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Remarks on Jensen’s Inequality for Operator Convex Functions

Abstract. A continuous real-valued function g is said to be operator convex on an interval J
if f(sA+tB) < sf(A)+tf(B) holds for any positive 3,¢ with 8 + ¢ = 1 and self-adjoint
operators A and B with spectra contained in J. Several results which are valid for real convex
functions are extended on operator convex functions.

1. Introduction. Z. Swigtochowski [17] proved the following result:
Let Cy,...,Cn , be bounded positive operators. Then

(1) Cil+---+C' 2n*(Cr+ -+ Cn)™!

with equality if C; = ... =C,, .

Here the inequality A > B means that A — B is a positive operator.

Note that (1) is a simple consequence of Jensen’s inequality for operator convex
functions. A continuous real valued function g is operator monotone on an interval J
if g(A) < g(B) for self-adjoint operators A and B such that A < B and their spectra
are contained in J . A function f is operator convex on J if

(2) f(sA+tB) < sf(A) +tf(B)

for positive numbers s and t with s + t = 1 and self-adjoint operators A and B with
spectra contained in J . A function f is operator concave if — f is operator convex on
J . It is known that if f is operator monotone on (0,00), it is also operator concave.

We denote by S(I) the set of all self-adjoint operators on a Hilbert space whose
spectra are contained in an interval I.

2. Jensen’s and related inequalities. As in the case of classical convex
functions, we can get by mathematical induction from (2), the well-known Jensen
inequality:

Theorem 1. Let C; € S(I), wi >0, i =1,..,n and Wo=3Y" w;. Then
for every operator convez function f on I, we have

1 n n

(3) fge Lo wiC) < 3= L wif(C).

=] =i
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Of course we have the reverse inequality for a concave function.
Many results which are valid for real convex functions are also valid for operator

convex functions with the same proofs. Here, we give such results with references to
the real case.

Theorem 2. Let w be a real n-tuple such that
4) w, >0, w; <0 (1=2,..,n), W,>0.

If CieSI), i=1,..,n, ;6: Yoo wiCi € S(I) , then we have the reverse inequality
in (3), for every operator convez function f on I .

Now let us consider an index set function

F(J)=W,f(4,(C:w)) - Y wif(Ci)

i€J
where

w, =Zw.- , A,(Ciw)= wl_—Zw.C.-.

i€J 7 ied
Theorem 3. Let f be an operator convez function on I , J and K are
two finite nonempty subsets of N such that JNK = ¢, w = (w;)iequx and C =
(Ci)iesur are such that C; € S(I) , w, € R(i € JUK) , Wyux >0, Ar(C;w) €
SH(T=J,K,JUK ) .If W; >0 and Wk >0, then
() F(JUK) < F(J) + F(K)

If WiWg <0, we have the reverse inequality in (5).

Theorem 4. If w; >0, i=1,...,n, Iy ={1,..,k}, then

(6) F(I,) S F(In-y) £ ... F(I2) <0

but tf (4) 1s valid and Aj, (C;w) € S(I) then the reverse inequalities in (6) are valid.
Theorems 2-4 in the real case are obtained in [4], [9], [16] .

Theorem 5 [10]. Let the conditions of Theorem 1 be fulfilled. Then

f(“i, zwici) = fn.n A Sf§+l.n < f.l-,n L. 5 fl.n
™ =

1 n
= 5 2 wf(C)
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where

1 aWCiy + -+ w, G
fk,n:= ATy Z (w.l+---+w'-‘)f(w w|+“‘+:’)- '),
\k=1/7"1 1<1<...<i<n b s

Theorem 6. Let the condition of Theorem 1 be fulfilled. Then

(8) f(—Zw. S - uSJutup S$TiaS o8 him= —ul, Y wif(Ci)
=1 n =1
where
i 1 — w.,C,, -+ w;, Cy,
fk,n = /n+k l)wn L (wi‘ twi, )f( -4 wy,

).

