LUBLIN-POLONIA

Emin ÖZÇĀ̄ and Brian FISHER (Leicester)

Some Results on the Commutative Neutrix Convolution Product of Distributions

Abstract

Let f, g be distributions in \mathcal{D}^{\prime} and let $f_{n}(x)=f(x) \tau_{n}(x), g_{n}(x)=g(x) \tau_{n}(x)$, where $\tau_{n}(x)$ is a certain function which converges to the identity function as n tends to infinity. Then the commutative neutrix convolution product f 冨 g is defined as the neutrix limit of the sequence $\left\{f_{n} * g_{n}\right\}$, provided the limit exists. The neutrix convolution product $\ln x-* x_{+}^{\mu}$ is evaluated for $\mu=0, \pm 1, \pm 2, \ldots$, from which other neutrix convolution products are deduced.

Keywords: distribution, neutrix, neutrix limit, commutative neutrix convolution product.

Classification: 46F10.
In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}^{\prime} be the space of distributions defined on \mathcal{D}. The following definition for the convolution product of certain distributions f and g in \mathcal{D}^{\prime}, was given by Gel'fand and Shilov [6].

Definition 1. Let f and g be distributions in \mathcal{D}^{\prime} satisfying either of the following conditions:
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side. Then the convolution product $f * g$ is defined by

$$
\langle(f * g)(x), \phi\rangle=\langle f(y),\langle g(x), \phi(x+y)\rangle\rangle
$$

for arbitrary ϕ in \mathcal{D}.
It follows that if the convolution product $f * g$ exists by Definition 1 , then

$$
\begin{gather*}
f * g=g * f, \tag{1}\\
(f * g)^{\prime}=f * g^{\prime}=f^{\prime} * g . \tag{2}
\end{gather*}
$$

Definition 1 is very restrictive and can only be used for a small class of distributions. In order to extend the convolution product to a larger class of distributions, Jones [7] gave the following definition.

Definition 2. Let f and g be distributions and let τ be an infinitely differentiable function satisfying the following conditions:
(i) $\tau(x)=\tau(-x)$,
(ii) $0 \leq \tau(x) \leq 1$,
(iii) $\tau(x)=1$ for $|x| \leq 1 / 2$,
(iv) $\quad \tau(x)=0$ for $|x| \geq 1$.

Let

$$
f_{n}(x)=f(x) \tau(x / n), \quad g_{n}(x)=g(x) \tau(x / n)
$$

for $n=1,2, \ldots$. Then the convolution product $f * g$ is defined as the limit of the sequence $\left\{f_{n} * g_{n}\right\}$, provided the limit h exists in the sense that

$$
\lim _{n \rightarrow \infty}\left\langle f_{n} * g_{n}, \phi\right\rangle=\langle h, \phi\rangle
$$

for all test functions ϕ in \mathcal{D}.
In this definition the convolution product $f_{n} * g_{n}$ exists by Definition 1 since f_{n} and g_{n} have bounded supports. It follows that if the limit of the sequence $\left\{f_{n} * g_{n}\right\}$ exists, so that the convolution product $f * g$ exists, then $g * f$ also exists and equation (1) holds. However equation (2) need not necessarily hold since Jones proved that

$$
\begin{gathered}
1 * \operatorname{sgn} x=\operatorname{sgn} x * 1=x \\
(1 * \operatorname{sgn} x)^{\prime}=1, \quad 1^{\prime} * \operatorname{sgn} x=0, \quad 1 *(\operatorname{sgn} x)^{\prime}=2
\end{gathered}
$$

It can be proved that if a convolution product exists by Definition 1, then it exists by Definition 2 and defines the same distribution.

However, there were still many convolution products which did not exist by Definition 2 and in order that further convolution products could be defined the next definition was introduced in [3].

Definition 3. Let f and g be distributions and let

$$
\tau_{n}(x)= \begin{cases}1, & |x| \leq n \\ \tau\left(n^{n} x-n^{n+1}\right), & x>n \\ \tau\left(n^{n} x+n^{n+1}\right), & x<-n\end{cases}
$$

for $n=1,2, \ldots$, where τ is defined as in Definition 3. Let $f_{n}(x)=f(x) \tau_{n}(x)$ and $g_{n}(x)=g(x) \tau_{n}(x)$ for $n=1,2, \ldots$. Then the commutative neutrix convolution product f 雨 $\mid g$ is defined as the neutrix limit of the sequence $\left\{f_{n} * g_{n}\right\}$, provided the limit h exists in the sense that

$$
N-\lim _{n \rightarrow \infty}\left\langle f_{n} * g_{n}, \phi\right\rangle=\langle h, \phi\rangle
$$

