LUBLIN-POLONIA

VOL. XLVI, 2
SECTIO A
1992

Artur BARTOSZEWICZ (Lódź)

On the *-Weak Law of Large Numbers in the Incomplete Tensor Product of W^{*}-algebras

Abstract

The sequence of operators \tilde{A}_{n} of the form $\tilde{A}_{n}=\frac{1}{n} \sum_{i=1}^{n} 1 \otimes \ldots \otimes 1 \otimes A_{i} \otimes 1 \otimes \ldots$ is ${ }^{*}$ weak convergent if and only if the sequence of values $\phi\left(\tilde{A}_{n}\right)$ converges for some normal normed state ϕ.

Let \mathcal{A}_{i}, for each positive integer i, be a W^{*}-algebra with the normal normed state α_{i}. Denote by \mathcal{A} the incomplete tensor product $\bigotimes_{i=1}^{\infty}\left(\mathcal{A}_{i}, \alpha_{i}\right)$ [1]. Assume that, for $i \in \mathbf{N}, A_{i}$ is a self-adjoint element of $\mathcal{A}_{\mathbf{i}}$ and consider the sequence of elements of \mathcal{A} of the form

$$
\begin{equation*}
\bar{A}_{i}=\mathbf{1}_{1} \otimes \mathbf{1}_{2} \otimes \ldots \otimes A_{i} \otimes \mathbf{1}_{i+1} \otimes \ldots \tag{1}
\end{equation*}
$$

(where $\boldsymbol{1}_{\boldsymbol{j}}$ denotes the identity in $\mathcal{A}_{\boldsymbol{j}}$) and the sequence of the corresponding meanvalues

$$
\begin{equation*}
\tilde{A}_{n}=\frac{1}{n} \sum_{i=1}^{n} \bar{A}_{i} \tag{2}
\end{equation*}
$$

Assume that the sequence of norms of A_{i} is bounded, i.e. there exists M such that $\left\|A_{i}\right\|<M$ for any positive integer i. We say that, for the sequence A_{i} (or \bar{A}_{i}), the - weak law of large numbers holds if the sequence $\psi\left(\bar{A}_{n}\right)$ converges for any normal normed state ψ on \mathcal{A}.

The aim of the paper is to show that, for the sequence A_{i}, the *-weak law of large numbers holds if and only if the sequence $\phi\left(\widetilde{A}_{n}\right)$ converges for some normal normed state on \mathcal{A}. This fact can easily be deduced from the following

Theorem . Let ϕ, ψ be two normal normed states on \mathcal{A}. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\phi\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right|=0 . \tag{3}
\end{equation*}
$$

Proof. Consider first the case when ϕ and ψ are product states in \mathcal{A}, i.e. there exists a sequence of states ϕ_{i} and ψ_{i} on \mathcal{A}_{i}, respectively, such that $\phi=\bigotimes_{i=1}^{\infty} \phi_{i}, \psi=$
$\bigotimes_{i=1}^{\infty} \psi_{i}$. It is well known that every \mathcal{A}_{i} can be represented as the operator algebra
acting in some Hilbert space H_{i} in such a way that there exist in each H_{i} unit vectors
x_{i} and y_{i} such that ϕ_{i} and ψ_{i} can be represented as the pure states given by x_{i} and y_{i},
respectively. The fact that there exist products of ϕ_{i} and ψ_{i} on the same incomplete
tensor product of \mathcal{A}_{i} means that $\sum_{i=1}^{\infty}\left|1-\left(x_{i}, y_{i}\right)\right|<\infty,[1]$, and, by [2], we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|1-\left(x_{i}, y_{i}\right)\right|=0 \tag{4}
\end{equation*}
$$

On the otber hand, for any unit vectors ξ, η in some Hilbert space \mathcal{K} and for $x \in \mathcal{B}(\mathcal{K})$, we have

$$
\begin{equation*}
2|1-(\xi, \eta)| \geq 2-2 \operatorname{Re}(\xi, \eta)=\|\xi-\eta\|^{2} \tag{5}
\end{equation*}
$$

and hence,

$$
\begin{align*}
\mid\left(\xi, x_{\xi}\right) & -\left(\eta, x_{\eta}\right)\left|=\left|\left(\xi, x_{\xi}\right)-\left(\eta, x_{\xi}\right)+\left(\eta, x_{\xi}\right)-\left(\eta, x_{\eta}\right)\right|\right. \tag{6}\\
& =\left|\left(\xi-\eta, x_{\xi}\right)+(\eta, x(\xi-\eta))\right| \leq 2\|x\|\|\xi-\eta\| \\
& \leq 2 \sqrt{2}\|x\||1-(\xi, \eta)|^{1 / 2} .
\end{align*}
$$

Uaing the inequality and putting $x_{\text {.. }}=\bigotimes_{i=1}^{\infty} x_{i}, y=\bigotimes_{i=1}^{\infty} y_{i}$, we have

$$
\begin{align*}
\mid \phi\left(\tilde{A}_{n}\right) & -\psi\left(\tilde{A}_{n}\right)\left|=\left|\left(x, \tilde{A}_{n} x\right)-\left(y, \tilde{A}_{n} y\right)\right|\right. \tag{7}\\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left|\left(x_{i}, A_{i} x_{i}\right)-\left(y_{i}, A_{i} y_{i}\right)\right| \\
& \leq 2 \sqrt{2} M \frac{1}{n} \sum_{i=1}^{n}\left|1-\left(x_{i}, y_{i}\right)\right|^{1 / 2}
\end{align*}
$$

So, in the case considered, we have proved that

$$
\left|\phi\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right|
$$

tends to zero.

