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Abstract. Let f, g be distributions in D’ and let f,(z) = f(z)Ta(z), gn(z) = g9(z)7a(z),
where r,,(:r) is a certain function which converges to the identity function as n tends to infinity.
Then the commutative neutrix convolution product f [*|g is defined as the neutrix limit of the
sequence {f" * g,,}, provided the limit exists. The neutrix convolution product lnz_ Eirf',, is
evaluated for 4 = 0,+1,%2,... , from which other neutrix convolution products are deduced.
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In the following, we let D be the space of infinitely differentiable functions with
compact support and let D’ be the space of distributions defined on D. The following
definition for the convolution product of certain distributions f and g in D', was given
by Gel'fand and Shilov [6].

Definition 1. Let f and g be distributions in D' satisfying either of the
following conditions:
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side. Then the convolution
product f x g is defined by

((f *9)(z), 8) = (f(w), (9(2), b(z + ¥)))

for arbitrary ¢ in D.
It follows that if the convolution product f * g exists by Definition 1, then

(1) frg=g=+f,
(2) (frg) =f*g' =f»g.

Definition 1 is very restrictive and can only be used for a small class of distribu-
tions. In order to extend the convolution product to a larger class of distributions,
Jones [7] gave the following definition.
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Definition 2. Let f and ¢ be distributions and let 7 be an infinitely differen-
tiable function satisfying the following conditions:
(i) r(z)=r1(-2),
(i) 0<r(z)<1,
(i)  7(z)=1for |z| < 1/2,
(iv) r(z)=0for|z|>1.

Let

fa(2) = f(z)r(z/n) »  gal2) = g(2)r(z/n)

for n = 1,2,... . Then the convolution product f * g is defined as the limit of the
sequence {fn * gn}, provided the limit h exists in the sense that

lim (fn ¥ gm¢) = (hv ¢)
n—oo
for all test functions ¢ in D.

In this definition the convolution product fy * g» exists by Definition 1 since f,
and g, have bounded supports. It follows that if the limit of the sequence {f, * gn}
exists, so that the convolution product f *g exists, then g = f also exists and equation
(1) holds. However equation (2) need not necessarily hold since Jones proved that

lesgnz =sgnz*l=1z,

(1*#sgnz) =1, 1'*sgnz=0, 1x*(sgnz) =2

It can be proved that if a convolution product exists by Definition 1, then it
exists by Definition 2 and defines the same distribution.

However, there were still many convolution products which did not exist by
Definition 2 and in order that further convolution products could be defined the next
definition was introduced in [3].

Definition 3. Let f and g be distributions and let

1» Izl S n 1)
Ta(z) ={ T(n"z —n"*1), z>n,

r(n"z +n"*t), z<-n,

for n = 1,2,... , where 7 is defined as in Definition 3. Let fn(z) = f(z)7a(z) and
In(z) = g(z)7a(z) for n = 1,2,... . Then the commutative neutrix convolution
product f[+]g is defined as the neutrix limit of the sequence {fs * gn}, provided the
limit A exists in the sense that

Nn:gm (fa*9n,9) = (h,9)

for all ¢ in D, where N is the neutrix, see van der Corput (1], having domain N’ =
{1,2,... ,n,...} and range the real numbers with negligible functions finite linear
sums of the functions

n*In"'n, In"n, A>0;r=1.2,...)
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and all functions €(n) for which lim,_—.o ¢(n) = 0.

The convolution product f, *g, in this definition is again in the sense of Definition
1, the support of f, being contained in the interval [-n—n~",n+n~""]. It was proved
in (3] that if a convolution product exists by Definition 1, then the commutative
neutrix convolution product exists and defines the same distribution.

The following theorems were proved in [3] and [4] respectively.

Theorem 1. The neutriz convolution product z* [+ | ezists and
Al = B(-A—p—1,p+ D)X L B(=A —p = 1,2 + 1)+
for A, p, A+ u#0,£1,12,... , where B denotes the Beta function.