for all ϕ in \mathcal{D}, where N is the neutrix, see van der Corput [1], having domain $N^{\prime}=$ $\{1,2, \ldots, n, \ldots\}$ and range the real numbers with negligible functions finite linear sums of the functions

$$
n^{\lambda} \ln ^{r-1} n, \quad \ln ^{r} n, \quad(\lambda>0 ; r=1,2, \ldots)
$$

and all functions $\epsilon(n)$ for which $\lim _{n \rightarrow \infty} \epsilon(n)=0$.
The convolution product $f_{n} * g_{n}$ in this definition is again in the sense of Definition 1 , the support of f_{n} being contained in the interval $\left[-n-n^{-n}, n+n^{-n}\right]$. It was proved in [3] that if a convolution product exists by Definition 1, then the commutative neutrix convolution product exists and defines the same distribution.

The following theorems were proved in [3] and [4] respectively.
Theorem 1. The neutrix convolution product $x_{-}^{\lambda}{ }_{{ }_{*}^{*}} \mid x_{+}^{\mu}$ exists and

$$
x_{-}^{\lambda}{ }^{+} \mid x_{+}^{\mu}=B(-\lambda-\mu-1, \mu+1) x_{-}^{\lambda+\mu+1}+B(-\lambda-\mu-1, \lambda+1) x_{+}^{\lambda+\mu+1} \text {, }
$$

for $\lambda, \mu, \lambda+\mu \neq 0, \pm 1, \pm 2, \ldots$, where B denotes the Beta function.

Theorem 2. The neutrix convolution product $x_{-}^{\lambda}{ }_{-}^{*} \mid x_{+}^{r-\lambda}$ exists and

$$
\begin{aligned}
x_{-}^{\lambda} \mathbb{E}^{r} \mid x_{+}^{r-\lambda} & =B(-r-1, r+1-\lambda) x_{-}^{r+1}+B(-r-1, \lambda+1) x_{+}^{r+1}+ \\
& +\frac{(-1)^{r}(\lambda)_{r+1}}{(r+1)!} x^{r+1} \ln |x|
\end{aligned}
$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $r=-1,0,1,2, \ldots$.

In this theorem, B again denotes the Beta function but is defined as in [2] by

$$
B(\lambda, \mu)=N-\lim _{n \rightarrow \infty} \int_{1 / n}^{1-1 / n} t^{\lambda-1}(1-t)^{\mu-1} d t
$$

In the following we are going to consider the commutative neutrix convolutions products $x_{-}^{-r}{ }^{*} \mid x_{+}^{\mu}$ and $x_{+}^{-r}{ }^{*} \mid x_{-}^{\mu}$, where x_{+}^{-r} is defined by

$$
x_{+}^{-r}=\frac{(-1)^{r-1}}{(r-1)!}\left(\ln x_{+}\right)^{(r)}
$$

and x_{-}^{-r} is defined by $x_{-}^{-r}=(-x)_{+}^{-r}$, but first of all we prove
Theorem 3. The commutative neutrix convolution product $\ln x_{-}\left[_{-}^{-} \mid x_{+}^{\mu}\right.$ exists and

$$
\begin{equation*}
\ln x_{-}{ }^{*} \left\lvert\, x_{+}^{\mu}=-\frac{x_{+}^{\mu+1}}{\mu+1} \ln x_{+}+\frac{\gamma+\psi(-\mu-1)}{\mu+1} x_{+}^{\mu+1}\right. \tag{3}
\end{equation*}
$$

for $\mu \neq 0, \pm 1, \pm 2, \ldots$, where γ denotes Euler's constant, $\psi=\Gamma^{\prime} / \Gamma$ and Γ denotes the Gamma function.

Proof. We will first of all suppose that $\mu>-1$ and $\mu \neq 0,1,2, \ldots$ so that x_{+}^{μ} is locally summable function. Put

$$
\left(x_{+}^{\mu}\right)_{n}=x_{+}^{\mu} \tau_{n}(x), \quad\left(\ln x_{-}\right)_{n}=\ln x_{-} \tau_{n}(x) .
$$

Then the convolution product $\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}$ exists by Definition 1 and

$$
\begin{aligned}
\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}\right. & =\left\langle\left(\ln y_{-}\right)_{n},\left(\left(x_{+}^{\mu}\right)_{n}, \phi(x+y)\right)\right\rangle \\
& =\int_{-n-n^{-n}}^{0} \ln (-y) \tau_{n}(y) \int_{a}^{b}(x-y)_{+}^{\mu} \tau_{n}(x-y) \phi(x) d x d y \\
& =\int_{a}^{b} \phi(x) \int_{-n}^{0} \ln (-y)(x-y)_{+}^{\mu} \tau_{n}(x-y) d y d x \\
& +\int_{a}^{b} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}(y)(x-y)_{+}^{\mu} \tau_{n}(x-y) d y d x
\end{aligned}
$$

