LUBLIN-POLONIA

Józef ZAJA C (Lódź)

The Universal Teichmüller Space of an Oriented Jordan Curve*)

Abstract

The present author constructs a metric space with certain equivalence classes of automorphisms of an oriented Jordan curve Γ on the Riemann sphere which has all the properties of a boundary model of the universal Teichmüller space. Its metric is defined without any reference to the families of quasiconformal automorphisms of the domains complementary with respect to Γ. Complete boundary transformation, a norm and a metric for certain equivalence classes of quasicircles are presented in the first and the second part of this paper. The third one contains the statements and basic facts on the boundary model of the universal Teichmüller space.

0. Introduction. The normalized quasisymmetric (qs) functions of \mathbf{R}, with a metric obtained by quasiconformal (qc) extensions, provide the most often quoted model of the universal Teichmüller space (UTS) (cf. [5, p.97]). Similar model of the UTS can be defined by using normalized qs automorphisms of the unit circle T (cf. [4]). The metric can also be defined by qc extensions. In both cases the qs constant cannot be used directly to define the Teichmüller metric in same manner as the qc constant. Both models may be called the mixed models of the UTS. A more closer look shows that there are some differences between normalized qc automorphisms and normalized qs functions (cf. [3] and [9]). Some of them are not so much natural for boundary values of qc automorphisms.

To remove these obstacles the author has introduced (cf. [9], [10]) a new characterization for the boundary values of all qc automorphisms of the domains complementary with respect to a Jordan curve (Jc) Γ in $\overline{\mathbb{C}}$. Automorphisms of Γ, characterized in this way, are called quasihomographies ($q \mathrm{~h}$) or 1-dimensional qc mappings.

This approach permits a new metric which makes the family of all normalized qh automorphisms of an arbitrary circle Γ in $\overline{\mathbb{C}}$ a metric space. This metric is defined without the use of qcextensions to the complementary domains. Moreover, it is fairly natural to call the foregoing metric space the universal Teichmüller space of a given circle Γ in $\overline{\mathbb{C}}$ (cf. [10]).

If a Jc Γ in $\overline{\mathbb{C}}$ is not a circle in $\overline{\mathbb{C}}$ one cannot extend simply the mentioned construction since families of qc automorphisms of the complementary domains D and D^{*} are not related by conformal reflexion in Γ.

Hence, one should distinguish two classes of automorphisms of a given Jc Γ in $\overline{\mathbf{C}}$ representing the boundary values of qc automorphisms of D and D^{*}, respectively.
*) Supported in part by the Grant PB 211409107 and by the Finnish Academy research contract 1021097 (Martio - Laine)

Given a Jc Γ in $\overline{\mathbb{C}}$, with D and D^{*} as the complementary domains, one may consider the problem of distinguishing between the domains D and D^{*}. If Γ is an oriented Jc in the finite complex plane, the correspondence $\Gamma \leftrightarrow\left(D, D^{*}\right)$ is fairly obvious and can be achieved by assuming that the point at infinity is in D^{*}. This idea doesn't work if Γ is in $\overline{\mathbb{C}}$ which case is of special interest. One overcomes this difficulty by assuming that Γ is on the Riemann sphere, i.e. $\overline{\mathbb{C}}$ equipped with a fixed conformal structure.

Given an oriented $\mathrm{Jc} \Gamma$ on the Riemann sphere one may uniquely associate with Γ the complementary domains D and D^{\bullet}, defining the left-hand side domain by D and the right-hand side domain by D^{*}. Hence, the correspondence $\Gamma \leftrightarrow\left(D, D^{*}\right)$ is unique.

This way one may uniquely associate with an oriented Jc on the Riemann sphere a space T_{Γ} and call it the universal Teichmüller space of Γ.

This yields a boundary model of the UTS of an oriented Jc Γ on the Riemann sphere, compatible with qc model (cf. [9], [10] and [11]).

Suppose that Γ in $\overline{\mathbb{C}}$ is an arbitrary Jc, and let D, D^{*} be its complementary domains. Suppose that $a \in D$ is arbitrary and $z^{\prime}, z^{\prime \prime} \in \Gamma$ are arbitrary and distinct points. Consider

$$
\begin{equation*}
\left[z^{\prime}, z^{\prime \prime}\right]_{D}^{a}=\sin \pi \omega\left(a,\left\langle z^{\prime}, z^{\prime \prime}\right\rangle ; D\right), \tag{0.1}
\end{equation*}
$$

where $\left\langle z^{\prime}, z^{\prime \prime}\right\rangle$ is an oriented open arc on Γ with end-points z^{\prime} and $z^{\prime \prime}, \omega$ being the harmonic measure. Suppose that $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$ is an ordered quadruple of distinct points. Let

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{a}=\left\{\left[z_{2}, z_{3}\right]_{D}^{a}\left[z_{1}, z_{4}\right]_{D}^{a} /\left(\left[z_{1}, z_{3}\right]_{D}^{a}\left[z_{2}, z_{4}\right]_{D}^{a}\right)\right\}^{1 / 2} \tag{0.2}
\end{equation*}
$$

It is proved in [11] that this expression is constant as a function of $a \in D$. Hence, define

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}:=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}^{a} \quad \text { for any } a \in D \tag{0.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{\bullet}}:=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D^{\bullet}}^{a} \quad \text { for any } a \in D^{\bullet} . \tag{0.3'}
\end{equation*}
$$

Both expressions, defined by (0.3) and (0.3^{\prime}), are called the conjugate harmonic crossratios of $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$.

The mentioned harmonic cross-ratio is a direct generalization of the real-valued cross-ratio and an alternative conformal invariant with respect to the modulus of quadrilateral. Moreover, this is defined without any use of special functions and carries over properties of the real-valued cross-ratio, expressed conveniently in the form of equalities (cf. [11] and [12]).