Theorem 2. The neutriz convolution product z* [£|:t_"+—'\ ezists and

Ay =B(-r—1,r+1- Az + B(-r - A+ 1)z +
(-—1)'(A),+1 _r+l
r+ 1) 2" In|z|,

for A#£0,£1,42,... and r = -1,0,1,2,... .

In this theorem, B again denotes the Beta function but is defined as in [2] by

pl=1/n
B(\,p) =N —lim Al = e)pt dt .

n—oo 1/n

In the following we are going to consider the commutative neutrix convolutions
products z_" [« |z% and z]" [+ |z*, where 21" is defined by

-r (_l)r-l

ir)
+ = [r— 1]1{1311?.'.}

and z_" is defined by =" = (—z);", but first of all we prove

Theorem 3. The commutative neutriz convolution product Inz_ [+ |z’ ezists
and
RHt1
x T+y¥(—pu=1) .4
(3) Inz_ El:ti = —":_ 1 lnzy + TI:
for u # 0,+1,42,... , where v denotes Euler’s constant, yy = I''/T’ and I denotes
the Gamma function.

Proof. We will first of all suppose that 4 > —1 and pu # 0,1,2,... so that z¥ is
locally summable function. Put

()= (@) 4 (In2-Ynl = Inz_7i(Z) .
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Then the convolution product (Inz_), * (z4 ) exists by Definition 1 and
(Inz_)n * (z4)n = ((Iny-_)n, ((z4 )n, d(z + v)))
0 b
o / B In(—y)7a(y) J/ (z = y)i ma(z — y)é(z) dz dy

4 b 0
@) = [ ¢(z) lf ln(—y)(x - y)47n(z —y) dy dz

¥ / o) [ wrau)e - virale —v) dy de
for n > —a and arbitrary ¢ in D with support of ¢ contained in the interval [a, b].

When z < 0 and —n < y < 0, Ta(z — y) = 1 on the support of . Thus with
z < 0 and —n < y <0, we have on making the substitution y = zu™!

1] x
In(-y)(z — y)a(z = y) dy = / In(=y)(z = y)* dy

= (=z)**'In(-1) / w731 — u)* du

—:/n

1
- (=2 / u " ?lnu(l — u)* du

—-z/n

= Iln - I2n .
Choosing an integer r > pu + 1 we have

1 1
[ u "Y1 -u)* du= [ u_“'2
Joz/n J-z/n

Z( 1) [p)t |

+Zo !ta l—] i Sl = (=2/n)'*71],

where
Wi=4{
Y -4y iz
j=0
and it follows that
(5) N —lim L1, = B(-p - 1,u + 1)(=z)**'In(-2) =0

n—00

see [6]. Further,

1 1 T ani ]
/ u ™ ?lny(l - u)* du = / u ™ ?lnu [(1 —u)¥ - Z: (1) 1L(p]. u'| du
—-z/n -z/n 1 i

3 Z R TH | 3 {'_1,}1:(11)1'\’ (G —p=1)(=z/n)"* " In(-z/n) +1 - (-z/n)'"*71]

1 —
1=0 L\'
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and it follows that

N —lim Ip = Byo(—p — 1,p + 1}(“3)”*-1 )

where 8
Blﬂ(“p_la#+1)_ B{A .|“+1)J =0,
A==p=—1
see [2]. Thus
(6) N —lim L, =0
n-—-00

and it follows from equations (5) and (6) that
(7 N — lim J[‘J In(—y)(z —y)ymm(z —y)dy=0.
When £ > 0 and —n < y < 0 we have

0
I mne-virae v do= [ ai-oe - dy

+/ In(—y)(z — y)*a(z — y) dy.

z£—-n-n-"
Making the substitution y = z(1 — u™!), we have

1
/0 In(-y)(z - y)* dy = z**'Inz / u™""? du
-n J!/'I

1
+ ¢! / u*?In(1 - u) du — z#**! J/ u™*"?ny du

z/n z/n

= I:ln + I4n 3 Isn .
We have

/‘ = du = —— (1 = (n/a)**]
:/nu u +1 n

and it follows that
J z¢+linz
(8) Nu:llcm L, = —?1—
Making the substitution u = 1 — v, we have