for $n>-a$ and arbitrary ϕ in \mathcal{D} with support of ϕ contained in the interval $[a, b]$.
When $x<0$ and $-n \leq y \leq 0, \tau_{n}(x-y)=1$ on the support of ϕ. Thus with $x<0$ and $-n \leq y \leq 0$, we have on making the substitution $y=x u^{-1}$

$$
\begin{aligned}
& \int_{-n}^{0} \ln (-y)(x-y)_{+}^{\mu} \tau_{n}(x-y) d y=\int_{-n}^{x} \ln (-y)(x-y)^{\mu} d y \\
&=(-x)^{\mu+1} \ln (-x) \int_{-x / n}^{1} u^{-\mu-2}(1-u)^{\mu} d u \\
&-(-x)^{\mu+1} \int_{-x / n}^{1} u^{-\mu-2} \ln u(1-u)^{\mu} d u \\
&=I_{1 n}-I_{2 n}
\end{aligned}
$$

Choosing an integer $r>\mu+1$ we have

$$
\begin{aligned}
\int_{-x / n}^{1} u^{-\mu-2}(1-u)^{\mu}, d u & =\int_{-x / n}^{1} u^{-\mu-2}\left[(1-u)^{\mu}-\sum_{i=0}^{r} \frac{(-1)^{i}(\mu)_{i}}{i!} u^{i}\right] d u \\
& +\sum_{i=0}^{r} \frac{(-1)^{i}(\mu)_{i}}{i!(i-\mu-1)}\left[1-(-x / n)^{i-\mu-1}\right]
\end{aligned}
$$

where

$$
(\mu)_{i}= \begin{cases}1, & i=0 \\ \prod_{j=0}^{i-1}(\mu-j), & i \geq 1\end{cases}
$$

and it follows that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim _{1 n}=B(-\mu-1, \mu+1)(-x)^{\mu+1} \ln (-x)=0 \tag{5}
\end{equation*}
$$

see [6]. Further,

$$
\begin{aligned}
& \int_{-x / n}^{1} u^{-\mu-2} \ln u(1-u)^{\mu} d u=\int_{-x / n}^{1} u^{-\mu-2} \ln u\left[(1-u)^{\mu}-\sum_{i=0}^{r} \frac{(-1)^{i}(\mu)_{i}}{i!} u^{i}\right] d u \\
& \quad-\sum_{i=0}^{r} \frac{(-1)^{i}(\mu)_{i}}{i!(i-\mu-1)^{2}}\left[(i-\mu-1)(-x / n)^{i-\mu-1} \ln (-x / n)+1-(-x / n)^{i-\mu-1}\right]
\end{aligned}
$$

and it follows that

$$
\underset{n \rightarrow \infty}{N-\lim _{2 n}} I_{2 n}=B_{10}(-\mu-1, \mu+1)(-x)^{\mu+1}
$$

where

$$
\left.B_{10}(-\mu-1, \mu+1)=\frac{\partial}{\partial \lambda} B(\lambda, \mu+1)\right\rfloor_{\lambda=-\mu-1}=0
$$

see [2]. Thus

$$
\begin{equation*}
N-\lim _{n \rightarrow \infty} I_{2 n}=0 \tag{6}
\end{equation*}
$$

and it follows from equations (5) and (6) that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim _{-n} \int_{-n}^{0} \ln (-y)(x-y)_{+}^{\mu} \tau_{n}(x-y) d y=0 \tag{7}
\end{equation*}
$$

When $x>0$ and $-n \leq y \leq 0$ we have

$$
\begin{gathered}
\int_{-n}^{0} \ln (-y)(x-y)_{+}^{\mu} \tau_{n}(x-y) d y=\int_{x-n}^{0} \ln (-y)(x-y)^{\mu} d y \\
+\int_{J_{z-n-n^{-n}}^{z-n}} \ln (-y)(x-y)^{\mu} \tau_{n}(x-y) d y
\end{gathered}
$$

Making the substitution $y=x\left(1-u^{-1}\right)$, we have

$$
\begin{aligned}
& \int_{\int_{z-n}}^{0} \ln (-y)(x-y)^{\mu} d y=x^{\mu+1} \ln x \int_{z / n}^{1} u^{-\mu-2} d u \\
& + \\
& +x^{\mu+1} \int_{x / n}^{1} u^{-\mu-2} \ln (1-u) d u-x^{\mu+1} \int_{x / n}^{1} u^{-\mu-2} \ln u d u \\
& \\
& =I_{3 n}+I_{4 n}-I_{5 n} .
\end{aligned}
$$

We have

$$
\int_{x / n}^{1} u^{-\mu-2} d u=-\frac{1}{\mu+1}\left[1-(n / x)^{\mu+1}\right]
$$

and it follows that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim _{3 n}=-\frac{x^{\mu+1} \ln x}{\mu+1} . \tag{8}
\end{equation*}
$$