Theorem 1. Given a quadrilateral $D\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. Let m and t denote its modulus and harmonic cross ratio, respectively. Then

$$
\left\{\begin{array}{l}
m=\mu(t) \tag{0.4}\\
t=\Phi_{1 / m}(1 / \sqrt{2})
\end{array}\right.
$$

Proof. By the Riemann mapping theorem there exists $0<k<1$ and a conformal mapping that maps $D\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ onto $U(-1 / k,-1,1,1 / k)$, where U is the upper half-plane. Then, (cf. [6], p.280])

$$
\begin{equation*}
t=[-1 / k,-1,1,1 / k]_{U}=\frac{2 \sqrt{k}}{1+k}=\Phi_{2}(k) \tag{0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m=\frac{\mathcal{K}\left(\sqrt{1-k^{2}}\right)}{2 \mathcal{K}(k)}=\frac{1}{2} \mu(k) \tag{0.6}
\end{equation*}
$$

where Φ_{K} is the Hersch-Pfluger distortion function in the qc version of the Schwarz Lemma (cf. [2], [8] and [9]), and $\frac{\pi}{2} \mu(k)$ stands for the conformal modulus of Δ slit along the real line from 0 to $k, 0<k<1$ (cf. [Z4]).

Since

$$
\Phi_{K}(r)=\mu^{-1}\left(\frac{1}{K} \mu(r)\right), \quad 0 \leq r \leq 1, \quad K>0
$$

substituting $k=\Phi_{2}^{-1}(t)=\Phi_{1 / 2}(t)$ into (0.6) one obtains the first identity in (0.4). The second one is a consequence of the first one and the definition of Φ_{K}.

Let A_{Γ} denote the family of all sense-preserving automorphisms of Γ. Evidently $\left(A_{\Gamma}, \circ\right.$) is a group with composition as the group operation and that $\left(A_{\Gamma}, d_{\Gamma}\right)$ is a metric space with d_{Γ} generated by the chordal-spherical distance. Moreover the ($A_{\Gamma}, 0, d_{\Gamma}$) is a metric group (cf. [10]).

Deflinition 1. Let Γ be an arbitrary Jc in $\overline{\mathbf{C}}$, and let D, D^{*} be its complementary domains. An automorphism $f \in A_{\Gamma}$ is said to be in the class $A_{D}\left(K^{\prime}\right)$ if

$$
\begin{equation*}
\Phi_{1 / k}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}\right) \leq\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right]_{D} \leq \Phi_{K}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{D}\right) \tag{0.7}
\end{equation*}
$$

holds for each ordered quadruple of distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \Gamma$ and a given constant $K \geq 1$.

Substituting D^{*} for D in the previous definition one describes $A_{D^{\bullet}}(K), K \geq 1$. A function $f \in A_{D}\left(K^{\prime}\right)$ (or $f \in A_{D^{\cdot}}\left(K^{\prime}\right)$) is said to be a K-quasihomography or 1 -dimensional K-qc automorphism of Γ.

The classes $A_{D}(K)$ and $A_{D^{\bullet}}(K), K \geq 1$, are called conjugate classes of $K-q h$ or of 1 -dimensional K-qc automorphisms of Γ.

The number

$$
\begin{equation*}
K(f)=\inf \left\{K \geq 1: f \in A_{D}(K)\right\} \tag{0.8}
\end{equation*}
$$

is the $q h$ constant or, equivalently the 1 -dimensional $q c$ constant. Similarly, one defines $K_{D} \cdot(f)$ for $f \in A_{D}(K)$.

The reason for introducing $A_{D}\left(K^{*}\right)$ and $A_{D^{\bullet}}(K)$ is that these classes represent the boundary values of all K-qc automorphisms of D and D^{*}, respectively (cf. [11]).

This paper is a continuation of the research presented in [11] in the direction of the UTS theory.

1. Complete boundary transformation. Obviously a conformal mapping between two Jordan domains is determined by its boundary values. Therefore one may say that conformal mappings have the boundary character.

Contrariwise, quasiconformal mappings have the domain character. Hence, the following considerations are strictly connected with conformal theory and the boundary values of quasiconformal mappings.

Let $\Gamma_{i}, i=1,2,3$, be arbitrary Jc's in $\overline{\mathbb{C}}$, and let $A_{\Gamma_{i}}$ denote all sense-preserving automorphisms of $\Gamma_{i}, i=1,2,3$. By D_{i} and D_{i}^{*} one denotes the domains complementary with respect to $\Gamma_{i}, i=1,2,3$. Moreover, let H, H_{*}, G and G. be conformal mappings of D_{1} onto D_{2}, D_{1}^{*} onto D_{2}^{*}, D_{2} onto D_{3} and D_{2}^{*} onto D_{3}^{*}, respectively. For every $f_{k l} \in A_{\Gamma_{1}}, k, l=1,2$, consider the transformation $\mathbf{S}_{H, H_{*}}$, described by

$$
\mathbf{S}_{H, H *}\left(\left(\begin{array}{ll}
f_{11} & f_{12} \tag{1.1}\\
f_{21} & f_{22}
\end{array}\right)\right)=\left(S_{H, H_{*}}^{k l}\left(f_{k l}\right)\right)=\left(\begin{array}{cc}
H \circ f_{11} \circ H^{-1} & H \circ f_{12} \circ H_{*}^{-1} \\
H_{*} \circ f_{21} \circ H^{-1} & H * f_{22} \circ H_{*}^{-1}
\end{array}\right) .
$$

Since conformal mappings between Jordan domains can be considered as homeomorphisms of their closures, the transformation $\mathbf{S}_{H_{1} H_{0}}$ is well-defined and called the complete boundary transformation mapping $A_{\Gamma_{1}}^{A}$ onto $A_{\Gamma_{2}}^{A}$, where $\mathcal{A}=\{1,2,3,4\}$.

