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A Survey on Uniformly Convex and Uniformly Starlike Functions

1. Introduction. The present article is a survey trying to cover the most important 
results hitherto known about the functions called uniformly convex and uniformly starlike. 
These classes of functions were introduced by A.W. Goodman in [5] and followed up in 
[4], Most of the results in [4] and [5] can also be found in the survey article [6] on open 
problems. Later, other authors have taken interest in these classes, and several papers have 
been written. The results in this paper can, with few exceptions, be found elsewhere, and 
therefore their proofs are omitted, but an extensive list of references is included. Before 
proceeding we give some notations and definitions.

Let Ao be the class of functions analytic in the unit disk U normalized by /(0) = 
/'(0) -1=0, and let, as usual, S denote the class of univalent functions in Ao- Let S* 
(0 < o < 1) denote the class of functions in Ao that are starlike of order a, and let fC 
denote the class of convex functions. Then we have the classical analytic characterizations.

and

f € K. <=> Re < 1 + > 0, z € U.

In addition to these well known classes we introduce three classes of functions that will be 
our main interest in this paper.

ooDefinition . Let /(z) = z + £3 
(a) f € UST if and only if

(1-1)

(b) f € UCV if and only if

a*z* € Ao.

(1-2) Re >0, (z,<)€UxU.

(c) f € Sp if and only if

(1-3)
/(

z e u.
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The classes UST and UCV have a natural geometric interpretation in the sense that 
f € UST if and only if the image of every circular arc in U with center ( also in U, is 
starlike with respect to /(C), and / € UCV if and only if the image of such an arc is convex. 
The connection between the geometric and analytic characterization is easily established 
by the standard methods where convexity and starlikeness are interpreted as monotonic 
rotation of the tangent vector and the radius vector respectively. These are the classes of 
uniformly starlike and uniformly convex functions as introduced by Goodman. Note that if 
we take C = 0 in (1.1) and (1.2) we have the usual classes of starlike and convex functions, 
and that if we let ( —> z the conditions are trivially fulfilled. Goodman’s definition of 
UST and UCV was motivated by the following question from B. Pinchuk: Will a function 
/ € «So map a circle contained in U, with center £ 0, to a curve that is starlike with
respect to /(£)? Simple examples in [5] show that the answer to this question is no. The 
same problem was independently studied by J.E. Brown [3]. His work goes much deeper 
into this particular question than Goodman’s work does, but does not lead to the definition 
of uniform starlikeness. For a given |(| = r < 1 Brown determines a value p = p(r) such 
that every f € S maps each disk \z — £| < p contained in U onto a region which is starlike 
with respect to /(C). The value of p that he obtains is sharp for the whole class S and 
is, he remarks, the best known estimate for Sf>. To the best of our knowledge, a sharp 
bound for p in the class is still not known. The value of p as a function of r cannot be 
given explicitely, but for any given r it can be obtained by solving a given equation. For 
details, we refer to [3]. Note that in the class AC the situation is different in the sense that 
convex functions map circles inside of U to convex curves, and this has been known for a 
long time [13,25]. So the answer to the Pinchuk question with S(' replaced by AC is yes. 
However, in the definitions of UST and UCV it is not a restriction that z and ( are such 
that the disk \z — C| < P is contained in U. In this situation it is clear that (1.2) will not 
hold in general for convex functions. For a simple example take /(z) = z/(l — z) which 
maps every circular arc through z = 1 to a straight line. Now, by mapping the circular arc 
y(p) : \z — C| = p for various values of p it is clear that if we pass a value of p for which 
7(p) goes through z = 1 the real part in (1.2) will change sign. Therefore, UST and UCV 
represent proper subclasses of and AC respectively.

One of the difficulties with UST and UCV is that their characterizations are given in 
terms of two variables. Ma and Minda [9] and the author [18] independently discovered 
that in UCV it is possible to give a characterization in terms of only one variable.

Theorem 1.1. / G UCV if and only if

(1-4)
/'(*)

< Re m r
z € U.

The proof is an application of the Minimum Principle for harmonic functions. Com­
paring (1.3) and (1.4) we see that we have

Corollary 1.2.