Making the substitution $u=1-v$, we have

$$
\begin{aligned}
\int_{x / n}^{1} & u^{-\mu-2} \ln (1-u) d u=\int_{0}^{1-x / n} \ln v(1-v)^{-\mu-2} d v \\
& =\int_{0}^{1-x / n} \ln v\left[(1-v)^{-\mu-2}-\sum_{i=0}^{r} \frac{(-1)^{i}(\mu+2)_{i}}{i!} v^{i}\right] d v \\
& +\sum_{i=0}^{r} \frac{(-1)^{i}(\mu+2)_{i}}{i!}\left[\frac{(1-x / n)^{i+1} \ln (1-x / n)}{i+1}-\frac{(1-x / n)^{i+1}}{(i+1)^{2}}\right]
\end{aligned}
$$

where r is chosen greater than $\mu+1$. It follows that

$$
\begin{gathered}
N_{n \rightarrow \infty}-\lim _{n=\infty} \int_{J_{1 n}}^{1} u^{-\mu-2} \ln (1-u) d u= \\
=\int_{0}^{1} \ln v\left[(1-v)^{-\mu-2}-\sum_{i=0}^{r} \frac{(-1)^{i}(\mu+2)_{i}}{i!} v^{i}\right] d v-\sum_{i=0}^{r} \frac{(-1)^{i}(\mu+2)_{i}}{i!(i+1)^{2}} \\
=B_{10}(1,-\mu-1) .
\end{gathered}
$$

Thus

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim I_{4 n}=B(1,-\mu-1) x^{\mu+1} \tag{9}
\end{equation*}
$$

Next we have

$$
\int_{x / n}^{1} u^{-\mu-2} \ln u d u=\frac{(n / x)^{\mu+1}[\ln x-\ln n]}{\mu+1}-\frac{1}{(\mu+1)^{2}}\left[1-(n / x)^{\mu+1}\right]
$$

and it follows that

$$
\begin{equation*}
N-\lim _{\bar{n} \rightarrow \infty} I_{5 n}=-\frac{x^{\mu+1}}{(\mu+1)^{2}} \tag{10}
\end{equation*}
$$

Now it is easily proved that

$$
B_{10}(1, \mu)=\frac{-\gamma-\psi(1+\mu)}{\mu}, \quad \mu^{-1}+\psi(\mu)=\psi(\mu+1)
$$

and so

$$
\begin{equation*}
B_{10}(1,-\mu-1)+(\mu+1)^{-2}=\frac{\gamma+\psi(-\mu-1)}{\mu+1} \tag{11}
\end{equation*}
$$

Thus, on using equations (8), (9), (10) and (11)

$$
\begin{equation*}
N_{n \rightarrow \infty} \lim _{x-n} \int_{0}^{0} \ln (-y)(x-y)^{\mu} d y=-\frac{x^{\mu+1} \ln x}{\mu+1}+\left[\frac{\gamma+\psi(-\mu-1)}{\mu+1}\right] x^{\mu+1} \tag{12}
\end{equation*}
$$

Further, with $n>x>n^{-n}$

$$
\begin{aligned}
\left|\int_{x-n-n^{-n}}^{x-n} \ln (-y)(x-y)^{\mu} \tau_{n}(x-y) d y\right| & \leq \int_{j_{n}}^{n+n^{-n}} y^{\mu} \ln (y-x) d y \\
& =O\left(n^{\mu-n} \ln n\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{x-n-n^{-n}}^{x-n} \ln (-y)(x-y)^{\mu} \tau_{n}(x-y) d y=0 \tag{13}
\end{equation*}
$$

It now follows from equations (7), (12) and (13) that

$$
\begin{align*}
& N_{n \rightarrow \infty}-\lim _{n} \int_{-n}^{0} \ln (-y)(x-y)_{+}^{\mu} \tau_{n}(x-y) d y \\
& \tag{14}\\
& \quad=-\frac{x_{+}^{\mu+1} \ln x_{+}}{\mu+1}++\left[\frac{\gamma+\psi(-\mu-1)}{\mu+1}\right] x_{+}^{\mu+1}
\end{align*}
$$

Next, with $-\frac{1}{2} n<a \leq x \leq b<\frac{1}{2} n$, we have

$$
\begin{aligned}
\left|\int_{j_{-n-n^{-n}}^{-n}}^{-n} \ln (-y) \tau_{n}(y)(x-y)^{\mu} \tau_{n}(x-y) d y\right| & \leq \int_{j_{-n-n^{-n}}^{n}}^{-n} \ln (-y)(x-y)^{\mu} d y \\
& =O\left(n^{\mu-n}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-n-n^{-n}}^{-n} \ln (-y)(x-y)^{\mu} \tau_{n}(y) \tau_{n}(x-y) d y=0 \tag{15}
\end{equation*}
$$

