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Abstract. Let f, g be distributions in T? and let/„(l) = f(x)r„(x),gn(x) = g(x)rn(x), 
where Tn(a:) is a certain function which converges to the identity function as Tl tends to infinity. 
Then the commutative neutrix convolution product f [*~|<7 is defined as the neutrix limit of the 
sequence {/„ * jin}, provided the limit exists. The neutrix convolution product In is
evaluated for fi = 0, ±1, ±2,... , from which other neutrix convolution products are deduced.
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In the following, we let P be the space of infinitely differentiable functions with 
compact support and let V be the space of distributions defined on P. The following 
definition for the convolution product of certain distributions f and g in V, was given 
by Gel’fand and Shilov [6].

Definition 1. Let f and g be distributions in P' satisfying either of the 
following conditions:
(a) either f or g has bounded support,
(b) the supports of / and g axe bounded on the same side. Then the convolution 

product f * g is defined by

((/ * ?)(*), <t>) = </>(x + y)))

for arbitrary </> in T>.
It follows that if the convolution product f * g exists by Definition 1, then

(1) f*9 = 9*f,
(2) (/*?)' = /*<?' = /'*<?•

Definition 1 is very restrictive and can only be used for a small class of distribu­
tions. In order to extend the convolution product to a larger class of distributions, 
Jones [7] gave the following definition.
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Definition 2. Let f and g be distributions and let r be an infinitely differen­
tiable function satisfying the following conditions:
(i) r(x) = r(-i) ,

(ii) 0 < t(x) < I ,
(iii) t(x) = 1 for |x| < 1/2 ,
(iv) r(x) = 0 for |i| > 1 .

Let
fn(x) = f(x)r(x/n) , gn(x) = g(x)T(x/n)

for n = 1,2,... . Then the convolution product f * g is defined as the limit of the 
sequence {/„ *</„}, provided the limit h exists in the sense that

lim (/„ *gn,<t>) = (M)

for all test functions <j> in T>.

In this definition the convolution product f„ * gn exists by Definition 1 since /„ 
and gn have bounded supports. It follows that if the limit of the sequence {/„♦<)»} 
exists, so that the convolution product f *g exists, then g* f also exists and equation 
(1) holds. However equation (2) need not necessarily hold since Jones proved that

1 * sgn x = sgn x * 1 = x ,

(1 * sgn x)'= 1, 1' * sgn x = 0, 1 * (sgn x)' = 2.

It can be proved that if a convolution product exists by Definition 1, then it 
exists by Definition 2 and defines the same distribution.

However, there were still many convolution products which did not exist by 
Definition 2 and in order that further convolution products could be defined the next 
definition was introduced in [3].

Definition 3. Let f and g be distributions and let

|x| < n , 

x > n , 
x < -n ,

for n = 1,2,... , where t is defined as in Definition 3. Let /„(z) = /(x)r„(x) and 
3„(x) = 5f(z)r„(a;) for n = 1,2,... . Then the commutative neutrix convolution 
product f is defined as the neutrix limit of the sequence {/„ *<?«}, provided the 
limit h exists in the sense that

N - lim (/„ * gn, <t>) = (h, <j>)
n—»00

for all <f> in T>, where N is the neutrix, see van der Corput [1], having domain N' = 
{1,2,... , n,...} and range the real numbers with negligible functions finite linear 
sums of the functions

nA lnr 1 n, lnr n, (A > 0 ; r = 1,2,...)
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and all functions e(n) for which lim„_oo e(n) = 0.

The convolution product f„ *gn in this definition is again in the sense of Definition 
1, the support of f„ being contained in the interval [—n —n-n, n + n-"]. It was proved 
in [3] that if a convolution product exists by Definition 1, then the commutative 
neutrix convolution product exists and defines the same distribution.

The following theorems were proved in [3] and [4] respectively.

