that all assumptions of Proposition 1.1. are satisfied
and f'(0) # 0. Let condition (1.1) be satisfied and let formula (1.4) hold. Then all
solutions of equation (I) are given by formula (II) with an arbitrary zo € ker D and
21,22,...,2n-1 € ker D, determined by the recursion formula

Zn-1 =a;'h72
. n-1
=1p=1{./ ) — 2
Zp-1-m =a; h [zn—2—m - E : aj—n+m+2h’ il z,-] ’

J=n—-m

(1.5)

and belong to the space Xt,, (0 # h € K).

Proof. Let 0 # h € K be arbitrarily fixed. Consider the equalities (1.3) as a
linear system of equations with respect to z),z3,...,2,-1. Since by our assumptions
the determinant of this system

ajh ah? ... 7 LISEE an-1A™!
0 a,h aghz = b 7. a,._gh"‘z
0 0 ath ah? ... an_3h*3| = (a;h)* 1 £0,

0 0 0 Op= #3520 arh
therefore we conclude that the system (1.3) has a unique solution. It is easy to verify
that this solution can be determined by formula (1.5). Take

n—-1

(1.6)  a=Rys Y Ra,

k=0
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where 29 € ker D is arbitrarily fixed, z;, 23,..., 2,2 are determined by formula (1.5).

Obviously, the element z given in (1.6) satisfies the equation (I). Moreover, z € X7, ,.
Indeed,

n—1k-1 a &5
T!,hl‘ =z Ry + T;,.R'y + Z Z a;-,—h*"ﬂ.’;. =
k=1 j=0
n=-2
=z+(Tya - DR"y+ Y_R'z,
k=0

(cf.the proof of Proposition 1.1.). The equality Ty az = z follows from equality (1.4).

Clearly, the proof of Proposition 1.1. shows that any solution of equation (I)

belongig to Xr1,, must be of the form (II) with z),22,...,2a-2 € ker D determined
by formula (1.5).

Proposition 1.1. and Proposition 1.2. together imply

Corollary 1.1. Suppose that all assumptions of Proposition 1.1. are satisfied.
If the equation

(1.7) Dr=y, yeX,
has a solution belonging to the space Tyx (0 # h € K) then

(I-Tya)R?y€ker D .

If this condition is satisfied, f'(0) # 0 and (I — Ty,s)R?y = z' , where 2 € ker D,
then the following formula

=Ry +z+a7'h" 'R,
where 2 € ker D is arbitrary, determines all solutions of equation (1.7) which belong

to the space X, ,. i .
As an immediate consequnce of Proposition 1.1. and Proposition 1.2. we obtain

Proposition 1.3. Suppose that all assumptions of Proposition 1.2. are satisfied
and F € Fp is an initial operator for D corresponding to R € Rp. Then a necessary
and sufficient condition for the initial value problem

D'z=y, yeX,n>1,
Fz =2y, 2z9€kerD

to have solutions in the space X1,,, 0 # h € K, is that condition (1.1) is satisfied.

If this condition is satisfied and formula (1.4) holds, then a unique solution of this
problem ezists and is of the form

n-1

x=R"y+Zo+ZR"zn )
k=1
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where z),23,...,2n-1 € ker D are determined by formulae (1.5).

Proposition 1.4. Suppose that all assumptions of Proposition 1.1. are satis-
fied. Then the condition (1.1) is independent of the choice of a right inverse, s.e. if
R,,R; € Rp, Ry # R; and (I — Tya)Ry € Xp—2 then (I — Ty a)R3y € Xn-3.

Proof. Indeed, for R;, R, € Rp we have the formula

k-1
(1.8) R;:=R:z+ER§z,- forallzekerD, k€N,

j=0

where 29, 2;,...,2:-1 € ker D (cf. [13]). Let z be a solution of equation (I). Then
formula (II) implies

n=1
z=R} + )Y Ri:{)
> k=0
and
n=1 3
Z == R;y + 2 R,:zi ) .
k=0

where z,(,l),zg’),z?),z:?),... M,z € ker D. This and formula (1.8) together

N 121> zn—l
imply
. = -]
(1.9) Rjy=Ry+ ) Riz,
k=0

where 23,27,...,2,_, € ker D. Let (I — Tys)R}y = Y ;- RYz,, where 25,2, ...,

Zp_3 € ker D (this is possible by formula 0.8), 0 # h € K. Proposition 0.1. and
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formula (1.9) together imply for 0 # h € K