1< <...<iy<n

Theorem 7 [12]. Let the conditions of Theorem 1 be fulfilled. Then

(9) Zw. STz Sys S(C
where 1<k<n-1, d
fen=r X i w)f(Ch + 4 CL))

" (Rl =1

Theorem 8 [5], [13]. Let the condition of Theorem 1 be fulfilled and let
>0, i=1,... k with Q ;=z;’;=,q.-. Then

f(——Zw.C)< z wi, .. w,.f( ZQJC'J)

(10) =1 "‘ i

-----

1 n
<7 ; w; f(C;)

_ Theorem 9 [6], [14]. Let the conditions of Theorem 1 be fulfilled and let
C = W—E_:lw. i, ti€[0,1], i=1,..,k—1. Then

W Zw.C,) < fun S 4% S Fanss

f=]

k-2
a) < WT Z wiy - wi FCL(L )+ ) Ciy(1 = tigalt ..
noayeeana=1 J=1

+Ca.tl Aoy < _Zwlf(cl) )
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where
- 1 -
far= ﬁ E w.,..‘w.,f{C.-,(l—t.}

LA TR T |
k-1 1
+ ZCi,-(l —tip ).t +Cty oL )

J=1

Theorem 10 [7]. Let a function g be defined by
n 1 I n
o@)= Y —fazh-i+ (-2} A)
i=1 k=1

where ¢;>0,1=1,..,n,with 3 ;_,(1/q) =1, r € R, qizAi+(r—-2) ¥ Ar €
SI)., 1 =1,...,n for all  from an interval J from R.
If |z| <yl (zy >0,y €J), then

(12) 9(z) < 9(y)

The function g is also convez.

Remark. Using the substitutions: 1/¢; — w.-(Z;'=l wi=1), ¢4 - X;, r=
1, we get that (12) is also valid if

9(z) = i: wif(z Xi +(1=2) ) weXs) .
i=1 k=1

Remark. For some further generalizations of some of the previous results, see
[13] and the references given there.

3. Some inequalities for means. Note that inequality (1) is, in fact, the well-
known inequality between the harmonic and arithmetic means. We can, therefore,
consider generalizations to means of arbitrary orders.

We consider a power mean of stricly positive operators C = {C;} , with weights
w={w}, wi>0,1i=1,..,n ie.

(13) MU(C;w) = (—ul,— Y wict )

If w=(1,1,..,1) we write M!.rl(c) :

The following results are proved in [15]:
(i) r>s,sg(-1,1), r (-1,1) implies

M) > Mi(C);
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(i1) For a finite set of positive operators
MBP(c)> Mli(C) forr>1/2.

Moreover, we have the following ([16]):
Let A dnote a set of strictly positive operators. Then

(14) MI(C;w) > MUN(C;w)

is valid if either

(a) r2s, r¢(—1,1),s¢(—1,1);or
b)) r>1>s>r/2;0r

(c) s<-1<r<s/2.

This is a simple consequence of Theorem 1. Namely, the function f(z) = z” is
concave for 0 < p <1 and convex for 1 <p <2, or —1< p <0, while the functions
g(z) = /" for s > 1 and h(z) = —z'/% for s < —1 are operator-monotone.Now,
using these facts and substitutions f(z) = z*/" , z; = CT (or f(z) = 2"/* ,z; = C?)
we get (14).

Let us consider the cases (b) with r =1 and (c) withs = ~-1. If1> s % , then

MY(C;w) > ME(C;w)
and if -1 <r < -3, then
MN(C;w) < MU(Ciw)
Moreover, since for all r > 1 , we have
MP(Ciw) 2 M (Ciw) ,

and for all s < -1,
ME(C;w) < MY (Ciw)
combining the previous inequalities we get that (23) is valid if either (c), or

(d)r>1>3>l
() s<-1<r< ;

Similary,substitutions f(z) = z*/* ,C; = C! or f(z) = z"/* ,C; — C! can be
used in Theorems 2-10 as well. Here we shall only introduce three sorts of mixed
means, i.e., we shall use these substitutions and Theorems 5,6 and 7.

Mn(s,t; k) :=
i co 4w C! 1-]! 1/s
{{011 W Z (u'n"“" u)lw = I.J 1- )
-1/ 1<ij<...<ian Wy, +-0c + wa J
M(s,t; k) :=

1 u“ +"‘+H'..C' ]n/t]l/-
e . (wiy +++w )l
= n i 1Y )
{{n:—ll) 15|1<Z:<|.<n ' w" + +w'k J I
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- 1/s
Mn(“*“:={;:m ) L w-.A-Au-..(,I;{C.'l+---+c:,n"'} :

n B geeep i =1

Remark. Note that the means My(s,t; k) are only found in the literature in the
discrete case and with w; = -+ = w, = 1 (see [4], pp. 191-193).
The following theorem is a consequence of Theorems 5,6 and 7.