It is evident that

$$
\begin{equation*}
\mathbf{S}_{G \circ H, G . \circ H_{\bullet}}=\mathbf{S}_{G, G \bullet} \circ \mathbf{S}_{H, H_{\bullet}} \tag{1.2}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\mathbf{S}_{H^{-1}, H_{*}^{-1}}=\mathbf{S}_{H, H_{*}}^{-1} \tag{1.3}
\end{equation*}
$$

Write,

$$
\tilde{f}=\left(\begin{array}{ll}
f & f \\
f & f
\end{array}\right), \quad f \in A_{\Gamma_{1}}
$$

and let $G_{\Gamma_{1}}$ be the collection of all such elements. Given \tilde{f} and \tilde{g} from $G_{\Gamma_{1}}$, set

$$
\tilde{f} * \tilde{g}=\left(\begin{array}{ll}
f \circ g & f \circ g \tag{1.4}\\
f \circ g & f \circ g
\end{array}\right) .
$$

Hence, $\left(G_{\Gamma_{1}, *}\right)$ is a group and

$$
\begin{equation*}
\mathbf{S}_{H, H_{*}}(\tilde{f} * \tilde{g})=\mathbf{S}_{H, H_{*}}(\tilde{f}) * \mathbf{S}_{H, H_{0}}(\tilde{g}) \tag{1.5}
\end{equation*}
$$

holds for every \tilde{f}, \tilde{g} from $G_{\Gamma_{1}}$. One has proved
Theorem 2. The complete boundary transformation $\mathbf{S}_{H_{,}}$. is an isomorphism between $\left(G_{\Gamma_{1}}, *\right)$ and $\left(G_{\Gamma_{2}}, *\right)$.

Let

$$
\begin{equation*}
S_{H}=S_{H, H_{0}}^{11}, \quad S_{H_{0}}=S_{H_{, H_{0}}^{22},} \quad D_{H H^{\bullet}}=S_{H, H_{0}}^{12} \quad D_{H_{0} H}=S_{H, H_{0}}^{21} \tag{1.6}
\end{equation*}
$$

Denote by

$$
\begin{equation*}
R_{\Gamma_{1}, \Gamma_{2}}=H \circ H_{*}^{-1} \tag{1.7}
\end{equation*}
$$

and call the conformal representation of Γ_{1} with respect to Γ_{2}. Let $R_{\Gamma}=R_{\Gamma, T}$ for an arbitrary Jc Γ in $\overline{\mathbf{C}}$. Recall, that, R_{Γ} is known as the sewing automorphism or the conformal representation of Γ (cf. [7]).

One obtains the following
Theorem 3. For an arbitrary $J c \Gamma_{1}, \Gamma_{2}$ in $\overline{\mathbb{C}}$, and each fixed conformal H and H_{*}, as described above, the solution of

$$
\begin{equation*}
S_{H}(f)=S_{H_{0}}(f) \tag{1.8}
\end{equation*}
$$

contains infinitely many automorphisms of the form $\left(H_{*}^{-1} \circ H\right)^{n}$, where f^{n} means n-fold composition of f and $f^{-\underline{n}}=\left(f^{-1}\right)^{\underline{n}}, n=0, \pm 1, \pm 2, \ldots$

Proof. It follows immediately, by checking, that $H_{*}^{-1} \circ H$ satisfies (1.8) and then by using (1.2) and (1.3).

The transformation

$$
\begin{equation*}
J_{H H_{0}}=S_{H_{0}} \circ S_{H}^{-1} \tag{1.9}
\end{equation*}
$$

is a self-isomorphism of $A_{\Gamma_{2}}$.
It is obvious that all solutions of (1.8) form a group with composition as the group operation. Denote by $R_{\Gamma_{2}, \Gamma_{1}}^{\infty}$ the family of all solutions obtained in Theorem 1, and set

$$
R_{\Gamma_{1}, \Gamma_{2}}^{\infty}=S_{H}\left(R_{\Gamma_{2}, \Gamma_{3}}^{\infty}\right)=S_{H} \cdot\left(R_{\Gamma_{2}, \Gamma_{1}}^{\infty}\right) .
$$

Hence, one may easily see that ($R_{\Gamma_{1}, \Gamma_{2}}^{\infty}, \circ$) is a group generated by $R_{\Gamma_{1}, \Gamma_{2}}$ and call it the fix-points group of $J_{H H_{0}}$.

Not without justifications one may call $J_{H H_{0}}$ the conjugation operator in $A_{\Gamma_{2}}$, whose the "real line" consists $R_{\Gamma_{1}, \Gamma_{2}}^{\infty}$. It is very probably that $R_{\Gamma_{2}, \Gamma_{1}}^{\infty}$ are the only solutions of (1.8). It is obvious that (cf. [11, Theorem 6])

$$
\begin{equation*}
K_{D_{2}}\left(H \circ H_{*}^{-1}\right)=K_{D_{2}}\left(H * H^{-1}\right), \tag{1.10}
\end{equation*}
$$

and

$$
K_{D_{2}^{*}}\left(H \circ H_{*}^{-1}\right)=K_{D_{2}^{*}}\left(H_{*} \circ H^{-1}\right) .
$$

Moreover, each of these expressions is a constant, considered as a function of H and H.

Let now

$$
A_{D_{i}}^{\infty}=\bigcup_{K \geq 1} A_{D_{i}}(K) \text { and } A_{D_{i}^{*}}^{\infty}=\bigcup_{K \geq 1} A_{D_{i}}(K)
$$

for $i=1,2,3$. Obviously, $\left(A_{D_{i}}^{\infty}, \circ\right)$ and $\left(A_{D_{i}^{i}}^{\infty}, \circ\right)$ are subgroups of $\left(A_{\Gamma_{i}}, \circ\right)$ for $i=1,2,3$.