Theorem 1. The neutrix convolution product [*^|z+ exists and 

xx_ 04 = fl(-A - /x - 1, M + l)i*+*+1 + B(-A - p - 1, A + 1)4+m+1,

for A, fi, A + 0, ±1, ±2,... , where B denotes the Beta function.

Theorem 2. The neutrix convolution product x\ [*Jz+ A ezwts and 

x- = B(—r - l,r + 1 - A)iL+1 + B(-r - 1, A + 1)®;+1 +
( 1)F(-Mr+1 r+l

In |x| ,+
(r + 1)!

for A 0,±1,±2,... and r = —1,0,1,2,... .

In this theorem, B again denotes the Beta function but is defined as in [2] by 

B(X,n) = N — lim/ <A-,(1 -t)**-1 dt .
T.-.OO J1/n

In the following we are going to consider the commutative neutrix convolutions 
products xZr0x(J. and x+rQx?l, where z+r is defined by

and zZr is defined by x~r = (—z)+r, but first of all we prove

Theorem 3. The commutative neutrix convolution product lnz_ [*Jx+ exists

„m+i
(3) In x- Flzii = —— In x+ + 

C-r+ M + 1
7 + V»(-Ax- 1)

M + l +

for p. 0,±l,±2,... , where y denotes Euler’s constant, i/’ = T'/T and T denotes 
the Gamma function.

Proof. We will first of all suppose that n > — 1 and /j / 0,1,2,... so that zJJ. is 
locally summable function. Put

(x+)n = x+t„(z) , (Inz_)„= Inz_t„(z) .
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Then the convolution product (lnx_)„ * (x+)n exists by Definition 1 and

((lnx_)„ *«)„ = ((lnt/_)„,((x£)n,4>(x +y)))

= / M-l/kniy) / (x - y)$rn(x - dx dy
J—n—n~n Ja

(4) yi> yO
= / <K*) ln(-y)(x - y)$r„(x - y) dy dx 

J a J—n

+ i <t>(x) i ln(—y)rn(j/)(x - y)^T„(x - y) dy dx
Ja J — n—n~n

for n > — a and arbitrary </> in T> with support of </> contained in the interval [a, 6]. 
When x < 0 and —n < y < 0, r„(x — y) = 1 on the support of <f>. Thus with

x < 0 and — n < y < X), we have on making the substitution y = xu~l

i H~y)(x - y)^.T„(x - y) dy = i \n(-y)(x - y^ dy 
J—n J—n

= (—x)M+1 ln(— x) i u-,,-2(l — ti)M du 
J—z/n

-(-x)^1 [ u_'*"2lnu(l -u)** du
J—z/n

= An — An •

Choosing an integer r > ^ + 1 we have

C u-*‘_3(l-u)* ,du = f u"""2 (1-«)**- 
J-z/n J-z/n i=Q l-

du

where
1,
i-1

>=0
and it follows that

(5) N - lim An = B(-m - l,p + l)(-x)*+1 ln(-x) = 0
n—*00

see [6]. Further,

{' u-*‘-2lnu(l-u)*‘du= [' u-"-2lnu (1 - < - du
J-t/n J-t/n ’•

~ E K’ " M-x/n) + 1 - (—x/n)'-*'-*]
1=0 l,',i '
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and it follows that

N - lim I2n = - 1,M + ,

where

- 1,M + 1) = + 1) = 0,
JA=-m-1

N — lim I2n = 0
n—*oo

see [2], Thus

(6)

and it follows from equations (5) and (6) that

(7) N- lim t ln(-y)(x - y)+r„(x - y)dy = 0 .
n~OO

When x > 0 and — n < y < 0 we have

i \n(-y)(x - y)$Tn(x - y) dy = i ln(-y)(x - j,)'* dy 
J—n Jx—n

n-n
+ / ln(—y)(x - y^T^x - y) dy.Jx—n—n“n

Making the substitution y = x(l — u_1), we have

[ ln(—y)(x — y)M dy = xM+1 lnx i u-**-2 du 
Jx—n Jx/n

+ x'*"r' f u-**-2 ln(l — u) du — x**+1 i u“**_2lnudu 
Jx/n Jx/n

c"+1

= lin + An — An .