1 1-z/n
f u*2In(1 — u) du = J/ Inv(l —v)™*" % dv
0

z/n

y ["*’"m[“_v)-“ (Dt 20,
(—1)'(;1-}-2, (l-z/n)"“ln(l—x/n) (1—;1:/n)"H
> ‘ i+1 G+1)2

L
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where r is chosen greater than u + 1. It follows that

1
N —lim [ u ™" ?In(l —u)du=

n—o0 z/n

[ 1no |(1 = 0)m-1 ZM‘ gy S~ (ED e +2);

-, - ! . L a1y
— B,
Thus
(9) N —lim Iy = B(1,—p — 1)z*+! |

n=—oo

Next we have

/l —u=2p o = (n/:z:)““[lna:—lnn]

u
z/n /‘+1 (#+1

)2[1 - (n/z)*+)

and it follows that
p _..u+l
(10) N'_.:cl:_'mIE,, = —(p—+—172- .

Now it is easily proved that

Bu(1,m) = —_7_:@_)  H T ) =+ )
and so
-1
(1) Buo(l,~p— 1)+ (u+1) ————”'f’j(;; ).

Thus, on using equations (8), (9), (10) and (11)

0
(12) N —lim / In(—y)(z — y)* dy = —

RS A |'7+¢(—# - l)l Lt
o0 Jz—n /J+l

utl

Further, withn >z >n™"

| /’ 3 In(—y)(z = y)*ra(z — y) dy| j/“ﬂl- Hln(y — z) dy

Jz-n-n-n | n

=0(n* "Inn),
and so

(13) lim In(—y)(z —y)*Ta(z —y) dy =0

N=0 Jren—n-n
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It now follows from equations (7), (12) and (13) that

»0

A ,/ In(-y)(z - y)s7a(z —y) dy
14 o
(14) 4 ' Inzy v+ Y(=p—1)]

el ++|_ p+1

FIALI
pt1

+

Next, with —in < a <z < b < in, we have
=T

/

In(egdite (e il ) dy! <[ mewe-wra

=0(n*™")
and so

=N

(15) Jim In(-y)(z — y)*ra(y)Ta(z -~ y) dy = 0.

—n-n-"

It now follows from equations (4), (7), (14) and (15) that

N :lim((ln z_)n * (24 )n, &(2))
=(p+ 1) =" Iney + [y + Y= - D)4, 4(z))

and equation (3) follows for 4 > —1 and p #0,1,2,....

Now assume that equation (3) holds for —k < p < —k+1, where k is some positive
integer. This is certainly true when k = 1. The convolution product (Inz_), * (2 )n
exists by Definition 1 and so equations (1) and (2) hold. Thus if ¢ is an arbitrary

function in D with support contained in the interval [a,b], where we may suppose
that a < 0 < b,

((Inz_)n * (24 )n]'s 8(2)) = =((Inz-)n * (24 )n, ¢'(2))
= p((ln 3—)11 * (:ﬁ—l )"l ¢(z))
+((nz_)n = [z T (2)], $(2))

and so

. W10 2-)n + (257 )ny8(2)) = —((In2-)o * (24 ), ()
| = ((nz_)a + [4ra(2)], 6(2)) -

The support of z v/ (z) is contained in the interval [n,n + n™"] and so with
n>b>n"", it follows as above that

n4n~"

b
(Inz_)n + [2A7(2)], 8(2) = J./ 8(z) J./ )y = 2)rale — y) dy de
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where on domain of integration y* and In(y — z) are locally summable functions. It
is easily seen that

b n4+n""
/ é(z) / 1)y = 2)ralz — ) dy dz| = O(n* lnn)

and so
(7) Jim (lnz-)a + [#4a(2)], 8(2)) = 0,
since u < 0.