Hence,
Theorem 4. Let Γ_{1} and Γ_{2} be arbitrary $J c$'s in $\overline{\mathbb{C}}$, and $D_{1}, D_{1}^{*}, D_{2}, D_{2}^{*}$ denote the domains complementary to Γ_{1} and Γ_{2}, respectively. If H and H are given conformal mappings of D_{1} and D_{1}^{*} onto D_{2} and D_{2}^{*}, then:
(i) the transformations S_{H} and $S_{H_{\bullet}}$, defined by (1.6), are homeomorphisms between $\left(A_{\Gamma_{1}}, \rho_{\Gamma_{1}}\right)$ and $\left(A_{\Gamma_{2}}, \rho_{\Gamma_{2}}\right)$, and isomorphisms between $\left(A_{\Gamma_{1}}, 0\right)$ and $\left(A_{\Gamma_{1}}, 0\right)$;
(ii) S_{H} is an isomorphism between $\left(A_{D_{1}}^{\infty}, \circ\right)$ and $\left(A_{D_{2}}^{\infty}, \circ\right)$, whereas $S_{H_{0}}$ is an isomorphism between $\left(A_{D_{1}^{+}}^{\infty}, \circ\right)$ and $\left(A_{D_{2}^{\infty}}^{\infty}, \circ\right)$, such that

$$
S_{H}\left(A_{D_{1}}(K)\right)=A_{D_{2}}\left(K^{-}\right) \quad \text { and } \quad S_{H_{0}}\left(A_{D_{1}^{*}}\left(K^{\circ}\right)\right)=A_{D_{2}^{*}}\left(K^{*}\right), \quad \text { for } \quad K \geq 1
$$

(iii) the transformations $D_{H_{H}}$ and $D_{H_{0} H}$ are homeomorphisms between $\left(A_{\Gamma_{1}}, d_{\Gamma_{1}}\right)$ and $\left(A_{\Gamma_{2}}, d_{\Gamma_{2}}\right)$. Moreover,

$$
\begin{aligned}
& D_{H H_{\bullet}}(f)=S_{H}(f) \circ R=R \circ S_{H_{\bullet}}(f) \\
& D_{H_{\bullet} H}(f)=R^{-1} \circ S_{H}(f)=S_{H_{\bullet}}(f) \circ R^{-1}
\end{aligned}
$$

and

$$
\left(D_{H H_{0}}(f)\right)^{-1}=D_{H_{0} H}\left(f^{-1}\right)
$$

holds for every $f \in A_{\Gamma_{1}}$, where $R=R_{\Gamma_{1} \Gamma_{2}}$ for shortness.
(iv) the transformation $J_{H} H_{0}$, defined by (1.9), is an automorphism of the metric group $\left(A_{\Gamma_{2}}, 0, \rho_{\Gamma_{2}}\right)$ and $R_{\Gamma_{1} \Gamma_{2}}^{\infty}$ are fix-points of this transformation. Moreover,

$$
S_{H}=S_{R} \circ S_{H_{0}} \quad \text { and } \quad J_{H H_{0}}=S_{R}^{-1},
$$

where $S_{R}: A_{\Gamma_{2}} \rightarrow A_{\Gamma_{2}}$ is defined in analogy to S_{H}.
2. A norm and a metric for quasicircles. A K-quasicircle in $\overline{\mathbb{C}}$ is the image of a circle (say, the unit circle) under a K-qc mapping of $\overline{\mathbf{C}}$. Quasiconformal mappings preserve sets of zero measure, so every quasicircle is of zero area. On the other hand, a quasicircle need not be rectifiable. Moreover, the Hausdorff dimension of a quasicircle may take any value from $[1 ; 2$) (see [2]). A considerable amount of the main properties of quasicircles may be found in [1].

Assume that $\Gamma_{1}=T$ and Γ_{2} is denoted by Γ. According to this let $D_{1}=\Delta$, $D_{1}^{*}=\Delta^{*}, D_{2}=D$ and $D_{2}^{*}=D^{*}$. Recall of [10], that $A_{\Delta}\left(K^{*}\right)=A_{\Delta}\left(K^{*}\right)$ for every $K \geq 1$. It is easily seen that

$$
\begin{equation*}
K_{D}\left(H_{*} \circ H^{-1}\right)=K_{D^{*}}\left(H_{*} \circ H^{-1}\right) . \tag{2.1}
\end{equation*}
$$

This identity, together with identities described by (1.10) and (1.10'), implies the following

Definition 2. Let Γ be an arbitrary Jc in $\overline{\mathbb{C}}$. The common value described by (2.1), (1.10) and (1.10') denoted is by K_{Γ}.

Two Jc's Γ_{1} and Γ_{2} in $\overline{\mathbb{C}}$ are said to be equivalent $\left(\Gamma_{1} \sim \Gamma_{2}\right)$ if there is a homography M such that $\Gamma_{2}=M\left(\Gamma_{1}\right)$. If $\Gamma_{1} \sim \Gamma_{2}$ then $K_{\Gamma_{1}}=K_{\Gamma_{2}}$. Let Γ be the family of all Jc's in \mathbb{C}, and let

$$
\begin{equation*}
\Gamma_{1}=\Gamma / \sim \tag{2.2}
\end{equation*}
$$

be the space of the equivalence classes whose elements are denoted by [Γ]. Identifying every element of Γ_{1} with its normalized conformal representation on the unit circle, one notes that this makes Γ_{1} a group.

Hence,
Definition 3. For each $[\Gamma] \in \Gamma_{1}$, the value

$$
\begin{equation*}
\|[\Gamma]\|=\frac{1}{2} \log K_{\Gamma} \tag{2.3}
\end{equation*}
$$

is called a norm in Γ_{1}.
Let Γ^{∞} denote the family of all Jc's Γ in $\overline{\mathbb{C}}$ with finite value of K_{Γ}. As shown in [Z3, Theorem 10], a Jc $\Gamma \subset \Gamma^{\infty}$ if, and only if, Γ is a quasicircle.

Let $\Gamma_{1}, \Gamma_{2} \in \Gamma^{\infty}$ be arbitrary. The expression

$$
\begin{equation*}
q\left(\Gamma_{1}, \Gamma_{2}\right)=\frac{1}{2}\left|\log \frac{K_{\Gamma_{1}}}{K_{\Gamma_{2}}}\right| \tag{2.4}
\end{equation*}
$$

is a pseudometric in Γ^{∞}.
To make q a metric one has to introduce a much weaker equivalence relation to Γ^{∞}. First, one introduces it to $\boldsymbol{\Gamma}$ by saying that two Jc's Γ_{1} and Γ_{2} are \boldsymbol{w} equivalent $\left(\Gamma_{1} \approx \Gamma_{2}\right)$ if $K_{\Gamma_{1}}=K_{\Gamma_{2}}$. Then let