(1-5) / e ucv <=> z/' g sp.
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Hence, the relation between UCV and Sp is given in terms of an Alexander type 
theorem, and, with the geometric similarities between UCV and UST in mind, it is natural 
to ask if there is any relation between Sp and UST. Examples given in [4,16,18] show that 
UST Sp and also Sp <£. UST. The relation (1.5) was the motivation for introducing the 
class Sp in [18].

2. Related classes of starlike functions. The class Sp fits nicely in among other 
special classes of starlike functions that have been investigated over the years. We see 
from (1.3) that the domain of values of zf'(z)/f(z) for f 6 Sp, z € U, is contained in a 
parabola symmetric about [|,oo). Hence, we have the sharp inclusion Sp C S*,2. Other 
classes of starlike functions that are natural to compare with are the so-callea strongly 
starlike functions introduced independently by Brannan and Kirwan [2] and Stankiewicz 
[22,24], A function f € .4o is said to be strongly starlike of order a (0 < a < 1), here 
denoted STSa, if

arg
/(*)

z e u.

We see that we also have the sharp inclusion Sp C STS\/i.
In [8] Ma and Minda gave a geometric characterization of the functions in STSa-

Before presenting their result we need some notation and definitions. For 0 < k < 2 let Ek 
be the intersection of the two closed disks of radii 1/ k both of which have 0 and 1 on their 
boundaries. For k = 0, Eo is taken to be the line segment [0,1]. A region Q (0 € Q) is 
said to be fc-starlike (with respect to the origin) if for every w 6 ft, wP* C ft. This means 
that ordinary starlikeness corresponds to k = 0, and that for k > 0 the region contains 
a certain lens-shaped region. With this notation the result from [8] can be expressed as 
follows.

Theorem 2.1. Let f € STSa- Then the region f(U) is k-starlike with

k = 2 cos —,

and this value is sharp.

The maximal value of k corresponds directly to the maximal value of |arg«/'(.?)//(z)|, 
so because of the sharp inclusion Sp C STS^/i, there is a function in Sp which is at most 
\/2-starlike. To obtain better information about the geometry of Sp one should perhaps 
introduce some other concept, similar in nature to k- starlikeness. It is not, however, clear 
what this should be.

In all these classes many properties can be derived by investigating the Caratheodory 
function P(z) mapping U onto the maximal range of values of zf'(z)lf(z). We take P to 
be normalized such that P(0) = 1 and P'(0) > 0. In the case of S* this P is

P(;)
1 + (1 - 2a)z

1 — 2
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and in the case of STSa it is

P(2

We could also mention that a generalization of these classes was done by Wesołowski [27] 
who investigated starlike functions where the corresponding Caratheodory function is

P(«) =
1 + (1 —2a)z

1 — z

We observe that for /? = j, a 0 the boundary of P(f7) is a hyperbola. In the case of Sp 
the corresponding Caratheodory function mapping U onto the parabolic region is seen to 
be

(2-1) P(3) = 1 +
2 / 1 + v^V
^(logi^f) ■

We include here an observation that shows how the coefficients of P(z) in (2.1) can be 
expressed nicely in terms of special functions.

Theorem 2.2. Let

Then

a‘ = i(4,G + ‘)+7+2I°82)
where 4<(x) = T'(x)/r(x) and y is Euler’s constant.

Proof. Using the expansion log = 2^ zk+ 1) we find after squaring
that

= 4Z
(2m - l)(2Jk - 2m +1) 

which by a partial fraction decomposition can be written

1 k \2m — 1 + 2(fc — m) + 17
m=l x \ / z

We see that = £^,=1 , so we have

A - 4 V 1 
* k 2m - 1 ’

m=l
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This sum is related to the 'I'-function in the following way [1, p.258]:

*(i+t) = .7_21og2+2£_!_,

x z m=l

and the result follows.