It now follows from equations (4), (7), (14) and (15) that

$$
\begin{aligned}
N_{n \rightarrow \infty}=\lim \left\langle\left(\ln x_{-}\right)_{n}\right. & \left.*\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle \\
& =(\mu+1)^{-1}\left(-x_{+}^{\mu+1} \ln x_{+}+[\gamma+\psi(-\mu-1)) x_{+}^{\mu+1}, \phi(x)\right\rangle
\end{aligned}
$$

and equation (3) follows for $\mu>-1$ and $\mu \neq 0,1,2, \ldots$.
Now assume that equation (3) holds for $-k<\mu<-k+1$, where k is some positive integer. This is certainly true when $k=1$. The convolution product $\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}$ exists by Definition 1 and so equations (1) and (2) hold. Thus if ϕ is an arbitrary function in \mathcal{D} with support contained in the interval $[a, b]$, where we may suppose that $a<0<b$,

$$
\begin{aligned}
\left\langle\left[\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}\right]^{\prime}, \phi(x)\right\rangle & =-\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle \\
& =\mu\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu-1}\right)_{n}, \phi(x)\right\rangle \\
& +\left\langle\left(\ln x_{-}\right)_{n} *\left[x_{+}^{\mu} \tau_{n}^{\prime}(x)\right], \phi(x)\right\rangle
\end{aligned}
$$

and so

$$
\begin{align*}
\mu\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu-1}\right)_{n}, \phi(x)\right\rangle & =-\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle \tag{16}\\
& -\left\langle\left(\ln x_{-}\right)_{n} *\left[x_{+}^{\mu} \tau_{n}^{\prime}(x)\right], \phi(x)\right\rangle .
\end{align*}
$$

The support of $x_{+}^{\mu} \tau_{n}^{\prime}(x)$ is contained in the interval $\left[n, n+n^{-n}\right]$ and so with $n>b>n^{-n}$, it follows as above that

$$
\left\langle\left(\ln x_{-}\right)_{n} *\left[x_{+}^{\mu} \tau_{n}^{\prime}(x)\right], \phi(x)\right\rangle=\int_{j_{a}}^{b} \phi(x) \int_{j_{n}}^{n+n^{-n}} y^{\mu} \tau_{n}^{\prime}(y) \ln (y-x) \tau_{n}(x-y) d y d x
$$

where on domain of integration y^{μ} and $\ln (y-x)$ are locally summable functions．It is easily seen that

$$
\left|\int_{a}^{b} \phi(x) \int_{n}^{n+n^{-n}} y^{\mu} \tau_{n}^{\prime}(y) \ln (y-x) \tau_{n}(x-y) d y d x\right|=O\left(n^{\mu} \ln n\right)
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle\left(\ln x_{-}\right)_{n} *\left[x_{+}^{\mu} \tau_{n}^{\prime}(x)\right], \phi(x)\right\rangle=0 \tag{17}
\end{equation*}
$$

since $\mu<0$ ．
It now follows from equations（16）and（17）that

$$
\begin{aligned}
N_{n \rightarrow \infty} \lim \mu\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu-1}\right)_{n}, \phi(x)\right\rangle & =-N_{n \rightarrow \infty}-\lim \left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle \\
& =-\left\langle\ln x_{-}{ }^{*} \mid x_{+}^{\mu}, \phi^{\prime}(x)\right\rangle
\end{aligned}
$$

by our assumption．This proves that the neutrix convolution product $\ln x_{-}\left[{ }_{*}^{*}\right] x_{+}^{\mu-1}$ exists and

$$
\begin{aligned}
\ln x-\left[{ }^{*} \mid x_{+}^{\mu-1}\right. & =\mu^{-1}\left[\ln x_{-}\left[{ }^{*} \mid x_{+}^{\mu}\right]^{\prime}\right. \\
& =\mu^{-1}\left\{-x_{+}^{\mu} \ln x_{+}-(\mu+1)^{-1} x_{+}^{\mu}+[\gamma+\psi(-\mu-1)] x_{+}^{\mu}\right\} \\
& =\mu^{-1}\left\{-x_{+}^{\mu} \ln x_{+}+[\gamma+\psi(-\mu-1)] x_{+}^{\mu}\right\}
\end{aligned}
$$

since $\psi(-\mu-1)-(\mu+1)^{-1}=\psi(-\mu)$ ．
Equation（3）now follows by induction for $\mu \neq 0, \pm 1, \pm 2, \ldots$ ．This completes the proof of the theorem．