$$
\Gamma_{2}=\Gamma / \approx
$$

be the space of the equivalence classes, whose elements are denoted by $[[\Gamma]]$. Moreover, let $\Gamma_{2}^{\infty}=\boldsymbol{\Gamma}^{\infty} / \approx$. Putting

$$
q^{*}\left(\left[\left[\Gamma_{1}\right]\right],\left[\left[\Gamma_{2}\right]\right]\right)=q\left(\Gamma_{1}, \Gamma_{2}\right)
$$

one obtains
Theorem 5. The $\left(\Gamma_{2}^{\infty}, q^{*}\right)$ is a metric space.
3. Universal Teichmüller space of an oriented Jordan curve. By way of supplementing the investigation of [10] suppose that Γ is an oriented Jc on the Riemann sphere and D, D^{*} are the left and right-hand side domains, respectively. Set $\mathbf{A}_{\Gamma}=A_{\Gamma} \times A_{\Gamma}$. For arbitrary $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}\right)$ from A_{Γ}, set

$$
\begin{equation*}
f \circ g=\left(f_{1}, f_{2}\right) \circ\left(g_{1}, g_{2}\right)=\left(f_{1} \circ g_{1}, f_{2} \circ g_{2}\right) \tag{3.1}
\end{equation*}
$$

Then, $\left(\mathbf{A}_{\Gamma}, \circ\right.$) is a group with composition as the group operation. Introducing

$$
\begin{equation*}
\mathbf{d}_{\Gamma}(f, g)=\max \left\{d_{\Gamma}\left(f_{1}, g_{1}\right), d_{\Gamma}\left(f_{2}, g_{2}\right)\right\} \tag{3.2}
\end{equation*}
$$

one makes ($\left.\mathbf{A}_{\Gamma}, \circ, \mathbf{d}_{\Gamma}\right\}$ a metric group (cf. [Z2]). Moreover, one defines

$$
\begin{equation*}
A_{D}^{\infty}=\bigcup_{K \geq 1} A_{D}(K) \text { and } A_{D^{\bullet}}^{\infty}=\bigcup_{K \geq 1} A_{D^{\cdot}}\left(K^{\circ}\right) \tag{3.3}
\end{equation*}
$$

then,

$$
\begin{equation*}
\mathbf{A}_{\Gamma}(K)=A_{D}\left(K^{\prime}\right) \times A_{D \cdot}\left(K^{\prime}\right) \quad \text { and } \quad A_{\Gamma}^{\infty}=\bigcup_{K \geq 1} A_{\Gamma}\left(K^{\prime}\right) \tag{3.4}
\end{equation*}
$$

for $K \geq 1$.
Hence, $\left(\mathbf{A}_{\Gamma}^{\infty}, \circ\right)$ is a group, as well. Note that each element of $\mathbf{A}_{\Gamma}^{\infty}$ is an automorphism of $\Gamma \times \Gamma$.

Two automorphisms $f_{1}, g_{1} \in \mathbb{A}_{D}^{\infty}$ are said to be equivalent $\left(f_{1} \sim g_{1}\right)$ if $f_{1} \circ$ $g_{1}^{-1} \in A_{D}(1)$. Similarly, two automorphisms $f_{2}, g_{2} \in A_{D^{\text {. }}}^{\infty}$ are equivalent $\left(f_{2} \sim g_{2}\right)$ if $f_{2} \circ g_{2}^{-1} \in A_{D^{*}}(1)$. Introducing

$$
T_{D}=A_{D}^{\infty} / \sim \quad \text { and } \quad T_{D^{\bullet}}=A_{D^{\bullet}} / \sim
$$

we may call

$$
\begin{equation*}
T_{\Gamma}=\left(T_{D}, T_{D^{\bullet}}\right) \tag{3.5}
\end{equation*}
$$

the universal Teichmüller space of Γ.
For an arbitrary $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}\right)$ from $\mathbb{A}_{\Gamma}^{\infty}$, one defines

$$
\begin{align*}
\tau_{D}\left(f_{1}, g_{1}\right) & =\frac{1}{2} \log K_{D}\left(f_{1} \circ g_{1}^{-1}\right) \\
\tau_{D^{\bullet}}\left(f_{2}, g_{2}\right) & =\frac{1}{2} \log K_{D^{\bullet}}\left(f_{2} \circ g_{2}^{-1}\right) \tag{3.6}
\end{align*}
$$

and then

$$
\begin{equation*}
\pi(f, g)=\frac{1}{2}\left(\tau_{D}\left(f_{1}, g_{1}\right)+\tau_{D^{\prime}} \cdot\left(f_{2}, g_{2}\right)\right) \tag{3.7}
\end{equation*}
$$

This is a pseudometric in $\mathbb{A}_{\Gamma}^{\circ \circ}$, and $0 \leq \boldsymbol{\pi}_{\Gamma}(f, g) \leq \log K$ for arbitrary $f, g \in \mathbb{A}_{\Gamma}(K)$.
Theorem 6. For an oriented Jc Γ on the Riemann sphere and every $f=$ ($\left.f_{1}, f_{2}\right), g=\left(g_{1}, g_{2}\right) \in \mathbf{A}_{\Gamma}^{\infty}$ implies that:
(i) $\tau_{\Gamma}(f, g)=0$ if and only if $f \circ g^{-1} \in \mathbf{A}_{\Gamma}(1)$;
(ii) $\mathbf{d}_{(-\Gamma)}(f, g)=\mathbf{d}_{\Gamma}(f, g)$;
(iii) $\boldsymbol{\tau}_{(-\Gamma)}(f, g) \leq \boldsymbol{\pi}_{\Gamma}(f, g)+2 \log Q$ if Γ is a Q-quasicircle, where $(-\Gamma)$ is the $J c$ obtained from Γ by reversing the orientation.