All the classes of starlike functions that we have mentioned (except UST) can be 
characterized by the range of the functional zf'(z)/f(z). Let Q be a convex domain in 
the right half plane, symmetric about the real axis, and assume that 1 g ft. Define S*(ft) 
as the set of functions in Ao with the property that zf'(z)lf(z) g ft, and let Pn be 
the (normalized) Caratheodory function mapping the unit disk onto ft. Further we define 
kn g S*(ft) by zk'n(z)/kn(z) = Pn(z). All the classes described above fit into this pattern, 
and the function kn is extremal for its class in many respects. Note that in the case 
kn is simply the Koebe function. With the setting just presented we have the following 
general result (Ma and Minda [7]).

Theorem 2.3. For f g S*(ft) we have

ka(z) 
z z

and

(2.2) -fcn(-r) < |/(z)| < fcn(r)> |z| < r < 1.

If lim fcfi(r) = Af < oo then the functions in S*(ft) are bounded, and we have
r—l-

(2.3) \fW\<M, zeU.

The Koebe constant of S*(ST) is given by —kn(—1). Also we have

(2.4)

and

(2.5)

fcn(-r) < |/'(z)| < ^(r), |z| < r < 1

arg
/(*)

< max arg 
“ i€[0,2ir>

i ^n(re’*))
1 reie J ’ |z|<r<l.

Equality in (2.2), (2.4), (2.5) holds for some z 0 if and only if f is a rotation of kn.

Theorems of this type have previously been proved separately for each of the classes 
We have mentioned. In each case the technique applied is essentially the same. (See 
e.g. [2,9,15,18,24,28].) This technique can be unified to prove the more general theorem 
above as Ma and Minda have done in [7]. In fact they obtain all results, except (2.4), by
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assuming only that Q is symmetric about the real axis and starlike with respect to the 
point w = 1. They, also give some other general properties of functions from S*(fi) as well 
as of classes of convex functions obtained similarly by replacing the functional zf'(z)/f(z) 
with 1 + zf"(z)l f'(z).

In some cases one has been able to compute the number M in (2.3) explicitely. In the 
case of the strongly starlike functions STSa Brannan and Kirwan [2] showed that

M = M(a) = |exp|-4> -7}

where again i'(x) is the logarithmic derivative of the Gamma function and 7 is Euler’s 
constant. In [18] the author similarly found the upper bound in Sp to be

(2.6) M = exp {^((3)}

where £(x) is the Riemann Zeta function. (Note that this bound is, by (1.5), the upper 
bound of the derivative in UCV.) The Koebe constant in Sp is in [15] computed to be

i 4 Z’/2 t2 )
(2.7) A'= exp <—r/ — ¿4=0.53399...,

( TC2 Jo Sint J

hence slightly larger than the Koebe constant in K. which is 1/2. We could mention that 
in [15] the class Sp was generalized by introducing a parameter a in the following way. Let 
Sp(a) be defined by

(2-8)
*/'(*)
/(*)

< Re Q.

Then we get a domain Q whose boundary is a parabola with vertex w = (1 + a)/2. We 
see that for all a € [—1,1) we have Sp(a) C So- we introduce a corresponding class 
UCV (a) (uniformly convex of order a) by g € UCV (a) <=> zg' € Sp(a) ve observe that 
UCV(a) C AS for a > —1. Now, bearing in mind the expression (1.2), this is the same as 
to say that

Reil + (s-O^}>-l, (z,C)€lfxCZ

implies

For the generalized classes 5p(a) it is easy to see [15] that the bounds on the modulus are 
M(a) = Mi~a and A'(a) = A'1-“ where M and A' are as in (2.6) and (2.7).

3. Some properties of uniformly convex functions. The relation between the 
classes Sp and UCV implies that results about bounds for the coefficients in one of the



A Survey on Uniformly Convex and Uniformly Starlike Functions 129

two classes can be directly translated to the other class. We choose here to give coefficient 
results in terms of functions /(z) = z + akzk UCV. The first general bound on
|ajt | was given by Goodman [4] who showed that

and a better bound was given in [18], namely

|at| - -1)^ n +(j _ 2)^) ’ 3’

J—J

where only the bound on |a2| is sharp. In [9] we find the bound |a*] < (yyy + %~t)/k, also 
not sharp. The best results on coefficients in UCV have been obtained by Ma and Minda 
[9,10] who gave sharp bounds for the first six coefficients and a sharp order of growth for 
|a*|. Let F € LCV be the function for which

where oo
F(z) = z + £Atzk, 

fc=l

and let /(z) = z + ^^.2 a^z* € UCV. Then we have the following theorem [9,10].