Assume now that ϕ is a pure state generated by a vector x which is a linear combination of pairwise orthogonal product vectors in \mathcal{A}, i.e. that ϕ is of the form

$$
\begin{equation*}
\dot{x}=\sum_{j=1}^{m} a^{j} \xi^{j} \tag{8}
\end{equation*}
$$

where all ξ^{j} are product vectors lying in \mathcal{A}.
Now,

$$
\begin{align*}
\phi\left(\tilde{A}_{n}\right) & -\phi\left(\tilde{A}_{n}\right)=\sum_{j=1}^{m}\left|a^{j}\right|^{2}\left[\left(x^{j}, \tilde{A}_{n} x_{j}\right)-\left(y, \tilde{A}_{n} y\right)\right] \tag{9}\\
& +\sum_{r \neq j} \bar{a}^{r} a^{j}\left(x^{r}, \tilde{A}_{n} x^{j}\right)
\end{align*}
$$

The first sum in (9) tends to zero by the first part of the proof. The convergence of the second sum to zero can be obtained by Lemma 2.2. in [3].

Now, we consider the case when ϕ is an arbitrary pure state on \mathcal{A}, i.e. there exists a unit vector x in \mathcal{K} such that $\phi(A)=(A x, x)$. Evidently, x can be written as

$$
\begin{equation*}
x=\sum_{j=1}^{\infty} a_{j} \xi^{j} \tag{10}
\end{equation*}
$$

where all ξ^{j} are as in (8), and

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}=1 \tag{11}
\end{equation*}
$$

Decompose now x into two sums

$$
\begin{equation*}
x=\sum_{j=1}^{k} a_{j} \xi^{j}+\sum_{j=k+1}^{\infty} a_{j} \xi^{j} \tag{12}
\end{equation*}
$$

and consider x as a linear combination of two vectors with norm one, say

$$
\begin{equation*}
\sum_{j=1}^{k} a_{j} \xi^{j}=b_{k} \beta_{k} \tag{13}
\end{equation*}
$$

and

$$
\sum_{j=k+1}^{\infty} a_{j} \xi^{j}=c_{k} \gamma_{k}
$$

where

$$
\begin{equation*}
b_{k}=\sqrt{\sum_{j=1}^{k}\left|a_{j}\right|^{2}}, \quad c_{k}=\sqrt{1-b_{k}^{2}} \tag{14}
\end{equation*}
$$

Then we can calculate

$$
\begin{align*}
& \left|\phi\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right|=\left|\left(x, \tilde{A}_{n} x\right)-\left(y, \tilde{A}_{m} y\right)\right| \tag{15}\\
& \leq b_{k}^{2}\left|\left(\beta_{k}, \tilde{A}_{n} \beta_{k}\right)-\left(y, \tilde{A}_{n} y\right)\right|+\left|\left(b_{k} \beta_{k}, \tilde{A}_{n} c_{k} \gamma_{k}\right)\right| \\
& +\left|\left(c_{k} \gamma_{k}, \tilde{A}_{n} b_{k} \gamma_{k}\right)\right|+\left|\left(c_{k} \gamma_{k}, \tilde{A}_{n} c_{k} \gamma_{k}\right)\right| \\
& \leq b_{k}^{2}\left|\left(\beta_{k}, \tilde{A}_{n} \beta_{k}\right)-\left(y, \tilde{A}_{n} y\right)\right|+4 M c_{k} .
\end{align*}
$$

Since, for a sufficiently large k, c_{k} is so small as we want, the proof in the case considered is finished.

Assume now that ϕ is quite arbitrary, i.e. ϕ is a convex combination of pure states, say,

$$
\begin{equation*}
\phi=\sum_{i=1}^{\infty} m_{i} \phi_{i}, \quad \sum_{i=1}^{\infty} m_{i}=1 \tag{16}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left|\phi\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right|=\left|\sum_{i=1}^{\infty} m_{i}\left(\phi_{i}\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right)\right| \tag{17}\\
& \leq \sum_{i=1}^{\infty} m_{i}\left|\phi\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right|=\sum_{i=1}^{1} m_{i}\left|\phi_{i}\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right| \\
& +\sum_{i=1+1}^{\infty} m_{i}\left|\phi_{i}\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right| .
\end{align*}
$$

The first sum can be arbitrarily small for large n, the second - for large $!$.
Repeating the same considerations for the state ψ, we obtain that $\left|\phi\left(\tilde{A}_{n}\right)-\psi\left(\tilde{A}_{n}\right)\right|$ tends to zero for any states ϕ, ψ. So, the sequence $\phi\left(\tilde{A}_{n}\right)$ is convergent if and only if any sequence $\psi\left(\tilde{A}_{n}\right)$ is convergent. This ends the proof.

REFERENCES

[1] Bures, D., An Extension of Kakutani's Theorem on Infinite Product Measures to the Tensor Product of Semifinite W^{*}-Algebras, Trans. Amer. Math. Soc. 135 (1969), 199-212.
[2] Halmos, P.R., Measure Theory, Van Nostrand, Princeton 1950.
[3] Ochs, W. Concepts of Convergence for a Quantum Law of Large Numbers, Rep. of Math. Phys. 17, Nol (1980), 127-143.

Instytut Matematyki
Uniwersytet Lódzki
ul. S. Banacha 22
90-238 Lódź, Poland