We have

and it follows that

(8)

f' u---2du = —l-[l-(n/x)»‘+1] 
Jx/n M + 1

N — lim An = -

Making the substitution u = 1 — v, we have 

fl—x/n

xM+1 In x 

M + l

J x/n

M 2 ln(l — u) du = i 
Jo

1—x/n

lnu(l — v) M 2 du

dv
(-1)^ + 2^

(-ir(M+2).+z
i=0

(1 — x/n),+1 ln(l — x/n) (1 — x/n),+ 1
7+1 (« + l)2

Jo L i=0 ‘
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where r is chosen greater than p + 1. It follows that

N — lim i u **'
Jz/n

! ln(l — u) du =

J* L l! h
(-l)’(p + 2)i

t!(t +1)2

Thus

0)

= B10(l,-/i-l) .

N — lim /4„ = B(l, —/j — l)x*+1 .

Next we have

[' -«-2i j (n/i)**+,[lni - Inn] 1 , +,
7,/? ---------- 7+1--------------iTn?11’*1 1

and it follows that

(10) TV - limAn =
,m+i

—— (p + l)2

Now it is easily proved that

-7-V>(1 + m)Sio(l,/t) = , M + ^(p) = + 1)

„ „ ,S , , , ,x-2 7+V»(-M-l)
Bio(l, -p - 1) + (p + 1) - ——

and so

(11)

Thus, on using equations (8), (9), (10) and (11)

x*l+1 In i 

M + l

f0(12) TV — lim / ln(— y)(x — y)1* dy
Jz-n

Further, with n > x > n~n

+
7 +V>(-p - 1)

P + l

and so

(13)

„M+l

Z ln(—j/)(i - y),,T„(x - y) dy < i yl‘ln(y-x)dy
l«/x—n—n”n I J n

= O(n''~" Inn) ,

lim i
n~*°°Jz—r

ln(—t/)(x - y^Tn^x — y) dy = 0 .
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(14)

It now follows from equations (7), (12) and (13) that

N - lim / ln(-y)(x - y)+r„(x - y) dy 
n—oo

7 + V»(—A* — 1) ,*+ix+ lnx+ 
M + l

+ +
M + l

Next, with — In < a < x < b < In, we have

/ ln(—v)rn(j/)(x - y)*‘T„(x - y) dy < / ln(-j/)(x - y)* dy
\J—n—n~n I J—n—n~n

= O(n"-n)

and so

(15) lim f ln(—y)(x - y^Tn^T^x -y) dy = 0 .
n^°° J-n-n-"

It now follows from equations (4), (7), (14) and (15) that

N - lim((lnx_)„ * (xij.)„,<£(x)) 
n—*oo

= (p + I)-1 (-x£+1 In x+ + [7 + - l)]x++1, ¿(x))

and equation (3) follows for n > — 1 and /x / 0,1,2,... .
Now assume that equation (3) holds for — k < /x < — fc+1, where k is some positive

integer. This is certainly true when fe = 1. The convolution product (lnx_)„ * (x(J. )„ 
exists by Definition 1 and so equations (1) and (2) hold. Thus if <j> is an arbitrary 
function in V with support contained in the interval [a, 6], where we may suppose 
that a <0 < b,

([(lnx_)„ *(x'[)n]',<t>(x)) = —((lnx_)„ *(*+)„,<£'(x))

= /x((lnx_)„ *(xi{~1)n,«£(x))

+ ((lnx-)„*[x^<(x)],«/.(x))

and so

(16) M((ln®-)„ *«_1)»’^(a;)> = -((lna:-)n*«)n,^'(x))

- ((lnx_)„ * [x^<(x)],^(x)) .