Corollary ．The neutrix convolution products $\ln |x| \sqrt{*}\left|x_{+}^{\mu}, \ln \right| x\left|{ }^{*}\right| x_{-}^{\mu}$ and $\ln |x|{ }^{*} \|\left. x\right|^{\mu}$ exist and

$$
\begin{align*}
& \ln |x| 区^{*} \left\lvert\, x_{+}^{\mu}=\frac{\pi \cot \mu \pi}{\mu+1} x_{+}^{\mu+1}\right. \tag{18}\\
& \ln |x| 区^{*} \left\lvert\, x_{-}^{\mu}=\frac{\pi \cot \mu \pi}{\mu+1} x_{-}^{\mu+1}\right. \tag{19}\\
& \ln |x| 区 \|\left. x\right|^{\mu}=\frac{\pi \cot \mu \pi}{\mu+1}|x|^{\mu+1} \tag{20}
\end{align*}
$$

for $\mu \neq 0, \pm 1, \pm 2, \ldots$ ．
Proof．The convolution product $\ln x_{+} * x_{+}^{\mu}$ exists by Gel＇fand and Shilov＇s definition and it is easily proved that

$$
\begin{aligned}
\ln x_{+} * x_{+}^{\mu} & =(\mu+1)^{-1} x_{+}^{\mu+1} \ln x_{+}+B_{10}(1, \mu+1) x_{+}^{\mu+1} \\
& =(\mu+1)^{-1} x_{+}^{\mu+1} \ln x_{+}-\left[\frac{\gamma+\psi(\mu+2)}{\mu+1}\right] x_{+}^{\mu+1} .
\end{aligned}
$$

Since the neutrix convolution product is clearly distributive with respect to addition, it follows that

$$
\begin{aligned}
\left.\ln x_{-}\right|_{+} ^{\mu}+\ln x_{+} * x_{+}^{\mu} & =\frac{\psi(-\mu-1)-\psi(\mu+1)}{\mu+1} x_{+}^{\mu+1} \\
& =\frac{\pi \cot \mu \pi}{\mu+2} x_{+}^{\mu+1}
\end{aligned}
$$

since it can be easily proved that

$$
\psi(-\mu-1)-\psi(\mu+2)=\pi \cot \mu \pi
$$

This proves equation (18).
Replacing x by $-x$ in equation (18) gives equation (19) and equation (20) follows on noting that $|x|^{\mu}=x_{+}^{\mu}+x_{-}^{\mu}$.

Theorem 4. The neutrix convolution product $x_{-}^{-r}{ }^{*} \mid x_{+}^{\mu}$ exists and

$$
\begin{equation*}
x_{-}^{-r} \mathbb{*}^{\mu} x_{+}^{\mu}=\frac{(\mu)_{r-1}}{(r-1)!}\left\{x_{+}^{\mu-r+1} \ln x_{+}-[\gamma+\psi(-\mu+r+1)] x_{+}^{\mu-r+1}\right\} \tag{21}
\end{equation*}
$$

for $\mu \neq 0, \pm 1, \pm 2, \ldots$ and $r=1,2, \ldots$.
Proof. Let ϕ be an arbitrary function in \mathcal{D} with support contained in the interval $[a, b]$, where we may suppose that $a<0<b$. Then

$$
\begin{aligned}
\left\langle\left[\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}\right]^{\prime}, \phi(x)\right\rangle & =-\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle \\
& =-\left\langle\left(x_{-}^{-1}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle+\left\langle\left[\ln x_{-} \tau_{n}^{\prime}(x)\right] *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle
\end{aligned}
$$

and so
$\left\langle\left(x_{-}^{-1}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle=\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle+\left\langle\left[\ln x_{-} \tau_{n}^{\prime}(x)\right] *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle$.
The support of $\ln x_{-} \tau_{n}^{\prime}(x)$ is contained in the interval $\left[-n-n^{-n},-n\right]$ and so with $n>-a>n^{-n}$, it follows as above that
(23)

$$
\begin{aligned}
\langle[\ln x- & \left.\left.\tau_{n}^{\prime}(x)\right] *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle \\
& =\int_{a}^{b} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} \tau_{n}(x-y) d y d x \\
& =\int_{-n^{-n}}^{n^{-n}} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} \tau_{n}(x-y) d y d x \\
& +\int_{a}^{0} \phi(x) \int_{J_{-n-n^{-n}}^{n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} d y d x \\
& -\int_{-n^{-n}}^{0} \phi(x) \int_{J_{-n-n^{-n}}^{-n}} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} d y d x
\end{aligned}
$$

where on the domain of integration $\ln (-y)$ and $(x-y)^{\mu}$ are locally summable functions. It is easily seen that

$$
\begin{gathered}
\left|\int_{-n^{-n}}^{n^{-n}} \phi(x) \int_{j_{-n-n-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} \tau_{n}(x-y) d y d x\right| \\
=\left|\int_{-n^{-n}}^{0} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} d y d x\right| \\
=O\left(n^{\mu-n} \ln n\right)
\end{gathered}
$$

and it follows that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{-n^{-n}}^{n^{-n}} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} \tau_{n}(x-y) d y d x \tag{24}\\
&=\lim _{n \rightarrow \infty} \int_{-n^{-n}}^{0} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} d y d x=0
\end{align*}
$$