Theorem 3.1.
(a)

|a*| < A*, k = 1,2,3,4,5,6.

Equality holds if and only if f is a rotation of F.
(b) The sharp order of growth for |at | w

|a*| = O(l/fca).

The numbers A* can be computed, and the exact values can be found in [10]. This 
theorem has an interesting consequence because for the function F one can show [9] that 
A* = <9((log k)2/k3) for large k which, in comparison with statement (b) of Theorem 3.1, 
means that there exists a function / € UCV such that for k large enough, |<zjt | > A*. It 

not known how large k must be for this to happen. Also, no sharp general bounds on 
lafc| in UCV are known. The order of growth statement in Theorem 3.1 (b) can in fact be
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obtained from a more general statement. In [14] the class Sp was generalized in a different 
manner than (2.8), introducing

«) = {
P( /€5: */'(*)

/(*)
< Re zf'W

f(z)
+ a, z &U, 0 < a < oo

Now the domain 0 is bounded by a parabola with vertex at the origin and focus at 
some point on the positive real axis, so clearly Sp(a) C P(/?) for some number f). One of 
the results obtained in [14] is

Theorem 3.2. Let f g P(a). Then for some complex valued Borel measure p. on 
|x| = 1, / can be written as

f(z) = i log —5—^(1).
Jlll=l 1 xz

As a consequence of this we see that if /(z) = $3*^ a*z*, we have

an

and hence that the order of growth of |a„| is O(l/n). The functions in P(a) are starlike 
functions, so therefore the growth of the coefficients of the corresponding convex functions 
is O(l/n2).

Ma and Minda also investigated the functional |pa2 — a31 an<f obtained upper bounds 
for various values of p. We refer to [10] for the complete results, but include here the 
special case p = 1 in comparison with the corresponding result for the class 1C which is 
due to Trimble [26].

Theorem 3.3. Let f(z) = z + akzk.
(a) Iff e UCV then |a2 - a3| + l«2|2 <
(b) IffeIC then |a^-a3|+jlaal2 < j.

To finish this section we mention a convolution result which was proved in [15].

Theorem 3.4. If f(z) = z + ££12 akzk g S;/2 and g(z) = z + 2 bkzk g Sp
then (f t g)(z) = z + Y^-2akf)k^k Sp.

Compare this with the famous result of Ruscheweyh and Sheil-Small [20] (Polya- 
Schoenberg conjecture): } € 1C, g € => f * g € 5J. One way of expressing this is that fC
is a multiplier family from <S0* to 5q , and that the (much larger) class S*^2 is a multiplier 
family from Sp to Sp. The basic explanation of these convolution properties is contained 
in the following lemma (See [19, pp.54-55]).
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Lemma 3.5. Let 7£Q be the class of functions in Ao given by

(’■') f6 i • ««•

Then for f € TLa,g € S* and any function H analytic in U we have

f-^-(U) C co H(U). 
f*9

In proving Theorem 3.4 this result was applied in the case a = 1/2. Turning now to 
the more general classes (as in Theorem 2.3) where Qq is assumed to be convex
and all w € have Re w > a we can prove

Theorem 3.6. If f € TZa and g € S*(Qa) then f * g € S*(ilo). 

Proof. Let zg'(z)/g(z) play the role of H(z~) in Lemma 3.5 and we get

(t/) =
f * 9^ za'-^(CZ) c f (CZ) c

hence f * g € S*(QO).

Remark. Since h € UCV <=> g = zh' e Sp and z(f * h)' = f * zh' it is clear that 
in Theorem 3.4 we can substitute Sp with UCV. Theorem 3.6 was presented in a slightly 
more special form in [7]. Looking at the definition of 7?.o in (3.1) we see that 77O = £ 
and ft1/2 = <S*y2. The classes Tta are known as prestarlike functions, and they play an 
important role in convolution theory. For further study of these functions we refer to [19],

Finally we mention a radius result for UCV which can be found in [17]. Recall that 
the radius of convexity in S is 2 — \/3 = 0.2679....