n—1 n—1
(I-Tya)R3y = (I - Tya)Ry + 3 Rizi = ) TyaRiz =
k=0 k=0
n-1 n-1 n=1 & =Y
= 2 Rfz, + Z R}z - Z Zag_Jh*_’R{z: =
k=0 k=0 k=0 )=0
n-2 n—1 n-1
=Y Ri4+ Y Rizp—aezg - ) aoh’Rizi+
k=0 k=0 k=1
n—1k-1 et n-2
= Zak-"hk_’R’l * = ZR:ZL*-
k=1 j=0 k=0
n-1&-i !
- Z Z ar—;h*~I Rz}
k=1 j=0
n-2 n-2 n-1 _
=Y R4-3 R;[ Y a,_gh"'z;] -
k=0 k=0 Jj=k+1
n-2

i k _ee
_ZRIZk ’
k=0

wrhere 20°,21%,...,2z5% 4 € ker D. This and formula (0.8) together imply the conclu-
sion.

In a similar way as Proposition 1.1. we prove

Theorem 1.1. Suppose that all assumptions of Proposition 1.1. are satisfied.
Let am # 0 (m > 0) be a coefficient in the ezpansion (0.3) of the function f such that
a; =0 for 0 < j <m; m > 1. If the equation (I) has a solution belonging to the space

X1y, (0 # h € K). Then

(1.10) 8) (I-T/p)R"Y € Xno1-m forl<m<n-1;
(1.11) b) T!_AR"y = R"y for m2n.

In a similar way as Proposition 1.2. we prove

Theorem 1.2. Suppose that all assumptions of Theorem 1.1. are satisfied and
0# h € K. Let either the condition (1.10) and

n=1—m
(112) (I-Tya)R"y= Y R'z}, forl<m<n-1,
k=0

‘;"’:C" Za,l;u--,lf._;_,,, € ker D, or the condition (1.11) be satisfied for m > n.
en
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(i) For 1 < m < n all solutions of equation (I) belonging to X1,, are given by
formula (I1) with arbitrary zo,21,...,Zm-1 € ker D and zm,Zm41,--.,2n-1 €
ker D determined by the recursion formula

(1.12°)
Zn- l‘—amlh_m :1 -m=1
n-1 ’
i = a;‘lh—m [z'n-m-l-—r _ E aj—n+m+l+rh1_"+m+l+rz,‘] ,

j=n-m-r+l

r=12,.,n-1-m

(ii) For m > n an arbitrary solution of equation (I) belongs to the space Xr,,.
Theorem 1.2. implies (cf. Proposition 1.3.)

Theorem 1.3. Suppose that all assumptions of Theorem 1.2. are satisfied and
m €< 1,n > (n > 1). Let F be an initial operator for D corresponding to R € Rp.
Then the tnitial value problem

09) D'z=y ,y€X;
(1.13) FD*2=z, ,zz€keeD; k=0,1,....,m~-1,

has a unique solution belonging to the space Xt,, (0 # h € K) which is of the form
(II) with zm, zm+1,.- ., 2n-1 € ker D determined by formula (1.12’) for m < n.

We have also a theorem which is inverse to Theorem 1.3.

Theorem 1.4. Suppose that all assumptions of Theorem 1.1. are satisfied and
m €< 1,n >, n > 1. Let the initial value problem (I), (1.13) has an unigue solution
belonging to X1,, (0 # h € K). Then the element y € X satisfies condition (1.10)
for 1 <m < n—1 or condition (1.11) for m = n.

Example 1.1. Suppose that. D € R(X) and dimker D > 0, R € Rp is arbitrar-
ily fixed. Let Sk = {Sa}aex C Lo(X) be a family of functional shifts for D induced
by the function f(h) = e*. Then Proposition 1.1 and Proposition 1.2. together imply
that equation (I) has a solution belonging to the space Xs, 1= {z € X : Shz = z}
(0 # h € K),if and only if :

(1.14) (I-S\)R™Y € Xn-z .

If this condition is satisfied and
- n=-1
(1.15) ‘ (I-SW)R"y =) R‘z,

k=0

where 23, 2{,...,25_, € ker D. Then formula (II) determines all solutions of equation
(I) which belong to the space X5, with an arbitrary zy € ker D and

(1.16) Zp—1-k = ,z:;(_ (J+1)' !I—z'l-l—J’
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where k = 0,1,...,n — 2. Proposition 1.3. implies that the equation (I) with the
initial condition
Fz=2y, z€kerD

where F is an initial operator for D corresponding to R € R p has a solution belonging
to Xs,, 0 # h € K, if and only if y satisfies condition (1.14). If this condition
is satisfied and equality (1.15) holds, then a unique solution which belongs to X, ,

exists and is of the form (II) where z;,23,...,2a-1 € ker D are determined by formula
(1.16).