Proof. The identity

$$
\tau(f, g)=0
$$

is equivalent to

$$
\tau_{D}\left(f_{1}, g_{1}\right)=0 \quad \text { and } \quad \tau_{D} \cdot\left(f_{2}, g_{2}\right)=0
$$

then to

$$
f_{1} \circ g_{1}^{-1} \in A_{D}(1) \text { and } f_{2} \circ g_{2}^{-1} \in A_{D \cdot}(1)
$$

and to

$$
f \circ g^{-1}=\left(f_{1} \circ g_{1}^{-1}, f_{2} \circ g_{2}^{-1}\right) \in \mathbf{A}_{\Gamma}(1)
$$

Obviously,

$$
\mathbf{A}_{\Gamma}=\mathbf{A}_{(-\Gamma)}
$$

and, because of (3.2), (ii) follows. If Γ is a Q-quasicircle then, by [Z3, Theorem 11], there exist $1 \leq L_{1}, L_{2} \leq Q^{4} K$, such that the following inclusions

$$
\begin{equation*}
A_{D}(K) \subset A_{D^{\bullet}}\left(L_{1}\right) \text { and } A_{D^{\bullet}}\left(K^{\prime}\right) \subset A_{D}\left(L_{2}\right) \tag{3.8}
\end{equation*}
$$

hold for every $K \geq 1$. Then, (iii) follows by elementary calculation.
If Γ is a circle then $Q=1$ and, because of (iii), one obtains

$$
\begin{equation*}
\tau_{(-\Gamma)}(f, g)=\tau_{\Gamma}(f, g) \tag{3.9}
\end{equation*}
$$

As a completion of Theorem 6, one has
Corollary 1. It follows from the above that
(i) $\mathbf{A}_{(-\Gamma)}=\mathbf{A}_{\Gamma}$ always;
(ii) $\mathbf{A}_{(-\Gamma)}^{\infty}=\mathbf{A}_{\Gamma}^{\infty} \quad$ if Γ is a quasicircle in $\overline{\mathbf{C}}$;
(iii) $T_{(-\Gamma)}=T_{\Gamma}$ if and only if Γ is a circle in $\overline{\mathbb{C}}$.

Proof. (i) is obvious, whereas (ii) follows by [11, Theorem 11]. (iii) is a result of the observation that $[f] \in T_{\Gamma}$ inherits the group structure if and only if $K_{D}(f)=$ $K_{D^{\bullet}}(f)=1$ (cf. [11, Theorem 10]).

Assume now that $\left[f^{1}\right],\left[f^{2}\right],\left[g^{1}\right]$ and $\left[g^{2}\right]$ are elements of T_{Γ}. Hence

$$
\begin{aligned}
& {\left[f^{1}\right]=\left[f^{2}\right] \Longleftrightarrow f^{1} \sim f^{2} \Longleftrightarrow f^{1}=h^{1} \circ f^{2},} \\
& {\left[g^{1}\right]=\left[g^{2}\right] \Longleftrightarrow g^{1} \sim g^{2} \Longleftrightarrow g^{1}=h^{2} \circ f^{2}}
\end{aligned}
$$

where h^{1} and h^{2} are elements of $A_{D}(1)$ and $A_{D^{\bullet}}(1)$, respectively. By this

$$
f^{1}=\left(f_{1}^{1}, f_{2}^{1}\right)=\left(h_{1}^{1} \circ f_{1}^{2}, h_{2}^{1} \circ f_{2}^{2}\right)
$$

and

$$
g^{1}=\left(g_{1}^{1}, g_{2}^{1}\right)=\left(h_{1}^{1} \circ g_{1}^{2}, h_{2}^{2} \circ g_{2}^{2}\right) .
$$

Hence

$$
\begin{align*}
\boldsymbol{\tau}_{\mathrm{V}}\left(f^{1}, g^{1}\right) & =\frac{1}{4} \log K_{D}\left(h_{1}^{1} \circ f_{1}^{2} \circ\left(g_{1}^{2}\right)^{-1} \circ\left(h_{1}^{2}\right)^{-1}\right) K_{D^{\bullet}}\left(h_{2}^{1} \circ f_{2}^{2} \circ\left(g_{2}^{2}\right)^{-1} \circ\left(h_{2}^{2}\right)^{-1}\right) \tag{3.10}\\
& =\frac{1}{4} \log K_{D}\left(f_{1}^{2} \circ\left(g_{1}^{2}\right)^{-1}\right) K_{D^{\prime}} \cdot\left(f_{2}^{2} \circ\left(g_{2}^{2}\right)^{-1}\right)=\boldsymbol{\pi}_{\Gamma}\left(f_{2}, g_{2}\right)
\end{align*}
$$

It follows from the above considerations that

$$
\begin{equation*}
\boldsymbol{\tau}_{\Gamma}^{\bullet}([f],[g])=\boldsymbol{\tau}_{\Gamma}(f, g) \tag{3.11}
\end{equation*}
$$

Evidently, τ_{Γ}^{*} is well-defined and independent of the representation. Thus
Theorem 7. For an oriented $J c \Gamma$ on the Riemann sphere $\left(T_{\Gamma}, \tau_{\Gamma}^{*}\right)$ is a metric space.

Suppose now that $[f]=[g]$. Then $f_{1} \sim g_{1}$ and $f_{2} \sim g_{2}$. Let H and H. map, as usual, Δ and Δ^{*} onto D and D^{*}, respectively. Define

$$
\tilde{f}_{2}=J_{H H_{*}}\left(f_{1}\right) \quad \text { and } \quad \tilde{g}_{2}=J_{H H_{\bullet}}\left(g_{1}\right)
$$

Then

$$
\begin{equation*}
\tilde{f}_{2} \circ\left(\tilde{g}_{2}\right)^{-1}=J_{H H}\left(f_{1} \circ\left(g_{1}\right)^{-1}\right) \tag{3.12}
\end{equation*}
$$

and, because of (iii) of Theorem $4, \tilde{f}_{2} \circ\left(\tilde{g}_{2}\right)^{-1} \in A_{D^{\bullet}}(1)$. Moreover, let

$$
\tilde{f}_{1}=J_{H \cdot H}\left(f_{2}\right) \quad \text { and } \quad \tilde{g}_{1}=J_{H \cdot H}\left(g_{2}\right)
$$

Then

$$
\tilde{f}_{1} \circ\left(\tilde{g}_{1}\right)^{-1}=J_{H \cdot H}\left(f_{2} \circ\left(g_{2}\right)^{-1}\right)
$$