The support of xif.r^(x) is contained in the interval [n,n + n-n] and so with 
n > b > n-n, it follows as above that

((lnx_)„ * [i+<(x)],^(x)) = i <t>(x) t 
J a J n

y11^^ ~ x)r„(x - y) dy dx
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where on domain of integration y1* and ln(y — x) are locally summable functions. It 
is easily seen that

y^r'^y) ln(t/ - x)rn(x - y) dy dx O^n11 Inn)

and so

(17) lim ((lnx_)„ * (at+<(i)],^(x)) = 0 ,
n—»00

since n <0.
It now follows from equations (16) and (17) that 

N - lim p((lnx_)„ * (xij.-1)„,^>(x)) =-N - lim((lnx_)„ * (x^)n,<t>'(x))
n —»00 n—»oo

= —(lnx_ 0x+,^'(x))

by our assumption. This proves that the neutrix convolution product lnx_[*]xij._1 
exists and

lns_ = p-1[lnx_ BO'
= lns+ - (m + 1)-1O + (7 + W-P ~ 1)]*+}

= p_I{—x+lnx+ + + - l)]x£}

since V>(-p - 1) - (m + l)-1 = ’/’(-/t) •
Equation (3) now follows by induction for p 0, ±1, ±2,.... This completes the 

proof of the theorem.

Corollary . The 
ln|x|Blxl'i exist and

(18)

(19)

(20)

for /1 / 0,±1,±2,... .

neutrix convolution products ln|x| BO’0X- an^

Proof. The convolution product lnx+ * xij. exists by Gel’fand and Shilov’s 
definition and it is easily proved that

M+llnx+ * xif. = (p + 1) 1xif+ lnx+ + -Bio(l, M + 1)0 

7 + V’(p + 2)
M + l

= (p + l)-1x++1 lnx+ -
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Since the neutrix convolution product is clearly distributive with respect to ad­
dition, it follows that

lnx_ 0|x£ + lnx+ * xif. = + u+i
T /x -I-1

7T COt fj.1t „ + i 
P + 2 +

since it can be easily proved that

p — 1) — V’iP + 2) = 7T cot p7r .

This proves equation (18).
Replacing x by —x in equation (18) gives equation (19) and equation (20) follows 

on noting that |a:|M = x+ + xf..

Theorem 4. The neutrix convolution product x_r [0hc+ exists and

(21) x-J = ^L{<-r+1 lnx+ - [7 + ^(-P + r + lK*1} 

for p / 0,±1,±2,... and r= 1,2,... .

Proof. Let </> be an arbitrary function in T> with support contained in the interval 
[a, 6], where we may suppose that a < 0 < b; Then

([(lnx_)„ * (*+)„]',<£(*)) = — ((lnx_)„ * (xij.)„,<^'(x)>

= -(«*)» * «)»,<£(*)) + ([lnx_<(x)] * (x£

and so

(22) ((xZ1)„*(x!i.)„,^(x)) = ((lnx_)„*(xi{.)„,^'(x)) + ([lnx_<(x)]*(xij.)n,^(x)) .

The support of lnx_T^(x) is contained in the interval [—n — n~n,— n] and so with 
n > —a > n~n, it follows as above that

([lnx_<(x)]*(xij.)„,^(x))

= / <ttx) / ln(-y)rn(y)(x - y^T^x - y) dy dx
J a J — n—n~n

(23) =y _ _ ln(-y)<(y)(x - y)Mrn(x - y) dy dx

+ / <KX) i ln(-i/)<(y)(x - y)M dy dx
Ja J —n—n~n

- i <KX) t ^-y)T'n(y)(x - vY* dv dx ,

J—n~n J—n—n~n
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where on the domain of integration ln(—y) and (x—y )*' are locally summable functions. 
It is easily seen that

_ —n _ n

/ <KX) / ln(—y)T^(y)(x - y^r^x - y) dy dx
J—n~n J —n—n~n

= I i ¿(*) f M-l/knCvXiC - SZ)M dy dx
\J — n"n J — n—r»”n

= O(n*‘"nlnn)

and it follows that

(24)

lim / <f>(x) / ln(-j/)<(t/)(x - y)*‘r„(x - y) dy dx
n_"°° J — n“n J-n-n~n

(25)