Example 1.2. Suppose that D € R(X) and dimker D > 0, F is an initial oper-
ator for D corresponding to R € Rp. Let cx = {ca}aex, chn = {chatren C Lo(X)
be families of functional shifts for D induced by the functions cosinus, hyperbolic
cosinus, respectively. Then the equation (1.7) has a solution belonging to the space
Xe, = {z € X : caz = z}(Xen,) if and only if R’y € X, (R’y € Xc,) for
0 # h € K. If this condition is satisfied then formula (II) {n = 2} determines all

solutions of equation (1.7) which belong to X, (Xca,). This follows from Thcorem
1.1. and Theorem 1.2.

As a conseqence of these theorems we conclude that the equation (I) with n > 2
has a c,-periodic solution (0 # A € K) if and only if

(1.17) (I-ea)R"y € Xp-3 .
If this condition is satisfied, n > 2,0 # h € K and

(118) (I — c:.)R"y Ly ’f sz'k ,

where zj, 21, ..., z,,_3 € ker D, then formula (II) determines all c,-periodic solutions

of equation (I) with arbitrary zo,z, € ker D and 23, 23,...,2n-1 € ker D which are
determined by the following recursion formula

-2h=% _, fork=0
- 3
In-1-2k = —2’!_’:;_3_" +2 Z:_l('—l)"ﬂ (—2—:_—:2—); Zp—1-2(k-y)

for k=1,2,...,[(n-13)/2],

(1.19)
—2h=22! _, for k=0
Zn-2-2m = —2’1-22:._‘_2," +2 2?-1(—1)j+l h—::_—j,)—, Zn—2-2(m—j)

form=1,2,...,[(n-4)/2] .
Equation (I) with n > 2 has a chy-periodic solution (0 # h € K) if and only if

(1.20) (I - chp\)R™y € Xpn=s .
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If this condition is satisfied and

-3

(1.21) (I-ch)R"y =) Rz,

k=0

where z§,2},...,2,_3 € ker D. Then all chj-periodic solutions (K 3 h # 0) of equa-
tion (I) are given by formula (II) with arbitrary zo,2) € ker D and z3,23,...,2a-1 €
ker D which are determined by the following recursion formula
{ 2h~%z_, fork=0
Zn-1-2k = — & 3§
’ 2h~z, s - 22;‘-1 (_z',.-q._z)'f Za-1-2(k-j)

(1.22) for k =1,2,...,[(n-3)/2},

2h7%2!_, fork=0
IZn-2-2m = K2z 3 s o
28732 _am = 2L jm1 (AN Zn-2-2(m—j)
form=1,2,...,[(n—-4)/2] .
The equation (1.7) with the initial condition

FD’z=2,, zy€kerD, (p=0,1)
has a cx-periodic (cha-periodic) solution which is of the form
z=20+Rz + Ry .

This follows from Theorem 1.3.

Theorem 1.3. imply that for arbitrary integer n > 2 the equation (I) with the
initial condition FD?z = z, , 2z, € ker D (p = 0,1) has a cx-periodic (cha-
periodic) solution if and only if y satisfies condition (1.17) (condition (1.20)). If this
condition is satisfied and equality (1.18) (equality (1.21)) holds, then the above initial
value problem has a unique cj-periodic (chy-periodic) solution which is of the form
(II), where z3, 23, ...,2a—1 € ker D are determined by formula (1.19) (formula (1.22)).

2. In this section we shall look for solutions of the equation (I) belonging to the
space X1,, (0 # h € K) in the case f(0) = 0, where X1,, defined by formula (0.6).
Here, we still assume that the function f € H(K) has the expansion

(2.1) : f(h) =) awh* forallhe K,
k=0

where K will stand either for the disk K, (0 < p < o) or for C.

Theorem 2.1.  Suppose that D € R(X), dimker D > 0 and R € Rp
arbitranily fized. Let ap, # 0 (m € N) be a coefficient in the ezpansion (2.1) of the
function f € H(K) such thataj =0 for j <m. Let Ty x = {Tya}rex C Lo(X) be a
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family of functional shifts for D induced by f. If equation (1) has a solution belonging
to the space X1,, (0 # h € K) then

(2.2) (I-Tya)R"y € Xa1,
where X (k € Ng) is determined by formula (0.7).