Hence, by (iii) of Theorem 4, one can see that $\tilde{f}_{1} \circ\left(\tilde{g}_{1}\right)^{-1} \in A_{D}(1)$.
Introduce

$$
\begin{equation*}
\mathbf{J}_{H H_{\mathbf{*}}}(f)=\left(J_{H_{*} H}\left(f_{2}\right), J_{H_{H}}\left(f_{1}\right)\right) \tag{3.12}
\end{equation*}
$$

and, by the above considerations,

$$
\begin{equation*}
\mathbf{J}_{H H_{0}}^{*}([f])=\left[\mathbf{J}_{H H_{0}}(f)\right] . \tag{3.13}
\end{equation*}
$$

This is a well-defined transformation of T_{Γ} onto $T_{(-\Gamma)}$.
Then we have
Theorem 8. For an oriented $J c \Gamma$ on the Riemann sphere the following holds:
(i) the transformation $\mathbf{J}_{H_{H_{0}}}$, defined by (3.13), is an automorphism of the metric group $\left(\mathrm{A}_{\Gamma}, \circ, d_{\Gamma}\right)$, and $R_{\Gamma}^{\infty} \times R_{\Gamma}^{\infty}$ are fix-points of this transformation;
(ii) $\left(\mathbf{J}_{H H_{0}}\right)^{-1}=\mathbf{J}_{H_{0} H}$, and $\mathbf{J}_{H_{H}}$ is an involution of $A_{\Gamma}^{\circ \circ}$, provided Γ is a quasicircle;
(iii) $\mathbf{J}_{H_{H}}^{*}$ is an isometry between $\left(T_{\Gamma}, \boldsymbol{\tau}_{\Gamma}^{*}\right)$ and $\left(T_{(-\Gamma)}, \boldsymbol{\tau}_{(-\Gamma)}^{*}\right)$.

Proof. (i) follows from Corollary 1. The identity of (ii) is a simple consequence of the definition of $\mathbf{J}_{H H_{0}}$. (iii) follows by the definition of τ_{Γ}^{*}. The identity (ii) of Corollary 1 and the identity in (ii) of this theorem imply the second statement of (ii).

By (iii) and (iv) of Theorem 4 and [11, Theorem 11], it follows that $D_{H H}$, and $D_{H_{0} H} \operatorname{map} A_{T}(\underline{K})$ into $A_{D}\left(K \cdot K_{\Gamma}^{\prime}\right)$ or into $A_{D^{\bullet}}\left(K^{\prime} \cdot K_{\Gamma}\right), K \geq 1$. If, in addition, Γ is a quasicircle in $\overline{\mathbf{C}}$ then both the transformations map A_{T}^{∞} onto $A_{D}^{\infty}=A_{D}^{\infty}$. (cf. [11, Theorem 11]).

In order to lift $D_{H H}$. and $D_{H_{0} H}$ on the respective UTS, suppose that $f, g \in A_{T}^{\infty}$ are such that $f \circ g^{-1} \in A_{T}(1)$. Then,

$$
\begin{equation*}
D_{H H_{\bullet}}(f) \circ\left(D_{H H_{\bullet}}(g)\right)^{-1}=S_{H}\left(f \circ g^{-1}\right) \in A_{D}(1) \tag{3.14}
\end{equation*}
$$

and

$$
D_{H_{\bullet} H}(f) \circ\left(D_{H_{\bullet} H}(g)\right)^{-1}=S_{H_{\bullet}}\left(f \circ g^{-1}\right) \in A_{D^{\bullet}}(1)
$$

According to the previous cases, one defines $D_{H H_{0}}^{*}$ and $D_{H_{*} H}^{*}$, that map $T_{T}=T_{\Delta}=$ $T_{\Delta^{\bullet}}$ onto T_{D} and $T_{D^{\bullet}}$, respectively. Hence, the notion

$$
\mathbf{S}_{H, H_{*}}^{*}:=\left(\begin{array}{cc}
S_{H *}^{*} & D_{H H_{*}}^{*} \tag{3.15}\\
D_{H_{*} H}^{*} & S_{H_{*}}^{*}
\end{array}\right)
$$

which means that $S_{H_{,} H_{*}}^{*}$ is defined by matrix representation.
Then, for sake a portion of simplification, one writes

$$
\mathbf{S}_{H, H_{*}}^{*}:\left(\begin{array}{cc}
T_{T} & T_{T} \tag{3.16}\\
T_{T} & T_{T}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
T_{D} & T_{D} \\
T_{D^{*}} & T_{D^{*}}
\end{array}\right)
$$

Let, as before, Γ_{1} and Γ_{2} be arbitrary oriented Jc's on the Riemann sphere, and let H, H_{*} and G, G_{*} be conformal mappings of Δ and Δ_{*} onto D_{1}, D_{1}^{*} and D_{2}, D_{2}^{*}, respectively. Consider the following transformation

$$
\begin{equation*}
\mathbf{J}_{\Gamma_{1} \Gamma_{2}}(f)=\left(J_{H \cdot G}\left(f_{2}\right), J_{H G}\left(f_{1}\right)\right) \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{H_{0} G}=S_{G} \circ S_{H_{0}}^{-1} \quad \text { and } \quad J_{H G}=S_{G_{0}} \circ S_{H}^{-1} \tag{3.18}
\end{equation*}
$$

$\operatorname{map} A_{\Gamma_{1}}^{\infty}$ onto $A_{\Gamma_{2}}^{\infty}$. By arguments related to those that we used while defining τ^{*} and $\mathbf{J}_{H H_{0}}^{*}$, one states

$$
\begin{equation*}
\mathbf{J}_{\Gamma_{1} \Gamma_{2}}^{*}([f])=\left[\mathbf{J}_{\Gamma_{1} \Gamma_{2}}(f)\right] \tag{3.19}
\end{equation*}
$$

Then
Remark 1. If $\Gamma_{1}=\Gamma_{2}=\Gamma$, one may identify G and G. with H and H_{*}, respectively, and set

$$
\begin{equation*}
\mathbf{J}_{\Gamma}=\mathbf{J}_{\Gamma \Gamma}=\mathbf{J}_{H H_{\bullet}} \tag{3.20}
\end{equation*}
$$

Henceforth, the notion \mathbf{J}_{Γ} can be used instead of $\mathbf{J}_{H H_{0}}$, as more adequate in these circumstances (cf. [13]).