It now follows from equations (16) and (17) that

N —lim p{(Inz_)a + (247 ), (2)) = =N = lim((Inz_)n * (24 )n, (2))
= —(lnz_[r|z,'(z))

by our assumption. This proves that the neutrix convolution product Inz_[*J4 ™"
exists and

Inz_[t|eh™" = p~Inz_ []z})
=p =2 nzy — (p+1)7"2h + [y + P(—p - D)jzh)
=p =z Inzy + [y +¥(—p - 1))zh)}
since Y(—p —1) = (p+1)7! = Y(—p) .

Equation (3) now follows by induction for u # 0,+1,£2,... . This completes the
proof of the theorem.

Corollary . The neutriz convolution products In|z| [+ |z%, In|z| [« |z2 and
In|z|[«||z|* ezist and

(18) Infe| [kt = T—ET %

meot um 4
p+1
meot um .4
19 1 P ———a®
(19) nfe| Bkt = =25
m cot uw +1
20 1 |t = ———|z|*
(20) a el Ellel* = == lel

for p#0,4£1,42,... .

Proof. The convolution product Inzy * z% exists by Gel'fand and Shilov’s
definition and it is easily proved that

Inz, 24 =(p+ l)":zﬂ'H Inzy + Byo(l,p + l)ar’i'H

v+ Y(p+2)

=(u+1) 2% nzy - I 1 .

+
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Since the neutrix convolution product is clearly distributive with respect to ad-
dition, it follows that

Y(=p=1)=p(p+1) .4y
Ty
et 1
_1rcot;nrry+l
Cop+2 7t

Inz_[x|z4 +1lnz, 2} =

since it can be easily proved that

Y(—p—1)—(p+2)=mcotpr.

This proves equation (18).
Replacing z by —z in equation (18) gives equation (19) and equation (20) follows
on noting that |z|* = z% + z%.

Theorem 4. The neutriz convolution product z_" [+ |z} erists and

@) el = e e o+ D)
for p #0,2£1,4£2,... and r=1,2,...

Proof. Let ¢ be an arbitrary function in D with support contained in the interval
[a, 8], where we may suppose that a < 0 < b. Then

((Inz_)a * (4)a]',8(2)) = =((Inz-)n * (24 )n, ¢'(2))
= —{((z2")n* (z4)ny8(z)) + ((Inz_7)(2)] * (% )n, 8(2))

and so

(22) ((z2")n#(24)n, 8(2)) = ((Inz-)n*(z5)n, ¢'(2)) + (In 27 (2)] # (24 )m, $(2)) -

The support of Inz_7)(z) is contained in the interval [-n — n™", —n| and so with
n > —a > n~", it follows as above that

(Inz_7p(z)) * (2% )n, 8())

b =T
= ¢@) [ n(-ym@)z - )iz - y) dy dz

(23) 3 /“ _, =) - In(—y)7a(¥)(z — y)!a(z —y) dy dz

—_——n—"

0@ [ o - v dy ds

‘[fq¢@>/ In(~y)Ta(y)(z — y)* dy dz ,

J—n—n—-"
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where on the domain of integration In(—y) and (z—y)* are locally summable functions.
It is easily seen that

s

[ @ e - vt - ) dy de

J-n-n-n

0 -n
[ s@f m-um)e - dyde

—=nHe -n—-n-

=O0(n*""Inn)
and it follows that

dm [0 6@ [ e - urale - v) dy ds
(24) -n-" —-n—-n-"

[ s [ -y -y dydz=0.

= lim
n—oo J_,-n —n—n-n

Integrating by parts, it follows that

I T (- )z - )" dy = (2 + n)* lnn
(25) e

[ e -0 () = 0 ) dy

Choosing an integer r > u, we have

M = = (ﬂ}i-r' p=-t - (ﬂ)lz' =i
(z +n) lnn—ZTn lnn+2——-—il n**lnn
! vl

=0
and it follows that

(26) N -lim(z +n)*lnn=0.

n—oo

Further,

[ - y)* + uln(—y)(z - 1) ra(v) dy| = O(n*~"*nn)

J—n—n-n

(27)

and it follows from equations (25), (26) and (27) that

@)  Noim [ s@ [ -y - dyde =0

and then from equations (23), (24) and (28) that

(29) (lnz_rp(z)] * (24 )n, #(2)) = 0.
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It now follows from equations (22) and (29) that
N = lim((z2")n * (%)a, 8(2) = N = lim{(Inz_)a * (% )n, ¢'(2))
= (lnz_[¢|z%,¢'(2)) .