Integrating by parts, it follows that

$$
\begin{align*}
\int_{-n-n^{-n}}^{-n} & \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} d y=(x+n)^{\mu} \ln n \\
& +\int_{-n-n^{-n}}^{-n}\left[y^{-1}(x-y)^{\mu}+\mu \ln (-y)(x-y)^{\mu-1}\right] \tau_{n}(y) d y \tag{25}
\end{align*}
$$

Choosing an integer $r>\mu$, we have

$$
(x+n)^{\mu} \ln n=\sum_{i=0}^{r-1} \frac{(\mu)_{i} x^{i}}{i!} n^{\mu-i} \ln n+\sum_{i=r}^{\infty} \frac{(\mu)_{i} x^{i}}{i!} n^{\mu-i} \ln n
$$

and it follows that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim (x+n)^{\mu} \ln n=0 \tag{26}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\left|\int_{-n-n^{-n}}^{-n}\left[y^{-1}(x-y)^{\mu}+\mu \ln (-y)(x-y)^{\mu-1}\right] \tau_{n}(y) d y\right|=O\left(n^{\mu-n-1} \ln n\right) \tag{27}
\end{equation*}
$$

and it follows from equations (25), (26) and (27) that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim \int_{a}^{0} \phi(x) \int_{-n-n^{-n}}^{-n} \ln (-y) \tau_{n}^{\prime}(y)(x-y)^{\mu} d y d x=0 \tag{28}
\end{equation*}
$$

and then from equations (23), (24) and (28) that

$$
\begin{equation*}
\left\langle\left[\ln x_{-} \tau_{n}^{\prime}(x)\right] *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle=0 . \tag{29}
\end{equation*}
$$

It now follows from equations (22) and (29) that

$$
\begin{aligned}
N_{n \rightarrow \infty} \lim _{n \rightarrow-}\left\langle\left(x_{-}^{-1}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle & =N_{n \rightarrow \infty} \lim _{n}\left\langle\left(\ln x_{-}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle \\
& =\left\langle\ln x_{-} * \mid x_{+}^{\mu}, \phi^{\prime}(x)\right\rangle .
\end{aligned}
$$

This proves that the neutrix convolution product $x_{-}^{-1}{ }^{+} \mid x_{+}^{\mu}$ exists and

$$
x_{-}^{-1}\left[\mid x_{+}^{\mu}=-\left[\ln x_{-}\left[\mid x_{+}^{\mu}\right]^{\prime}=x_{+}^{\mu} \ln x_{+}-[\gamma+\psi(-\mu-1)] x_{+}^{\mu}\right.\right.
$$

as above for $\mu \neq 0, \pm 1, \pm 2, \ldots$. Equation (21) is therefore proved for case $r=1$.
Now assume that equation (21) holds for some positive integer r. Then it follows as above that

$$
\begin{align*}
\left\langle\left[\left(x_{-}^{-r}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}\right]^{\prime}, \phi(x)\right\rangle & =r\left\langle\left(x_{-}^{-r-1}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle \\
& +\left\langle\left[x_{-}^{-r} \tau_{n}^{\prime}(x)\right] *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle . \tag{30}
\end{align*}
$$

It follows as above that

$$
N_{n \rightarrow \infty}-\lim _{n}\left\langle\left[x_{-}^{-r} \tau_{n}^{\prime}(x)\right] *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle=0
$$

and so

$$
\begin{aligned}
N_{n \rightarrow \infty}-\lim _{n} r\left(\left(x_{-}^{-r-1}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi(x)\right\rangle & =-N_{n \rightarrow \infty}-\lim _{n}\left\langle\left(x_{-}^{-r}\right)_{n} *\left(x_{+}^{\mu}\right)_{n}, \phi^{\prime}(x)\right\rangle \\
& =-\left\langle x_{-}^{-r}{ }_{-}^{*} \mid x_{+}^{\mu}, \phi^{\prime}(x)\right\rangle
\end{aligned}
$$

by our assumption. Thus $x_{-}^{-r-1}{ }_{*}^{*} \mid x_{+}^{\mu}$ exists and

$$
\begin{aligned}
x_{-}^{-r-1}\left[x_{+}^{\mu}\right. & =r^{-1}\left[x_{-}^{-r}\left[* \mid x_{+}^{\mu}\right]^{\prime}\right. \\
& =\frac{(\mu)_{r-1}}{r!}\left\{(\mu-r+1) x_{+}^{\mu-r} \ln x_{+}-(\mu-r+1)[\gamma+\psi(-\mu+r+1)] x_{+}^{\mu-r}\right\} \\
& =\frac{(\mu)_{r}}{r!}\left\{x_{+}^{\mu-r} \ln x_{+}-[\gamma+\psi(-\mu+r)] x_{+}^{\mu-r}\right\} .
\end{aligned}
$$