Theorem 11. Let A be an n-tuple of stricly positive operators, w; > 0 ,t =
1,...,n. Then the following inequalities

M,[,'](C;w) = Mn(s,r;1) < ... < Mp(s,r;k) ... < My(s,r;n)

R = MI(C;w) ;

(16)  MINC;w) = Ma(s,r;1) S ... < Ma(s,r3k) < ... < MU(Cw) ;

A7) ME(C;w) = Ma(s,;1) S ... < Mo(s,rik) < ME(Csw) (1< k<),

are valid if either (1)1 <s<r;or (1) —r<s<-1,or (i) s<-1,r>s>2r;
while the reverse inequalities are valid if esther (1v)r <s< -1;0r (v)1<s< —r;
or (vi) s > 1 ,r < s < 2r , are valid. For some related results see [17), where
generalizations of symmetric means are considered.

4. Some inequalities for operator monotone functions. The following
results is given in [1,p.29].

Let f be a continuous positive function on (0, 00) , and A, B be positive operators.
If f is operator-monotone, then

(18) f(Mia, B) < MITV(f(A), £(B)) -

This is a simple consequence of the fact that the function g(A) = f(A~!)~! is operator-
monotone and hence operator-concave.

Moreover, T.Ando [2] proved the following result:

Let f be a positive operator-monotone function on (0, 00)|. The function g(A) =
f(A}/P)?P i operator monotone and hence operator concave if either p< —lorp>1.

Remark. In fact, Ando considered matrices but, the proof is the same for
Operators.

For an n-tuple of operators C = (C},...,Cn) , we shall use the notation f(C) =
(f(Cl )v seey f(Cn)) .

The following generalizations of (18) holds:

Theorem 12. Let C be an n-tuple of stricly positive operators, let w be an
n-tuple of positive numbers and let f be a positive operator-monotone function on

(0,00). Ifp>1

(19) F(MP(C; w)) > MPI(£(C);w)
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while for p < —1 , the reverse inequality holds.

Proof. In both{cases p > 1 and p < -1, we have that the function g(}\) =
F(AMP)P is operator-concave. Thus, theorem 1 gives

n

17 1
9(@: gw.-C,’) > F,,Z““”‘C-’)

1=1

l.e.
1 n
(20) FIMP(C;w)? < W gf(c,-}' .

If p > 1, the function h(t) = #'/? is operator monotone, so (20) gives (19).
Moreover, if p < —1, the function f(t) = —t'/? is operator monotone so that (20)
gives the reverse inequality in (19).

Similarly, we can use Theorems 2-10 to obtain various related results. We shall
only give some interpolations of (19) as consequences of theorems 5,6 and 7.

We introduce the following expressions:

gk,n(pvf) =
1 " w;,CP +--- +w,,CP Tl 1/p
= w; + ...+w‘~ f[{ g L] /P
{ (:—:}W"I 1Su<ZA:<i|Sn( . ) wi, + -t wi, )

yk,n(pvf)=
1

m < €. <ian

'(ul,]C:+"'+wiLC|’. e Py l/p
N

and

i1 e L 1/p
(I{c;+---+cf_)”]} |>

g,,.m(p;f)={*“17; > wi v f

Ll [ e iy=1
The following theorem holds:

Theorem 13. Let the conditions of Theorem 12 be satisfied. If p > 1, we have
the following series of inequalities

F(MPYC;w)) = gn,n(p, f) 2 ... 2 grs1.0(P, f) 2 gk ,n(P, ) 2 91,0(p. f)

21
o = MP(f(C);w)

f(M!,’](C,w)) Z s 2 yk+l,n(p) f) 2 gk.n(pv f) 2 ] 'yl,n(pa f)

22
#) = MPI(f(C);w)
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(23)  AMPNCiw) 2g,,, (0, f) 29, (p.f) 2+ g, (P f) = MPI(f(C);w)

If p < —1, the reverse inequalities in (21), (22) and (23) are valid.
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