= lim i <t>(x) [ ln(—y)r^(y)(x - y)** dy dx = 0 .
—n"" 7-n-n“"

Integrating by parts, it follows that

i ln(-y)<(y)(x - y)M dy = (x + n)M Inn
J—n—n-n

+ f [sz_1(* - Iz)M + /xln(-y)(x - y)**-1]fn(y) dy . 
J—n—n~n

Choosing an integer r > /i, we have

r-l (/i)»1’(x + n)M In n = *lnn + 52 ’lnn
i=0

and it follows that

(26)

Further,

(27)

N - lim(x + n)M In n = 0 .

\t llZ 1(x-y)*‘ + /iln(-y)(x-y)'* ‘My) dy

I J—n—n_n

and it follows from equations (25), (26) and (27) that

(28) N - lim f <t>(x) i ln(-y)r),(y)(x - y)M dy dx = 0
n—*oo Ja J _n_n-n

and then from equations (23), (24) and (28) that

(29) <[lnx_<(x)] *(x+)n,<£(*)) = 0 .

= O(n**-n_1 Inn)



114 E. Oz^ag, B. Fisher

It now follows from equations (22) and (29) that

N - lim((zZ1)n * (z+)n,<^(x)) = N - lim((lnz_)„ * (z+)„,<^'(z))
n—»00 n—»00

= (lnz_ 0z+,<^'(z)) .

This proves that the neutrix convolution product zZ1 0z+ exists and

zZ1 0x+ = -[Inz- 0x+]' = x+ lnz+ - [7 + V’i-A' - l)]x+

as above for p 0, ±1, ±2,.... Equation (21) is therefore proved for case r = 1. 
Now assume that equation (21) holds for some positive integer r. Then it follows

as above that

1301 ([(l=r)" * = ’•ft*-'"1)» *

+ ([<r^(*)]*(s+)n,^(*)) •

It follows as above that

N - lim([zZr<(z)] * (x+)„,«£(x)) = 0 n—»oo

and so

N - limr((zZr-1)n * (*£)„, ¿(z)> =-N - lim((zZr)„ * (<W'(z))
n—»oo n—»oo

= -(xZr0|x+,4>'(x))

by our assumption. Thus x_r 1 0|x+ exists and

= ^’t"1 Kl* ~r + l)x+~rlnx+ -(/i-r + l)[7 + V’(-M + ’’ + l)]x+_r} 

= ^p{z£_r In z+ - [7 +V’(-M + r)]a;+_r} •

Equation (21) now follows by induction for p. 0, ±1, ±2,... and r = 1,2,... . 

Corollary . The neutrix convolution products x~r 0x+ and x~r [0||x:|M exist

(31)
,-rfTlr* - (~1)r ‘Wr-l^COtpff +1 
x l*-Fc+- (r_i)l *+

(32) X r0||z|'*
(y), i^-r+i

(r-1)!I1! ’

cot uir
(r^ sgn 1

even r ,

odd r

/or p 0, ±1, ±2,... and r = 1,2,... .
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Proof. The convolution product x+r * xij. exists by Gel’fand and Shilov’s defi­
nition and it is easily proved that

< = (~1()rr?iP)?r~l{<r+1 ln x+ - h+v>(p - r+2)]xrr+1}

Since x~r = x+r + (—l)TxZr, we have

x_r 0x* = x;r 0x$. + (-l)rxZr 0xij.

= (~(1r)-l)!~1 r + 2) - + r - l)]x^r+1

_ (~l)r~1(p)r-l COt/lTT M_r+i

(r-1)! +

since - r + 2) - + r - 1) = - cot(/z -r)n = - cot fiir. This proves equation
(31).

Equation (32) follows from equation (31) on noting that |x|M = xj? + x* and 
sgnx.|x|** = i+ - x*.
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