Theorem 3.7. The radius of uniform convexity in S is |(4 — a/13) = 0.1314....

4. Uniformly starlike functions. There are so far not so many results about 
uniformly starlike functions, much due to the fact that we basically do not have a simpler 
characterization of the class than the one given in (1.1) which in use leads to very compli­
cated computations. (A slight simplification can be made, because an application of the 
Minimum Principle [16] shows that it suffices to examine z and £ with |z| = |£|.) Sakaguchi 
[21] introduced in 1959 a class which he called starlike with respect to symmetrical points 
(S5P), which can be defined as

SSP = |/ € 5 : Re > °< 2 € iz| .
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We see that this class is related to UST in the sense that we get the SSP condition 
if we take £ = —z in (1.1), so clearly UST C SSP. The class SSP contains all convex 
functions [21], but UST does not. It was proved in [5] that the function z/(l — Az) is 
in UST if and only if |A| < l/\/2. In fact the number l/\/2 is the radius of uniform 
starlikeness for the whole class AC as the following theorem [12, 16] shows.

Theorem 4.1. Let f € 1C. Then we have 
(*)'hf(rz)eUST if r<^.

(b) |/(rz) eSp if r<^.

In both cases the number l/\/2 is sharp.

It is interesting to note that these two radii coincide in the class K. despite the fact that 
there is no inclusion between the classes UST and Sp. It is also an interesting observation 
that the radius of (normal) starlikeness in the closed convex hull of K. is l/\/2, as was 
proved by MacGregor [11].

Looking at radius results in other classes, we observe that UST and Sp radii differ. 
We have e.g. the following result.

Theorem 4.2. Let f € S. Then we have
(a) ±f(rz) eUST if r < 0.3691....

(b) ±/(rz)eSp if r< 0.3321....
The given numbers are sharp.

Part (a) of this thorem is proved in [17] and part (b) is proved in [18]. In both cases 
the upper bounds on r are given as solutions of a certain equation or system of equations. 
To indicate the difficulties involved in doing computations with the UST condition (1.1), 
we could mention that we have not been able to compute the radius of uniform starlikeness 
in Sq. We do not even know the exact largest value of |z| for which the Koebe function is 
uniformly starlike. The best result so far is [17] that the UST radius rj in Sq lies in the 
interval

(4.1) 0.369 < rj < l/>/7 < 0.378.

The Sp radius in SJ is, however, easily seen to be 1/3 [18], which is equal to the S*y2 
radius. The lower bound in (4.1) is of course the number from Theorem 4.2 (a), and the 
upper bound (l/\/7) is the largest value, of |z| for which the Koebe function has the SSP 
property.

Let ro be the UST radius in S as given in Theorem 4.2 (a), and let k(z) be the Koebe 
function. Then certainly g(z) = fc(r0z)/j"o € UST, but g £ S*,2, since the S*y2 radius in 
Sq is sharp for the Koebe function. Therefore UST S*j2. An open problem is to find 
the largest a > 0 such that UST C S*.

Merkes and Salmassi [12] have a radius result for the classes 7?.o that was defined in
(3.1) . In their paper they also discuss some properties of a subclass of UST obtained by



A Survey on Uniformly Convex and Uniformly Starlike Functions 133

replacing the derivative in (1.1) by a difference quotient. They show that the subclass that 
they define has a number of properties in common with the class UST itself. The paper 
also includes a result about the length of images of circles under UST mappings.

The best coefficient result for UST so far was proved by Charles Horowitz (published 
in [5]), and is as follows.

Theorem 4.3. Let f(z) = € UST. Then

(4.2) |a*| < fc = 2.3,....

This is considerably better than the bound for the larger class SSP which is |at | <1 
(sharp) [21]. The bound in (4.2) was obtained by showing that if f € UST then for some 
real number a, Re{e‘“/'(z)} > 0, z € U. The class of functions for which the derivative 
lies in a halfplane is of course much larger than UST, so the coefficient problem in UST is 
still unsolved.
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