Remark 2. By the previous arguments, one defines

$$
\begin{equation*}
\mathbf{J}_{\Gamma}^{*}=\mathbf{J}_{\Gamma \Gamma}^{*} \tag{3.21}
\end{equation*}
$$

Hence,
Theorem 9. For oriented $J c$'s Γ_{1} and Γ_{2} on the Riemann sphere the following holds:
(i) $\mathbf{J}_{\Gamma_{1} \Gamma_{2}}$ is an isomorphisms between $\left(\mathbf{A}_{\Gamma_{1}}^{\infty}, \circ\right)$ and $\left(\mathbf{A}_{\left(-\Gamma_{2}\right)}^{\infty}, \circ\right)$;
(ii) $\mathbf{J}_{\Gamma_{1} \Gamma_{2}}$ is an isometry between $\left(T_{\Gamma_{1}}, \boldsymbol{\tau}_{\Gamma_{1}}^{*}\right)$ and $\left(T_{\left(-\Gamma_{2}\right)}, \boldsymbol{\tau}_{\left.i-\Gamma_{2}\right)}^{*}\right)$;
(iii) $\left(\mathbf{J}_{\Gamma_{1} \Gamma_{2}}\right)^{-1}=\mathbf{J}_{\Gamma_{2} \Gamma_{1}}$ and $\left(\mathbf{J}_{\Gamma_{1} \Gamma_{2}}^{*}\right)^{-1}=\mathbf{J}_{\Gamma_{2} \Gamma_{1}}^{*}$;

Proof. The condition (i) is a simple consequence of the respective condition in Theorem 2. Since $\mathbf{J}_{\Gamma_{1} \Gamma_{2}}$ preserves the q h constant (ii) follows by an easy calculation similar to those that were used before. (iii) can be check, immediately.

Remark 3. If Γ is a circle in $\overline{\mathbb{C}}$, then $A_{D}\left(K^{\prime}\right)=A_{D}(K)$ for every $K \geq 1$. Hence, $\mathbf{A}_{\Gamma}\left(K^{\prime}\right)=A_{D}\left(K^{\prime}\right) \times A_{D^{\bullet}}\left(K^{\prime}\right)$ can be identified with $A_{\Gamma}\left(K^{\prime}\right)$ on Γ (see [9]). Since $K_{D}(f)=K_{D^{\bullet}}(f)$ if and only if Γ is a circle in $\overline{\mathbf{C}}, \tau_{\Gamma}^{*}$ is isometric with τ_{Γ}^{*}. By this one may identify ($T_{\Gamma}, \tau_{\Gamma}^{*}$) with ($T_{\Gamma}, \tau_{\Gamma}^{*}$) defined in [10].

Suppose that Γ_{1} and Γ_{2} are oriented Jc's on the Riemann sphere with $D_{1}, D_{1}^{\text {e }}$ and D_{2}, D_{2}^{*}, as the respective left and right-hand side domains. Let H and H_{*} map conformaly D_{1} and D_{1}^{*} onto D_{2} and D_{2}^{*}, respectively. One may then consider the parallel transformation

$$
\begin{equation*}
\mathbf{S}_{\Gamma_{1} \Gamma_{2}}=\left(S_{H}, S_{H_{0}}\right) \tag{3.22}
\end{equation*}
$$

and then

$$
\begin{equation*}
\mathbf{S}_{\Gamma_{1} \Gamma_{2}}^{*}=\left(S_{H}^{*}, S_{H_{0}}^{*}\right) \tag{3.23}
\end{equation*}
$$

that map $\mathbf{A}_{\Gamma_{1}}^{\infty}$ and $T_{\Gamma_{1}}$ onto $\mathbf{A}_{\Gamma_{2}}^{\infty}$ and $T_{\Gamma_{2}}$, respectively.
Further development of the ideas presented in this Chapter, including the case when Γ is an oriented Jc, or an arc of an oriented Jc, on a closed Riemann surface, will be presented in [13] and [14].

REFERENCES

[1] Gehring, F.W., Characteristic properties of quasidisks, Sem. Math. Sup., Press Univ. Montréal 1982.
[2] Gehring, F.W. and J. Väisälă, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 16 (1978), 504-512
[3] Kelingos, J.A., Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13 (1966), 235-249 .
[4] Krzyż, J.G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 225-242.
[5] Lehto, O., Univalent functions and Teichmüller spaces, Graduate Text in Math. 109, Sprin-ger-Verlag, New York-Berlin- Heidelberg 1987.
[6] Lawrynowicz, J. and J.G. Krzyí, Quasiconformal Mappings in the Plane: Parametrical Methods, Lecture Notes in Math.No. 978, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo 1983.
[7] Partyka, D., Spectral values of quasicircles, Manuscript 1991.
[8] Vuorinen, M., Conformal geometry and quasiregular mappings, Lecture Notes in Math. No. 1319, Springer-Verlag, Berlin 1988.
[9] Zajac, J., The distortion function Φ_{K} and quasihomographies, Current Topics in Analytic Function Theory 1992, 87-99.
[10] Zajac, J., Quasihomographies and the universal Teichmüller spaces II, Bull. Sci. Lettres Lódź 18, 137, (1992), 71-92.
[11] Zajac, J., The boundary correspondence under quasiconformal automorphisme of a Jordan domain, Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 131-140.
[12] Zajac, J., Functional identities for special functions of quasiconformal theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 93-103.
[13] Zaja c, J., Teichmûller space of a Jordan curve on the closed Riemann surface, (manuscript).
[14] Zajac, J., Local Teichmüller apace, in preparation.

Institute of Mathematics
(received May 10, 1993)
Polish Academy of Sciences
PL-90-136, Lódź
ul. Narutowicza
Poland
Department of Mathematics
University of Joensuu
P.O. Box 111

SF - 80101 Joensuu
Finland