This proves that the neutrix convolution product z~* [« |z exists and

! EII:- =—(lnz_ E|1-i]’ =rilnzy — [y +¥(—p-1)z4

as above for pu # 0,+1,+2,... . Equation (21) is therefore proved for case r = 1.
Now assume that equation (21) holds for some positive integer r. Then it follows
as above that

((ZN)n * (4 )n]', (2)) = r{(zZ7"")n = (2% )n, b(2))

(30)
(30) + ([z277h(2)] * (24 )ny B(2)) -

It follows as above that
N —lim([zZ"7o(2)] * (% )n, 6(2)) =
and so
N —limr((227"")n # (24 )n, (2)) = =N = im((zZ)n * (25 )n, ¢'(2))
—(zZ"[le%, ¢'(2)
by our assumption. Thus 2"~ [ |z} exists and
22 Bl = e
(“” Wt (b 1)t T Inzy — (u =+ D+ (g + D)
= Q:T)' 4 Inzy — [y +(—p+r)zi77)
Equation (21) now follows by induction for p # 0,+1,42,... andr =1,2,... .

Corollary . The neutriz convolution products =" [« |z and ™" [+ ||z|* ezist
and

T e _ D) oot pr iy

1
(31) r—1) +
_(W)ramcot px ) 1u—r41
(32) T ) PR
(#)r_ymcotun =+l
———(:_—lﬁ—sgn:t |2| , oddr

for pu#0,£1,£2,... and r=1,2,... .



Some Results on the Commutative Neutrix Convolution ... 115

Proof. The convolution product 2" * z exists by Gel’fand and Shilov’s defi-
nition and it is easily proved that

g ek — (_l)r—l(l‘)r—l
+ 5=

= x;r E[I:',.

Since z7" = z" + (—1)"z_", we have

T [eleh =2 [Eleh + (1) 22 [ ]2k

{zi_'“ Inzy —[y+9(p—-r+ 2)]:1"“}

i %“’"" —r+2) = Y(=p+r - AT
(_l)r—l(l‘)r—l cot U, _r4y
! (r-1)! T+

since ¢(p —r +2) —¥)(—~p+r — 1) = —cot(u — r)m = —cot pun. This proves equation
(31).

Equation (32) follows from equation (31) on noting that |z|* = z% + z* and
sgnz.|z| =zh — 2",

Acknowledgment
The first author wishes to thank University of Hacettepe (Turkey) for their fi-
nancial support.

REFERENCES

(1) Corput, J.G., van der, Introduction to the neutriz calculus , J. Analyse Math. 7 (1959-60),
291-398.

[2] Fisher,B.and Y. Kuribayashi, Neutrices and the Beta function , Rostock. Math. Kolloq.
32 (1987), 56-66. p

[3) Fisher,B.and LiChen K uan, A commutative neutriz convolution product of distributions,
Univ. u Novom Sadu Zb. Rad. Prorod.-Mat. Fak. Ser. Mat., (to appear).

(4] Fisher, B. and E. Ozgag, A result on the commutative neutriz convolution product of dis-
tributions , Doga Mat. 16 (1992), 33-45.

() Fisher, B. and E. (')zq ag, Results on the commutative neutriz convolution product of distri-
butions , submitted.

[6] Gel'fand, .M. and G.E. Shilov, Generalized functions , Vol. I, Academic Press (1964).

[7) Jones, D.S., The convolution of generalized functions , Quart. J. Math. Oxford Ser. (2) 24
(1973), 145-163.

Department of Mathematics, The University, (received May 18, 1992)
Leicester, LE1 7RH, England