Equation (21) now follows by induction for $\mu \neq 0, \pm 1, \pm 2, \ldots$ and $r=1,2, \ldots$.
Corollary . The neutrix convolution products $x^{-r}{ }^{+\infty} \mid x_{+}^{\mu}$ and $x^{-r}{ }^{+} \|\left. x\right|^{\mu}$ exist and

$$
\begin{gather*}
\left.x^{-r}{ }_{*}\right|_{-} ^{\mu} x_{+}^{\mu}=\frac{(-1)^{r-1}(\mu)_{r-1} \pi \cot \mu \pi}{(r-1)!} x_{+}^{\mu-r+1} \tag{31}\\
x^{-r}{ }^{*} \|\left. x\right|^{\mu}= \begin{cases}-\frac{(\mu)_{r-1} \pi \cot \mu \pi}{(r-1)!}|x|^{\mu-r+1}, & \text { even } r, \\
\frac{(\mu)_{r-1} \pi \cot \mu \pi}{(r-1)!} \operatorname{sgn} x \cdot|x|^{\mu-r+1}, & \text { odd } r\end{cases} \tag{32}
\end{gather*}
$$

for $\mu \neq 0, \pm 1, \pm 2, \ldots$ and $r=1,2, \ldots$.

Proof. The convolution product $x_{+}^{-r} * x_{+}^{\mu}$ exists by Gel'fand and Shilov's definition and it is easily proved that

$$
\begin{aligned}
x_{+}^{-r} * x_{+}^{\mu} & =\frac{(-1)^{r-1}(\mu)_{r-1}}{(r-1)!}\left\{x_{+}^{\mu-r+1} \ln x_{+}-[\gamma+\psi(\mu-r+2)] x_{+}^{\mu-r+1}\right\} \\
& =x_{+}^{-r}\left[* \mid x_{+}^{\mu}\right.
\end{aligned}
$$

Since $x^{-r}=x_{+}^{-r}+(-1)^{r} x_{-}^{-r}$, we have

$$
\begin{aligned}
x^{-r} \sqrt{*} \mid x_{+}^{\mu} & =x_{+}^{-r} \sqrt{*}\left|x_{+}^{\mu}+(-1)^{r} x_{-}^{-r} \mathbb{*}\right| x_{+}^{\mu} \\
& =\frac{(-1)^{r}(\mu)_{r-1}}{(r-1)!}[\psi(\mu-r+2)-\psi(-\mu+r-1)] x_{+}^{\mu-r+1} \\
& =\frac{(-1)^{r-1}(\mu)_{r-1} \cot \mu \pi}{(r-1)!} x_{+}^{\mu-r+1}
\end{aligned}
$$

since $\psi(\mu-r+2)-\psi(-\mu+r-1)=-\cot (\mu-r) \pi=-\cot \mu \pi$. This proves equation (31).

Equation (32) follows from equation (31) on noting that $|x|^{\mu}=x_{+}^{\mu}+x_{-}^{\mu}$ and $\operatorname{sgn} x .|x|^{\mu}=x_{+}^{\mu}-x_{-}^{\mu}$.

Acknowledgment

The first author wishes to thank University of Hacettepe (Turkey) for their financial support.

REFERENCES

[1] Corput, J.G., van der, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398.
[2] Fisher, B. and Y. Kuribayashi, Neutrices and the Beta function, Rostock. Math. Kolloq. 32 (1987), 56-66.
[3] Fisher, B. and LiChen Kuan, A commutative neutrix convolution product of distributions, Univ. u Novom Sadu Zb. Rad. Prorod.-Mat. Fak. Ser. Mat., (to appear).
[4] Fisher, B. and E. Özçağ, A result on the commutative neutrix convolution product of distributions, Doga Mat. 16 (1992), 33-45.
[5] Fisher, B. and E. Ō \mathbf{z} ¢ a $\overline{\mathrm{g}}$, Results on the commutative neutrix convolution product of distributions, submitted.
[6] Gel'fand, I.M. and G.E. Shilov, Generalized functions, Vol. I, Academic Press (1964)
[7] Jones, D.S., The convolution of generalized functions, Quart. J. Math. Oxford Ser. (2) 24 (1973), 145-163.

Department of Mathematics, The University,
(received May 18, 1992)
Leicester, LE1 7RH, England