Proof. Fix 0 # h € K and let z € X1,, be a solution of equation (I). Then
there exist 2z, € ker D (k = 0,1,2,...) such that the formula (II) holds i.e. z =
R"y + T123 R*z;. Our assumptions and Proposition 0.2 together imply for m < n

(2.3)

-1 n-1
Tynz =TyaR"y + Tya {“E szg} =TyaR"y + z T,,:.R“z. =
k=0 k=0
n-1 &
=TyaR"y + Z E ak-,h“""R"n =
k=0 j=0
n=ln=1 n-j n~=1
=TraR"+ > Y ar_;h* iRz = TysR"y + Z Rf{}: a,,_,-h*-f:.} =
1=0 k=) =0 k=)
n=1- n=m=| n=1l=)
=TyaR"y + Z R’{ Zlmh zH.,} =TraRw+ ), R‘{ z azh‘zg,,-} =
J=0 =0 )=0 l=m
n-m-1 .
=TiaR"y + Z Rz,
y=0

where z; = 370" aih'z14 ;. Write

n-m-—1
0=Tyaz-z=T/sR"y-R"y + 2 Rz - ZR*:;
=0 k=0
Hence,
n-1
(2.4) (Tya-DRy =S R*z., € Xn-1,
k=0
where

(2.5) { zp =z —E,,m Faihlziyy fork=0,1,...,n=1-m
=2 fork=n-mn-m+1,...,.n-1

\

For m > n we have

n-1 &
Tyaz =TyaR"y + Z Za;h’R‘-’zk =TyaR"y
k=0 =0
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Hence,
n-1

(2.6) (Tra—DR" =) R*zn € Xa, .
k=0

This completes the proof.
We have the following theorem which is inversed to Theorem 2.1.

Theorem 2.2. Suppose that all assumptions of Theorem 2.1. are satisfied. Let
an element y in the equation (1) satisfy the condition (2.2) and let formula (2.4) hold.
Then the equation (I) has an unique solution belonging to the space X1,, (0 # h € K),
determined by the formula (II) with

(2.7) =2z, form2n (k=0,1,...,n—-1)
or
2.7 ! _Iz;+2?__;_‘a,h'z,+g (k=0,1,...,n—1—m)
1 i lz;, (k=n-mn-m+1,...,n-1)

for0<m<n.

Proof. The theorem for m > n follows from formula (2.6). For0 < m < n
we consider the equalities (2.5) as a linear system of equations with respect to
20,21y...y2n-1. It i8 easy to show that the determinant of this system is equal to 1.
Therefore we conclude that the system (2.5) has a unique solution. One can prove
that this solution is determined by the recursion formula (2.7’).

Formula (1.8) implies (cf.the proof of Proposition 1.4)

Proposition 2.1. Suppose that all assumptions of Theorem 2.1 are satisfied.
Then the condition (2.2) 1s independent of the choice of the right inverse R € Rp.

Theorem 2.2 implies

Proposition 2.2. Suppose that all assumptions of Theorem 2.2. are satisfied.
Then the initial value problem

(I Dz=y , yeX,n>1,
FD*z =z, , zg€ker D, k=0,1,...,p (p<n-1)

has a solution belonging to the set X1,, (0 # h € K) if and only if the elements
20,21,...,2p satisfy the equalities (2.7°).

Example 2.1 Let D € R(X), dimker D > 0 and let R € Rp be arbitrarily
fixed. Suppose that we are given a family sx = {ss }ack C Lo(X) of functional shifts
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for the operator D induced by the function sinus. Theorem 2.1 and Theorem 2.2
together imply that the equation (I) has a solution belonging to the set

XTuwr =X.. (0#he K) ifandonlyif(fI-s\R"yE€ Xa-; .

If this condition is satisfied and (I — sp)R"y = :;; Rkz,, where zg,2],....%,_y €
ker D. Then the unique solution of equation (I) which beiongs to X,, is given by
formula (II) with zo,2;,...,2a-1 € ker D which are determined by the following
recursion formula

)
Zn-1 = 2Zq

[} A g
fn-1-k = Zp_ g ~ Z o $in(j7/2)zn-24j-k
j=1 7"
where k =0,1,...,n - 2.
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